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Introduction

The investigation of structure-property and structure-function relations is a leit-
motif of condensed matter as of life sciences. Macroscopic phenomenological
properties and material stoichiometries can in most cases be determined with
the desirable accuracy. Likewise, biological function and the molecular players
in living systems can be well identified and described. On the other hand the
link of properties and functions to the three-dimensional structure of matter
on the nanoscale is often missing. Therefore, there is still a significant need
for more structure-resolving experimental capabilities, despite the tremendous
progress in visible light and electron as well as scanning probe microscopies.
These techniques can fully or partially resolve structures at the nanometer range,
and in the case of transmission electron microscopy (TEM) or scanning tunnel-
ing microscopy (STM) even reach atomic resolution. However, a common and
severe shortcoming is that these techniques can hardly image the properties of
the undisturbed bulk. In the case of visible light, opacity, multiple scattering,
and/or disturbances by using labels such as in fluorescence microscopy, can
partially compromise the ability to probe structure in bulk specimens. In the
case of scanning probe microscopy, bulk properties have to be derived from
those of the investigated surface.
X-ray imaging is in principle a suitable and promising method to probe undis-
turbed bulk structure non-invasively under relevant environmental conditions.
A necessary prerequisite to develop this technique was the advent of highly
brilliant x-ray sources (synchrotrons, x-ray free-electron laser) and high perfor-
mance x-ray detector arrays. Progress in x-ray optics is the third pillar needed to
achieve the full potential of high resolution x-ray microscopy.
To date, many different experimental approaches exist to image nanoscale struc-
tures by x-ray beams, all of them characterized by individual assets and draw-
backs. On the general leave, the methods can be classified into those that need
coherent or partially coherent wavefronts, and those which work also with in-
coherent illumination. Furthermore, they can also be divided in scanning and
full-field, as well as in lens based or lensless techniques, or in far-field and
near-field (propagation based) imaging methods.
The most developed form of x-ray microscopy is zone plate-based x-ray mi-
croscopy, primarily applied in the soft x-ray spectral range. Fresnel zone plates
replace the condenser and/or objective lenses known from conventional visible
light microscopy. This method allows for very high resolution in the soft x-ray
spectral range down to 12-15 nm in two-dimensional imaging [1] and of � 50 nm
in three-dimensional imaging (tomography) [2]. The resolution is not limited
by the short x-ray wavelength (nm-to-Å range) but by the focusing properties of
the respective optics.



The refractive index of x-rays is slightly lower than one which generally com-
promises the achievable focusing or imaging properties not only of lenses, but
virtually for all x-ray optical devices, based on refraction, reflection or diffraction.
Note that aside from Fresnel zone plates (diffractive optics) [3], small x-ray beam
diameters can also be achieved by mirrors with low curvature (reflective optics)
[4], and compound refractive lenses [5].
A conceptionally simple yet versatile imaging method can be implemented by
scanning the focused beam across the sample, and measuring x-ray absorption,
fluorescence, diffraction or differential phase contrast. In this case no (objective)
lens is placed between sample and detector, making it particularly dose efficient.
At the same time, a high degree of coherence is needed to achieve efficient
focusing, and the resolution - at least at first sight - seems to be limited by the
focal width.
On closer inspection, the situation changes for coherent focusing (coherent
illumination), as in this case the resolution limit of the focal spot size can be
overcome by inversion of the coherent far-field diffraction pattern. This ap-
proach which is based on a coherent wavefront is also denoted as lensless x-ray
imaging or coherent x-ray diffractive imaging (CXDI). The idea of lensless imag-
ing is that even if lenses or other optics are used as condensers, these should
not limit the resolution. The first CXDI experiment was carried out using simply
a pinhole [6] to select a coherent wavefront out of the partially coherent syn-
chrotron beam. The resolution of the image is not limited by the focal spot but by
the largest diffraction angle at which a statistically significant signal is recorded
in the far-field. This method has been enhanced by using x-ray optics such
as Fresnel zone plates [7] and compound refractive lenses [8]. The coherence
condition was fulfilled either by reducing the beam size in front of the lens or
by choosing objects with lateral extension below the coherence length. As in
the pinhole CXDI experiments, the image resolution is much better than the
focal spot size [9]. Importantly, with no optics between sample and detector,
optical improvements and experimental design must focus on the optics of the
illumination wavefront.
In this work we present advanced x-ray waveguide optics for the coherent illumi-
nation in lensless imaging. The particular advantages of using x-ray waveguides
as quasi point-like sources for x-ray imaging are related to four aspects: Firstly,
they act as coherence filter and decouple the coherence properties of the illu-
mination from those of the primary source (undulator and/or beamline optics).
Secondly, they provide a divergent exit beam, enabling an illumination wave-
field which can be tailored in cross-section and curvature, e.g. simply by moving
the sample along the optical axis. Thirdly, the divergence results in an extended
far-field pattern which spreads the signal over many detector pixels in contrast
to plane wave illumination, which usually necessitates the use of beamstops



leading to loss of information. Finally, reconstruction algorithms have been
shown to converge faster for divergent illumination compared to plane wave
illumination [7].

Indeed, the image formation and object reconstruction depend significantly on
the properties of the illumination wave-field. Divergent illumination using x-ray
waveguides enables a route to high resolution projection images. In the regime
of hard x-rays, these images are predominantly formed by phase contrast, at
least for nanoscale specimens. The divergent beams emitted from quasi-point
sources also enable a simple and deterministic (holographic) reconstruction
method by backpropagation [10]. However, as is well known, the reconstruction
of in-line holograms leads to artifacts, such as the twin image problem. The situ-
ation can be significantly improved [11] by combining the divergent projection
setting with iterative reconstruction algorithms [12, 13, 14].

Given the advantages of this form of propagation imaging and the progress in re-
construction algorithms, a pivotal challenge resides in the design and fabrication
of suitable waveguides [15]. Up to now, the waveguides were severely limited in
transmission and flux, restricting their use to high-contrast test structures with
moderate resolution and long accumulation times [16, 17, 18].

To overcome these limits, the evanescent modes propagating inside the waveg-
uide must be tailored such that the absorption is minimized. Enhanced trans-
mission can be achieved by a two-component cladding with a suitable index
profile [19, 20]. To this end, thin film deposition is a versatile fabrication tech-
nique enabling multiple design parameters to shape an optimized refractive
index profile. However, tow major problems occur if one aims at using this tech-
nology for the fabrication of x-ray waveguides. Firstly, optimized transmission is
obtained only for rather thin slices, which are difficult to handle and to ‘seal’ with
beam blocking materials. Depending on photon energy, thin slices (lamellae)
of 200-600 μm thickness optimize the radiation transport and filtering proper-
ties, but are difficult to integrate into absorption apertures. Secondly, thin film
optical films make up one-dimensional waveguides, but are not compatible, at
first sight, with two-dimensional beam confinement and filtering. Extending the
ideas of crossing orthogonal waveguides [21], we show that two-dimensionally
(beam) confining waveguides can be achieved by means of a serial arrangement
of two crossed planar waveguides. By optimal design and fabrication we achieve
three advantages: 1.) the transmission is maximized by minimizing the length
while blocking the radiative modes, 2.) the two focal planes can be brought into
close proximity, and 3.) the compact design allows for an optical alignment in
one step. Resulting from 1.), very small beam cross sections become amenable.

In summary, the main goal of this thesis was to develop, to characterize and
to optimize such two-component waveguides in a crossed geometry to cre-



ate suitable and powerful illumination sources for lensless x-ray imaging, as
demonstrated by proof-of-concept experiments.



1 X-ray propagation imaging

Waveguide-based x-ray imaging involves diffraction of the waveguide field by

the sample, propagation by free-space of the disturbed wave-field to the detector

and reconstruction of the object from intensity measurements in the detection

plane.

In section 1.1 we describe the theoretical background to propagate an arbitrary

wave-field in free-space based on the scalar wave theory. Using suitable ap-

proximations we derive Fresnel and Fraunhofer diffraction pattern. In section

1.2 interaction of the x-ray wave-field with matter is considered leading to the

projection approximation indicating that the object outgoing wave-field is di-

rectly related to the incoming waveguide field through the optical transmission

function. Assuming plane wave illumination the different imaging regimes are

illustrated by simulations as a function of the propagation distance of the object

wave-field (section 1.3). We show that point-source illuminated Fresnel diffrac-

tion pattern can be considered as plane wave illuminated Fresnel diffraction

pattern indicating that waveguide-based imaging can be related to parallel beam

imaging by a variable transformation (section 1.4). In section 1.5 we discuss

algorithms to retrieve the complete object function from intensity measure-

ments in the detection plane. We focus on in-line holographic reconstruction

and iterative reconstruction methods and present phase retrieval simulations

illustrating the advantages and limitations by use of the different methods.

1.1 Propagation of x-rays in free-space

1.1.1 Wave equations in free-space

Propagation of of electromagnetic waves is described by Maxwell’s equations
[22]. In the simplest case of free-space propagation, the Maxwell’s equations in
SI units are given by

∇ ·E(x, y, z, t ) = 0, (1.1)

∇ ·B(x, y, z, t ) = 0, (1.2)

∇×E(x, y, z, t ) =−∂B

∂t
, (1.3)

∇×B(x, y, z, t ) = ε0μ0
∂E

∂t
, (1.4)

in Cartesian coordinates (x, y, z), i.e. in three-dimensional space and t as time. E
denotes the electric field, B is the magnetic induction, ε0 and μ0 are respectively
equal to the electrical permittivity and magnetic permeability of free space.
As demonstrated in physics textbooks [23], the Maxwell’s equations can be
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transformed into the vacuum field equations which is in case of the electric field
given by

∇2E(x, y, z, t ) = ε0μ0
∂2E(x, y, z, t )

∂t 2
. (1.5)

In this vector theory the electromagnetic disturbance is specified by the electric
field vector and the magnetic induction vector at each point in space and time.
If polarization effects are negligible we can apply scalar theory and consider the
single scalar field Ψ(x, y, z, t ) as a function of both position and time according
to the vacuum field equation by [24]

(
1

c2

∂2

∂t 2
−∇2)Ψ(x, y, z, t ) = 0. (1.6)

Here, we used the relation c = νλ= 1�
μ0ε0

where c is the speed of light in vacuum,

ν the frequency and λ the wavelength of the electromagnetic field. The spectral
decomposition of a complex scalar function Ψ(x, y, z, t) as a superposition of
monochromatic fields describing a wave-field in a given volume of free space

Ψ(x, y, z, t ) = 1�
2π

∞∫
0

ψω(x, y, z)exp(−iωt )dω, (1.7)

is known as the analytic signal corresponding to the scalar electromagnetic
disturbance [25]. Substituting Eq. (1.7) in Eq. (1.6), interchanging the order
of differentiation and integration and finally applying the differentiation with
respect to time results in

(∇2 +k2)ψω(x, y, z) = 0 (1.8)

with the wave-number k = ω
c which depends on the angular frequency of the ra-

diationω= 2πν. The time-independent equation (1.8) is known as the Helmholtz
equation. It describes the development of the spatial wave-function ψω(x, y, z)
linked to a given monochromatic component of the spectral decomposition, i.e.
the spatial component of a monochromatic wave-field.

1.1.2 Free-space propagator

In the following, we address the problem how to determine the propagated
wave-field from the knowledge of the unpropagated wave-field. We follow the
treatment of angular spectrum decomposition as presented in the textbooks of
Goodman [26] and Paganin [23]. As sketched in Fig. 1.1, we consider two parallel
planes z = 0 and z = Δ > 0 with vacuum in between the planes, so that the
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z
O

z = 0 z = �

Figure 1.1: Schematic illustrating the diffraction problem for scalar electro-

magnetic fields. The point source, denoted by O is at z < 0 on the optical

axis z and generates a spherical wave-field. The disturbed wave-field exiting

an object is indicated by the wavy lines. Solving the diffraction problem

amounts in obtaining the value of the spatial wave-function ψ(x, y, z) over a

plane z =Δ> 0, knowing the value of ψ over the plane z = 0.

Helmholtz equation (1.8) is obeyed. The elementary plane waves ψ(PW )(x, y, z) =
exp[i (kx x+ky y+kz z)] are solutions to the Helmholtz equation if k2

x+k2
y+k2

z = k2

where (kx ,ky ,kz ) are the x, y and z components of the wave-vector k of the plane
wave. We now consider plane waves propagating at an angle with respect to the
optical axis z in z-forward-direction. The solutions of the Helmholtz equation
can be expressed in the form

ψ(PW )(x, y, z) = exp[i (kx x +ky y)]exp
[

i z
√

k2 −k2
x −k2

y

]
. (1.9)

where exp
[

i z
√

k2 −k2
x −k2

y

]
is known as the free-space propagator. In fact, us-

ing the value ψ(PW )(x, y, z = 0) = exp[i (kx x +ky y)] of the plane wave at z = 0,
we can determine the propagated value of the plane wave at z > 0 by multi-

plication with the propagation factor exp
[

i z
√

k2 −k2
x −k2

y

]
. We can extend

this method to arbitrary wave-fields ψ(x, y, z) by applying the two-dimensional
Fourier integral Eq. (A.2) to the unpropagated wave-field

ψ(x, y, z = 0) = 1

2π

�
ψ̃(kx ,ky , z = 0)exp[i (kx x +ky y)]dkxdky . (1.10)

Here, ψ̃(kx ,ky , z = 0) denotes the Fourier transform of ψω(x, y, z = 0) with re-
spect to x and y. The terms kx and ky are the Fourier-space variables which are
conjugate to the positions x, y . since Eq. (1.10) corresponds to a decomposition
of the unpropagated wave-field into a linear combination of two-dimensional
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plane waves exp[i (kx x +ky y)], we obtain the propagated wave-field by multipli-
cating these plane wave components by the free-space propagator

ψ(x, y, z =Δ) = 1

2π

�
ψ̃(kx ,ky , z = 0)exp

[
iΔ

√
k2 −k2

x −k2
y

]
× exp[i (kx x +ky y)]dkxdky . (1.11)

Free-space propagation may be written in compact form introducing the free-

space diffraction operator DΔ =F−1 exp
[

iΔ
√

k2 −k2
x −k2

y

]
F

ψ(x, y, z =Δ) =DΔψ(x, y, z = 0). (1.12)

Hence, the numerical implementation of this method involves 3 steps [23]:

1. Apply the Fourier transform to the unpropagated wave-field ψ(x, y, z = 0),
with respect to x and y .

2. Multiply the obtained expression by exp
[

iΔ
√

k2 −k2
x −k2

y

]
.

3. Apply the inverse Fourier transform to the obtained result, with respect to
kx and ky .

Note that the numerical implementation is also possible in case of backpropa-
gating a known propagated wave-field to obtain the unpropagated wave-field by

using the free-space propagator exp
[
−iΔ

√
k2 −k2

x −k2
y

]
.

1.1.3 Fresnel diffraction

Imaging experiments in this thesis are carried out in the paraxial approximation.
Thus, all of the non-negligible wave components of the field make a small
angle with respect to the optical axis z [23]. This assumption is valid since the
divergence of the waveguide beam, which may be considered as the illumination
source at z = 0, is on the order of 1 mrad [19]. Hence, using the following
binomial approximation leads to

√
k2 −k2

x −k2
y ≈ k −

k2
x +k2

y

2k
. (1.13)

Substituting the term on the right side of Eq. (1.13) into the free-space diffraction
operator DΔ yields

ψ(x, y, z =Δ) ≈DF
Δψ(x, y, z = 0) (1.14)

= exp(i kΔ)F−1 exp

[
iΔ(k2

x +k2
y )

2k

]
Fψ(x, y, z = 0), (1.15)
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where DF
Δ is known as the Fresnel diffraction propagator. The numerical im-

plementation in the paraxial approximation is analogue to the implementation
presented in section 1.1.2 whereas the free-space propagator is replaced by the

kernel of the Fresnel propagator exp
[

iΔ(k2
x +k2

y )/2k
]

, and in a last step the re-

sulting expression is multiplied by the constant phase factor exp(i kΔ).
Eq. (1.15) can be rewritten using the convolution formalism Eq. (A.3)

ψ(x, y, z =Δ) =ψ(x, y, z = 0)∗h(x, y,Δ) (1.16)

The function h(x, y,Δ), which is called the real-space form of the Fresnel propa-
gator, is given by

h(x, y,Δ) ≡ 1

2π
exp(i kΔ)F−1 exp

[−iΔ(k2
x +k2

y )

2k

]

=− i k exp(i kΔ)

2πΔ
exp

[
i k(x2 + y2)

2Δ

]
. (1.17)

Applying the convolution theorem to Eq. (1.15) by taking the result of Eq. (1.17),
the Fresnel diffraction integral can be deduced

ψ(x, y, z =Δ) =− i k exp(i kΔ)

2πΔ

�∞

−∞
ψ(x ′, y ′, z = 0)

× exp

[
i k

2Δ
((x −x ′)2 + (y − y ′)2)

]
d x ′d y ′ (1.18)

By expansion of the quadratic term in Eq. (1.18) the Fresnel diffraction integral
can be written in the following form

ψ(x, y, z =Δ) =− i k exp(i kΔ)

2πΔ
exp

[
i k(x2 + y2)

2Δ

]

×
�∞

−∞
ψ(x ′, y ′, z = 0)exp

[
i k

2Δ
(x ′2 + y ′2)

]

× exp

[−i k

Δ
(xx ′ + y y ′)

]
d x ′d y ′. (1.19)

This corresponds to the Fresnel-Kirchhoff diffraction integral in paraxial approx-
imation.

1.1.4 Fraunhofer diffraction

A further approximation is often valid in x-ray waveguide experiments. The
diffracted field at z =Δ is in the far-field for propagation distances that are very
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large compared to the characteristic length scale of the unpropagated wave-
field, for instance the guiding core diameter d of the waveguide. This diffraction
pattern is called Fraunhofer diffraction pattern and the approximation is valid if

NF = kd 2

2πΔ

 1. (1.20)

NF is known as the Fresnel number. By using this condition, the first exponent
in the Fresnel diffraction integral (1.19) may be left out

ψ(x, y, z =Δ) =− i k exp(i kΔ)

2πΔ
exp

[
i k(x2 + y2)

2Δ

]

×
�∞

−∞
ψ(x ′, y ′, z = 0)exp

[−i k

Δ
(xx ′ + y y ′)

]
d x ′d y ′ (1.21)

This is known as the Fraunhofer diffraction integral. We can write Eq. (1.21)
in a compact form making use of Eq. (A.2) for the two-dimensional Fourier
transform

ψ(x, y, z =Δ) =− i k exp(i kΔ)

Δ
exp

[
i k(x2 + y2)

2Δ

]
ψ̃(kx = kx

Δ
,ky = k y

Δ
, z = 0).

(1.22)

Thus, in the Fraunhofer approximation the field distribution propagated to
the plane z > Δ is obtained by applying the 2D Fourier transform to the field
distribution at the plane z = 0 in a first step and in a second step, multiplying
the result by a complex-valued prefactor.

1.2 Interaction of x-rays with matter

1.2.1 Refraction and absorption of x-rays

In case of wave propagation in a uncharged, non-conducting and non-magnetic
medium, the Helmholtz equation in the framework of scala theory reads [22]

[∇2 +n2(x, y, z)k2]ψ(x, y, z) = 0 (1.23)

The quantity n(x, y, z) is known as the index of refraction of the medium and is
related to the electrical permettivity ε(x, y, z) of the medium by

n(x, y, z) = c
√
ε(x, y, z)μ0 =

√
ε(x, y, z)

ε0
. (1.24)
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The refractive index for x-rays is typically very close to unity and this index is
often expressed in the form [27]

n = 1−δ+ iβ, (1.25)

where δ and β are real numbers. Away from absorption edges, the dispersive
part δ of the index of refraction yields

δ= 2πρe re

k2
. (1.26)

Here, ρe is the electron density and re denotes the Thomson scattering length.
The imaginary part β which describes the absorption of the x-rays in the medium
is related to the linear attenuation coefficient μ by

β= μ

2k
. (1.27)

The values of the dispersive and imaginary parts δ and β are on the order of
10−5 −10−7 and 10−7 −10−9, respectively, for hard x-rays.

1.2.2 The projection approximation

In extension to 1.1.2, we now consider two parallel planes z = 0 and z = z0,
with an object of thickness t(x, y) in between the planes (see Fig. 1.2 (a)). The
monochromatic plane wave, which impinges parallel to the propagation axis z at
z = 0, is then scattered. The perturbated wave ψS(x, y, z), which is a solution of
the inhomogeneous Helmholtz equation (1.23), may be expressed as a product
of the unscattered plane wave exp(i kz) with an envelope ψE = (x, y, z)

ψS(x, y, z) =ψE (x, y, z)exp(i kz) (1.28)

Note that both the field and its envelope have the same intensity distribution,
i.e. |ψS(x, y, z)|2 = |ψE (x, y, z)|2, as exp(i kz) is only a linear phase factor. In the
paraxial approximation, neglecting the second derivative in z, Eq. (1.23) yields(

2i k
∂

∂z
+∇2

⊥+ [n2(x, y, z)−1]k2
)
ψE (x, y, z) = 0, (1.29)

where the transverse Laplacian is given by ∇2
⊥ = ∂2/∂x2 +∂2/∂y2. The projection

approximation consists of assuming that the value of the wave-field at the exit-
surface z = z0, is entirely determined by the phase and the amplitude shifts
that are accumulated along streamlines of the unscattered beam [23]. Fresnel
diffraction is negligible only if the radius of the first Fresnel zone corresponding
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z

z = 0 z = z0

t

�/2

r0

r + /2
0

�
d

z = z0z = 0

(b)(a)

Figure 1.2: (a) Schematic illustrating the propagation of a monochromatic

plane wave through a scattering medium of thickness t . The scattering

medium is indicated by the grey region and lies in between the planes

z = 0 and z = z0. (b) The radii r0 and r1 = r0 +λ/2 delimits the first Fresnel

zone. From geometrical considerations follow d =
√
λr0 +λ2/4 and further

d ≈�
λt for r0 = t and λ
 t .

to propagation in the object is small compared to the spatial resolution d (see
Fig. 1.2 (b))

�
λt < d . (1.30)

This is the usual limitation on the resolution due to Fresnel diffraction [28] and
it limits the thickness to 1 μm at an x-ray wavelength of 0.1 nm and a resolution
of 10 nm. If condition Eq. (1.30) is fulfilled we can neglect the term ∇2

⊥ψE (x, y, z)
in Eq. (1.29)

∂

∂z
ψE (x, y, z) ≈ k

2i
[1−n2(x, y, z)]ψE (x, y, z). (1.31)

The solution of the partial differential equation (1.31) is given by

ψE (x, y, z = z0) ≈ exp

(
−i k

∫z=z0

z=0
[δ(x, y, z)− iβ(x, y, z)]

)
ψE (x, y, z = 0), (1.32)

where we made use of the first order approximation in δ and β

1−n2(x, y, z) ≈ 2[δ(x, y, z)− iβ(x, y, z)]. (1.33)

The phase shift φ(x, y), resulting from the interaction of the modulated wave
with matter, reads

φ(x, y) =−k
∫z=z0

z=0
δ(x, y, z)d z. (1.34)
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For a single-material object of projected thickness t (x, y), Eq. (1.34) reduces to

φ(x, y) =−kδt (x, y). (1.35)

The angle of total reflection
�

2δ [27] sets an upper limit to the maximum angular
deviation of a wave-field. Accordingly, assuming no multiple reflections of the
wave-field propagating through the medium, the projection approximation
holds if

�
2δt < d [28]. This yields a thickness of t < 2 μm for δ = 10−5 and

d = 10 nm, close to the result obtained using condition Eq. (1.30). According to
Eq. (1.35), the maximum tolerable phase shift is φ(x, y) < 1.4 rad for λ= 0.1 nm.
The linear attenuation term is given by

2k
∫z=z0

z=0
β(x, y, z) = 2kβt (x, y) =μt (x, y) =μt (x, y). (1.36)

The wave-field ψE (x, y, z = z0) then reads

ψE (x, y, z = z0) ≈ exp
[
iφ(x, y)−μt (x, y)/2

]
ψE (x, y, z = 0)

= τ(x, y)ψE (x, y, z = 0). (1.37)

Here, we introduced the optical transmission function τ(x, y). In case of weak
objects where φ and μ are small compared to 1, we may approximate the optical
transmission function

τ(x, y) ≈ 1+ iφ(x, y)−μt (x, y)/2. (1.38)

Finally, we may express the weak object solution, relating the incoming plane
wave to the object outgoing wave ψS(x, y, z = z0), as

ψS(x, y, z = z0) = τ(x, y)exp(i kt ). (1.39)

The validity of the weak object approximation is confirmed for the experimental
conditions in the hard x-ray energy range [29, 30].

1.3 Imaging regimes

We can now express the propagated wave-field of an object outgoing wave in
case of a plane wave illuminated object. Within the Fresnel and the weak object
approximation (see section 1.1.3 and 1.2.2), the wave-field in Fourier space at
z ≥ 0 is given by

ψ̃(kx ,ky , z) = τ̃(kx ,ky ) h̃(kx ,ky , z)

≈ [δD (kx ,ky )+ i φ̃(kx ,ky )− μ̃t (kx ,ky )/2]

× exp(i kz)exp
[
−i z(k2

x +k2
y )/2k

]
, (1.40)
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where δD denotes the Dirac delta function representing the directly transmitted
beam. To first order in φ and μ the corresponding intensity I = |ψ|2 is given in
Fourier space by [31]

Ĩ (kx ,ky ) ≈ δD (kx ,ky )+2φ̃(kx ,ky )sinχ− μ̃t (kx ,ky )cosχ (1.41)

with χ= (z/2k)(k2
x +k2

y ). The terms sinχ and cosχ are known as the phase and
amplitude contrast transfer functions (CTF), respectively, of the Fresnel diffrac-
tion pattern. Fig. 1.3 (a) shows the one-dimensional CTFs as a function of the
normalized Fourier component

�
z/2πk kx , i.e. normalized with respect to the

radius of the first Fresnel zone [32]. The CTFs indicate that the image formation
is determined by the spatial frequencies which are transmitted depending on
the properties of the phase and amplitude components. Accordingly, different
imaging regimes are expected as presented in the following:

Contact plane regime: The intensity distribution at the exit plane of the object
shows a maximum amplitude contrast and due to the zero in the phase CTF, no
phase contrast is visible.

Direct phase contrast regime: With increasing distance z absorption decreases
and phase contrast starts to develop. At sinχ = 1 phase features of the object
around this value appear in direct contrast whereas it is unlikely that all fea-
tures of the imaged object have same characteristic lengths. More importantly,
in the near-field imaging conditions, we may put sinχ = χ and by neglecting
absorption Eq. (1.41) then becomes

Ĩ (kx ,ky ) ≈ δD (kx ,ky )+ z

k
(k2

x +k2
y )φ̃(kx ,ky ), (1.42)

which is known as the transport-of-intensity equation (TIE) [33]. Applying the
Fourier derivative theorem Eq. (A.4) the intensity in real space yields

I (x, y) = 1− z

k
∇2
⊥φ(x, y), (1.43)

i.e. contrast from a pure phase object corresponds to the Laplacian of the phase
shift. In experiments, direct contrast imaging is usually carried out using a small
source to account for the spatial coherence condition. Limitations of direct con-
trast imaging includes the strong dependence on the detector resolution (pixel
size) and correspondingly small field of view (FOV) due to low magnification
factors (see section 1.4). On the other hand, this method is relative insensitive to
polychromaticity in the radiation source, making this technique interesting for
imaging using broad bandwidth in-house sources.
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Figure 1.3: (a) Amplitude and phase contrast transfer functions as a function of�
z/2πk kx . The Siemens star (b) is divided into one half amplitude object

of 80% transmission and one half phase object of 0.6 rad phase shift. (c-e)

Intensity pattern of the plane wave illuminated Siemens star in the different

imaging regimes at 10 keV, the scale bar is 1 μm. In the contact plane (c)

only the amplitude object is visible. With increasing distance (d) the phase

object becomes visible and first interference fringes at the edges appear. (e)

Further increasing of the distance z leads to 2 phenomena: The interference

fringes in the outer regions of lower spatial frequencies becomes larger and

the direct resemblance to the object gets more and more lost (holographic

regime) towards the center of the object. In the inner part of highest spatial

frequencies the resemblance to the objet is lost due to the strongly varying

CTF. The semirings in (e) of constant transmission and phase shift values

correspond to the zeros in the respective contrast transfer functions.

Holographic regime: At χ > π both phase and amplitude loose direct resem-
blance to the object, becoming in fact holograms. Holographic imaging needs
a highly monochromatic and coherent source of small beam cross-section to
fully exploit resolution limits. In this case, the phase can be retrieved using holo-
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graphic reconstruction (see section 1.5.1). For very large propagation distances z
the recorded diffraction pattern is said to be in the far-field. The resolution does
not necessary depend on the source size but then, more elaborated algorithms
are needed to reconstruct the object (see section 1.5.2).
Fig. 1.3 (b) shows a Siemens star test object divided into a pure amplitude and
a pure phase object. As the object has a large range of spatial frequency, the
imaging regimes at different propagation distances in Fig. 1.3 (d)-(e) merge for
large features to small features from direct contrast to holographic contrast.

1.4 Fresnel scaling theorem

The Fresnel scaling theorem states that a point-source illuminated Fresnel
diffraction pattern can be considered as a Fresnel diffraction pattern obtained
by plane wave illumination [23].
Within the paraxial and the projection approximation, the wave-fieldψ(∞)(x, y, z =
0) at the exit-surface of an object in case of plane-wave illumination is related to
exit-surface wave-field ψ(z1)(x, y, z = 0) for point-source illumination through

ψ(z1)(x, y, z = 0) =ψ(∞)(x, y, z = 0)exp

[
i k

2z1
(x2 + y2)

]
. (1.44)

Here, z1 denotes the distance of the point-source from the exit-surface plane
z = 0 of the object. Inserting Eq. (1.44) into the Fresnel diffraction integral Eq.
(1.19) yields

ψ(z1)(x, y, z = z2) =− i k exp(i kz2)

2πz2
exp

[
i k(x2 + y2)

2z2

]

×
�∞

−∞
ψ(∞)(x ′, y ′, z = 0)

× exp

[
i k

2
(x ′2 + y ′2)

(
1

z2
+ 1

z1

)]

× exp

[
i k

z2
(xx ′ + y y ′)

]
d x ′d y ′. (1.45)

The geometrical magnification M for point-source illumination, which relates
the source size at the exit-surface plane to the illuminated area at the detector
plane z = z2, can be expressed by

M = z1 + z2

z1
, (1.46)

and hence

1

z2
+ 1

z1
= M

z2
. (1.47)



1.4 Fresnel scaling theorem 17

(a) Point-source imaging. (b) Parallel-beam imaging.

z
O

z1 z2

z=0 z=z2

z

zeff

z=0 z= z /M2

Figure 1.4: Analogy between point-source imaging (a) and parallel-beam imag-

ing (b) under the paraxial and the projection approximation: The diffraction

pattern of a point-source illuminated sample recorded at a distance sample-

detector z2 can be taken as a the diffraction pattern of a parallel-beam

illuminated sample recorded at a distance sample-detector zeff = z2/M .

Using Eq. (1.47) the intensity of the propagated wave-field I (z1)(x, y, z = z2) =
|ψ(z1)(x, y, z = z2)|2 can be written as

I (z1)(x, y, z = z2) =− k2

4πz2
2

×
∣∣∣∣
�∞

−∞
ψ(∞)(x ′, y ′, z = 0)exp

[
i kM

2z2
(x ′2 + y ′2)− i k

z2
(xx ′ + y y ′)

]
d x ′d y ′

∣∣∣∣2

.

(1.48)

In the limit of z1 →∞, i.e. M → 1, Eq. (1.48) becomes

I (∞)(x, y, z = z2) =− k2

4πz2
2

×
∣∣∣∣
�∞

−∞
ψ(∞)(x ′, y ′, z = 0)exp

[
i k

2z2
(x ′2 + y ′2)− i k

z2
(xx ′ + y y ′)

]
d x ′d y ′

∣∣∣∣2

.

(1.49)

Using direct substitution, it turns out that Eq. (1.48) and Eq. (1.49) are linked to
one another via the Fresnel scaling theorem

I (z1)(x, y, z = z2) = M−2I (∞)
( x

M
,

y

M
, z = z2

M

)
. (1.50)

Thus, up to a multiplicative constant, the intensity observed at the position
(x, y) on the detector is equivalent to the intensity observed at the position
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(x/M , y/M) on the detector placed at an effective distance ze f f = z2/M in case
of a plane wave illuminated object. Equally, an object that is illuminated by an x-
ray waveguide, which acts as quasi point-like source, may be treated as a parallel
beam illuminated object. In the following we discuss the above assumptation.
Using typical parameters d = 20 nm for the waveguide guiding core diameter,
z1 = 1 mm and λ= 0.1 nm, the Fresnel number Eq. (1.20) yields NF = d 2/(λz1) =
0.004 
 1, i.e. the Fraunhofer approximation is valid. Hence, the waveguide
beam incident on a sample may be described as a spherical wave enveloped
by the far-field pattern of the waveguide. We can account for the envelope by
introducing an aperture function A(x, y) in Eq. (1.44) [19]

A(x, y)ψ(z1)(x, y, z = 0) = A(x, y)ψ(∞)(x, y, z = 0)exp

[
i k

2z1
(x2 + y2)

]
. (1.51)

Taking the typical divergence of the waveguide beam on the order of 1 mrad
into account, the aperture A has a diameter of a ≈ 1 μm at a distance z1 = 1 mm.
Under the condition z1 
 z2, satisfied for the experimental conditions, the
effective distance is given by zeff � z1. Since

√
λzeff < a for λ= 0.1 nm Fresnel

diffraction effects are negligible, i.e. we can consider A(x, y)ψ(∞)(x, y, z = 0) as a
parallel beam in good approximation. Thus, the waveguide quasi-point source
illuminated Fresnel pattern can be considered as a parallel beam illuminated
Fresnel pattern. To reduce the effect of the waveguide beam envelope, numerical
reconstruction is carried out on the measured diffraction pattern normalized by
the empty waveguide farfield pattern recorded at a distance z1 + z2.

1.5 Object reconstruction

Just as in other x-ray diffraction experiments, only the intensity of the wave-
field diffracted at an object is recorded in lensless imaging, phase information
is lost (phase problem). The task of the object reconstruction is to determine
the complex-valued object function ψ(x, y), i.e. amplitude and phase in the
object plane, from measurements of the diffracted intensity I = |ψ̃(x, y)|2 in the
detection plane.
In this thesis two types of algorithms are used to reconstruct the object from
simulated and experimentally obtained diffraction patterns: In-line holographic
reconstruction and iterative phase retrieval methods. The in-line holographic
reconstruction is an one-step deterministic reconstruction where no additional
information about the object is needed, and can be applied if the scattered wave
of the object interferes with the direct beam. Inherently, numerical implemen-
tation of iterative algorithms is more complicated and the obtained solution
might be unique but the reconstruction process is not deterministic. However,
iterative algorithms can overcome the twin-image problem (see section 1.5.1)
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Figure 1.5: In-line holographic reconstruction (a) and general iterative phase

retrieval algorithm (b). For further information see main text.

of holographic reconstruction. Apart from the object reconstruction, iterative
phase retrieval methods enable the reconstruction of illumination functions
such as the waveguide near-field.

Fig. 1.5 illustrates schematically the differences in the phase retrieval methods.
The holographic reconstruction consists of applying the free-space diffraction
propagator D (see section 1.1.2 1) on the measured intensity IH of the hologram,
see subfigure (a). In the iterative algorithms the measured intensity is used as
the Fourier-space constraint in the detection plane. Additionally, the iterative
methods rely on a priori knowledges on the object wave ψ(x, y) in real space,
i.e. the real-space constraints in the object plane. Starting from a first guess
of the object wave in the object plane, the object is reconstructed by cycling
between object and detection plane until a suitable figure of merit singles out a
possible solution. A more detailed explanation of the phase retrieval methods is
presented in the following sections.

1Equally, one can also us the Fresnel approximated backpropagation method, see section
1.1.3.
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1.5.1 In-line holographic reconstruction

In-line holography or in-line holographic reconstruction was first published by
Denis Gabor in 1948 [10]. The idea was to detect the intensity distribution (’in-
line hologram’) emitted from a sample and then illuminate the in-line hologram
by the same reference wave used to illuminate the sample as illustrated in Fig. 1.6.
In this ’two-step process’ of recording and reconstruction the complex object
wave is retrieved by the interference pattern of the unscattered reference wave
ψr and the scattered object wave ψo . In this thesis recording is carried out using
detectors and the reconstruction is performed numerically on the computer.
The interference pattern of the unscattered and the scattered wave is given by

IH = |ψr (x, y, z0)+ψo(x, y, z0)|2. (1.52)

Assuming that the incoming wave is a plane wave, i.e ψo(x, y, z0) ≈ A where A is
a given complex constant, Eq. (1.52) becomes

IH ≈ |A|2 + A∗ψo(x, y, z0)+ Aψ∗
o (x, y, z0)+|ψo(x, y, z0)|2. (1.53)

In waveguide-based x-ray holography the scattered wave is assumed to be much
weaker than the reference wave and the term |ψo(x, y, z0)|2 can thus be left out.
After recording of the digitized image IH (x, y), the image is reconstructed by
applying the free-space propagator Dz−z0 (see section 1.1.2) on the exit-surface
wave-field AIH (x, y) of the in-line hologram to propagate the wave-field by a dis-
tance z − z0, where z ≥ z0. Therefore the reconstructed wave-field ψr econ(x, y, z)
is given by [23]

ψr econ(x, y, z) ≡Dz−z0 [AIH (x, y)]

≈Dz−z0 [A|A|2 +|A|2ψo(x, y, z0)+ A2ψ∗
o (x, y, z0)]. (1.54)

Thus, at the exit surface of the in-line hologram, the reconstructed wave-field
ψr econ(x, y, z) consists of a superposition of three terms:

• a term A|A|2 which, up to a multiplicative constant |A|2, is equal to the
reference beam (indicated by the solid lines in Fig. 1.6 (b));

• a term |A|2ψo(x, y, z0) which, apart of a multiplicative constant |A|2, is
equal to the scattered wave-field (indicated by the dotted lines in Fig. 1.6
(b)), which creates a virtual image A′ of the object;

• a term A2ψ∗
o (x, y, z0) which, apart of a multiplicative constant, is equal

to the complex conjugate of scattered the wave-field (indicated by the
dash-dot lines in Fig. 1.6 (b)), creating a real image A′′ of the object.
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Figure 1.6: Recording and reconstruction of an in-line hologram (schematic

adapted from [23]). (a) The sample A is illuminated by a coherent spherical

wave-field, originating from the point-source O. The wave-field exiting A is

a superposition of the unscattered (solid line) and the scattered (dotted line)

wave-field. The interference pattern is recorded as an in-line hologram on

the plane B. (b) The in-line hologram situated at the plane C, now without

the sample, is illuminated by the same spherical wave as in the recording

step. The wave-field downstream of the hologram is determined by three

terms, which correspond to the reference beam (solid line), a virtual image

A’ of the sample (dotted line), and a real image A” of the sample (dash-dot

line). The latter term causes the twin-image problem in in-line holography.

Computational reconstruction is simplified if z = 2z0 in Eq. (1.54) [23]:

ψr econ(x, y,2z0) ≈ A|A|2 exp(i kz0)+|A|2ψo(x, y,2z0)+ A2Dz0 [ψ∗
o (x, y, z0)].

(1.55)

The free-space propagation of a two-dimensional coherent field through a dis-
tance Δz gives the complex conjugate of the free-space propagation of the
complex conjugate of that coherent field through a distance −Δz

Dz0 [ψ∗
o (x, y, z0)] = [ψo(x, y, z = 0)]∗. (1.56)

This is a result of the reciprocity theorem [23]. Applying this theorem, Eq. (1.55)
leads to

ψr econ(x, y, z = 2z0) = A|A|2 exp(i kz0)+|A|2ψo(x, y,2z0)+ A2[ψo(x, y, z0)]∗

= A2[A exp(−i kz0)+ψo(x, y, z = 0)]∗

+ |A|2ψo(x, y, z = 2z0). (1.57)

Eq. (1.57) shows that we obtain two contributions by reconstructing the recorded
image. The complex conjugate of the reconstructed exit-surface wave-field given
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by the first term and a superposed ’twin-image’ given by the second term. This
also points out the fundamental limit of in-line holography: The quality of the
reconstructed image is generally adulterated by the overlap of the real and the
virtual image, i.e. the reconstructed image shows undesired artefacts.
We close out this section with two remarks. For numerical implementation,
we have used the free-space propagator Dz0−z instead of Dz−z0 . Physically, it
corresponds to illuminate the hologram from the opposite side, i.e. to place
the source shown in Fig. 1.6 (b) from the left-hand side to the right-hand side.
In reconstructed image, sample features of higher electron density then cor-
respond to lower phase values compared to those of lower electron density
features. The retarded phase values are in agreement with the expectations as
the phase shift φ=−kδt (x, y) in the optical transmission function is a negative
value. Further, the choice of Dz0−z enables to directly compare phase distribu-
tions of holographically and iteratively reconstructed images. We account for
the illuminating wave on the exit surface wave-field by applying Dz0−z on the
measured hologram normalized by the empty waveguide far-field intensity. In
numerical simulation we set A = 1 leading to an additional phase offset in the re-
constructed exit surface wave-field. In both, phase reconstruction of measured
and simulated holograms, we hence only consider relative phase shifts.

1.5.2 Iterative phase retrieval methods

Gerchberg-Saxton (GS) algorithm

The first algorithm to retrieve iteratively the complete wave function from in-
tensity measurements in the object and detection planes was proposed by Ger-
chberg and Saxton [12]. The so-called Gerchberg-Saxton (GS) algorithm can be
expressed by [23]

ψ(x, y) = lim
Nit→∞

(P1F−1P2F )Nit [|ψ(x, y)|eiφinitial(x,y)], (1.58)

in case of Fraunhofer diffraction, i.e. forward and inverse Fourier transform
is used to propagate the respective wave functions. P1 and P2 are projections
operators which are substitutes for the real-space and Fourier-space constraints

P1 = |ψ(x, y)| and P2 = |Fψ(x, y)|. (1.59)

The parameter Nit is the number of times that the operator P1F−1P2F is iter-
ated, and φinitial(x, y) is the initial guess for the unknown phase which can be
chosen as a random distribution of phases. The intensity in the object plane
can usually not be measured in lensless x-ray experiments restricting the use of
the GS algorithm to pure phase object imaging where the real-space constraint
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consists of setting the amplitude of the object wave to one.

Error-reduction (ER) algorithm

Fienup proposed an extension to the GS algorithm, the so-called error-reduction
(ER) algorithm, allowing for the reconstruction of complex-valued object func-
tion only from the measured intensity in the detection plane by relaxing the
real-space constraints:

ψ(x, y) = lim
Nit→∞

(P ′
1F−1P2F )Nit ψNit=0(x, y), (1.60)

where ψNit=0(x, y) is a random initial guess for the complex wave function and
the projection operator P ′

1 a known constraint in the object plane. As a widely
used constraint, assuming the support of ψ(x, y) is given by the region S of the
x y plane, we have

P ′
1ψ(x, y) =

{
ψ(x, y), (x, y) ∈S ,
0, otherwise.

(1.61)

The support S is the area embedding the object and can be estimated as the
half diameter of the autocorrelation of the diffraction pattern which is given by
F−1[|Fψ(x, y)|2].

Hybrid Input-Output (HIO) algorithm

As it is the case with the GS algorithm, the distance between an iterate and
the next ||ψNit+1 −ψNit || is non-increasing in the ER algorithm [12]. However,
both algorithms suffer often from stagnation problems where ||ψNit+1 −ψNit ||
remains approximately constant for a very large number of iterations. To solve
this problem, Fienup developed the Hybrid Input-Output (HIO) algorithm valid
for n>0:

ψNit+1(x, y) =
{

ψ′
Nit

(x, y), (x, y) ∈S ,
ψNit (x, y)−βψ′

Nit
(x, y), otherwise,

(1.62)

withψNit (x, y) = (P ′
1F−1P2F )Nit ψNit=0(x, y) andψ′

Nit
(x, y) = (F−1P2F )ψNit (x, y).

Here, ψNit (x, y) can be considered as an input for a non-linear operation im-
pelling the output ψ′

Nit
(x, y). The so-called feedback parameter β governs the

degree of hybridization of the input with the output outside the support and is
usually chosen to be a real number between 0.5 and 1. This method attracts the
iterate ψNit+1(x, y) to near-solutions but, in contrast to the GS and ER algorithm,
prevents it to be trapped into local minima and therefore optimizes the conver-
gence of the algorithm [34]. However, depending on the exact problem, the ER
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algorithm may converge to a satisfactory solution much faster than the HIO al-
gorithm which might tend to move away from a near-solution (good estimation).

Apart of the GS, the ER and the HIO algorithm, other algorithms such as the
shrink-wrapping method were proposed and combinations of different algo-
rithms are used to improve the reconstruction convergence [35]. Further, many
of these existing methods may be defined within a general projection formu-
lation [36] in which the well known GS and HIO algorithms arises as special
cases.

1.5.3 Phase retrieval simulations

In this section we present applications of the aforementioned phase retrieval
methods on simulated Fraunhofer diffraction pattern and Fresnel diffraction
pattern. Considerations on discretization of data and on oversampling criteria
of diffraction pattern as well as on constraint sufficiency and uniqueness criteria
of the reconstruction have to be taken into account.
The numerical implementation of an object reconstruction from its far-field
pattern by using the HIO algorithm is shown in Fig. 1.7. In this simulation
a Siemens star test object with a transmission of T = exp

(
kβt

) = 0.96 and a
phase shift of φ= 0.4 rad corresponding to the properties of a t = 500 nm thick
tantalum layer at 17.5 keV is used. The simulation is carried out assuming plane
wave illumination with ψPW = 1. Fig. 1.7 (a) and (b) shows the amplitude and
the phase distribution of the optical transmission (object) function, respectively.
The size of the object is chosen to AS = 2562 pixels which is the area where
the object function is non-zero (support of the object function). To fulfill the
oversampling criterion, the object is placed in an array of AFOV = 5122 pixels, i.e.
four times the size of the object support. The array is filled with zeros in order
to create a high-density area surrounding the object2. The oversampling ratio
σ= AFOV

AS = 4 is derived from the Shannon sampling theorem [38] (see section B.3
and B.4). The autocorrelation of the object is given by the Fourier transform of
the diffraction pattern shown in Fig. 1.7 (c). The autocorrelation support allows
to control the sampling sufficiency. The autocorrelation extension and thus its
support is confined on AFOV as shown in Fig. 1.7 (d), i.e. the diffraction pattern
is oversampled in the sense of Shannon.

2Physically, the high density area corresponds to a mask which completely absorbes the
incoming x-rays. In experiments, it is unlikely that the sample is isolated by a mask. Reconstruc-
tion of diffraction data is rather carried out on 1−ψ(x, y) equivalent to the reconstruction of
ψ(x, y) asF [1−ψ(x, y)] = δ(kx ,ky )−ψ̃(kx ,ky ) and the missing low frequency data corresponding
to δ(kx ,ky ) are left out in the reconstruction. This method is based on Babinets principle which
is also valid in the Fresnel regime [37].
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Figure 1.7: (a) Amplitude and (b) phase (in [rad]) of the Siemens star test object.

The computational field of view is AFOV = 5122 (c) Farfield diffraction pat-

tern (intensity in log. scale) and (d) corresponding autocorrelation pattern.

The autocorrelation extension is confined on AFOV, i.e the oversampling cri-

terion is fulfilled. Reconstructed (e) amplitude and (f) phase after Nit = 1000
iteration steps using the HIO algorithm with β = 1. Finest details of the

object are reconstructed. The reconstruction error χ2 is below 10−4.
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The Fourier-space constraint in the simulation is given by the root of the far-
field intensity. As real-space constraint a support of size AS filled with ones and
embedded in a zero-array of size AFOV is used. The iterative reconstruction starts
in the object plane with a random complex field R = a0Rm exp

[−iφ0Rm
]

which
was numerically generated as an initial guess. The equally distributed pseudo-
random variable Rm on the interval m = [0, 1] and the parameters a0 = 0.5 and
φ0 = 0.05 are assigned to each pixel. The feedback parameter β is set to one.
Fig. 1.7 (e) and (f) show the reconstructed amplitude and phase, respectively,
after Nit = 1000 iteration steps. Smallest features of the object are reconstructed
both in amplitude and phase. The reconstruction error χ2 is calculated using
the following relation [34]:

χ2 = 1

N 2

∑
x,y

(|ψ̃(x, y)|−√
I (x, y))2, (1.63)

where χ is the error metric, ψ̃(x, y) the Fourier transform of the reconstructed ob-
ject function (multiplied by the support), I (x, y) the intensity corresponding to
the diffraction pattern and N 2 the number of pixels (x, y) at which the intensity
was determined (corresponding to N 2 = 5122 in the simulation). The low re-
construction error χ2 = 4.7·10−5 underlines the efficiency of the HIO algorithm.
Repeated computational trials have all shown reconstruction errors below 10−4

demonstrating the robustness of the method. Note that the presented simula-
tion is an idealized case, as neither artifacts due to a pertubated illumination
function nor noise were introduced in the diffraction pattern. Whereas the HIO
algorithm enabled the succesful reconstruction of the Siemensstar, reconstruc-
tion of the same object using the ER algorithm failed as the algorithm stagnated
in a non-unique solution, i.e. the ER algorithm is trapped in a local minimum
[39] (see section B.6).

Let us now consider phase retrieval simulations of diffraction patterns in the
holographic (Fresnel) regime. First, we choose a pure phase Siemens star object
with T = 1 and φ= 0.4 rad simulated for an photon energy E = 17.5 keV. The ob-
ject size and the computational field of view is AS = 2562 and AFOV = 2562 pixels,
respectively. Fig. 1.8 (a) shows the hologram of the Siemens star simulated for an
energy E = 17.5 keV, a pixel size of Δx ×Δy = 802 nm and a propagation distance
z = 4.5 mm. Aliasing close to the ’sharp edges’ is visible on the hologram. The
aliasing effect is due to the use of discrete Fourier transformation (see section
B.1) in simulation and does not occur on measured hologram. Aliasing of the
propagator used to create the hologram is observed too if Δx ≤ λz/Lx where
Lx is the extent of the computational field of view in x-direction [40] (see sec-
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tion B.5). However for the chosen parameters λz/Lx = 16 nm < Δx, i.e. aliasing
should be supressed3.
The Siemens star can be holographically reconstructed by applying the free-
space diffraction operator D−z on the hologram intensity I (x, y)

ψ(x, y) =D−z I (x, y). (1.64)

Fig. 1.8 (b) shows the phase distribution of the holographic reconstruction. The
global structure as well as smallest details in the center of the Siemens star are
reconstructed. However, reconstruction is adulterated by twin-image artifacts.
Further, the holographic reconstruction does not properly recover the phase
distribution of the void and the phase shifting areas of the Siemens star object
as illustrated by the histogram shown in Fig. 1.8 (f). In fact, the histogram of the
phase distribution would ideally exhibit two sharp peaks distant of 0.4 rad.
The iterative reconstruction methods presented in section 1.5.2 are adapted
according to the Fresnel regime. Using the free-space diffraction operator D, the
GS algorithm yields

ψ(x, y) = lim
Nit→∞

(P1D−zP2Dz)Nit ψNit=0(x, y), (1.65)

where ψNit=0(x, y) is a random complex-valued inital guess R of the object func-
tion in the sample plane. As the test image is a pure phase object we set the
amplitude of the wave function to one (real-space constraint P1) at each iter-
ation step in the sample plane. Fig. 1.8 (c) shows the phase reconstruction of
the Siemens star after applying Nit = 2000 iteration steps of the GS algorithm. In
analogy to holographic method, smallest details in the center of the Siemens star
are reconstructed. On the other hand, less reconstruction artifacts are observed
and phase recovery is improved as demonstrated by the histogram of the phase
distribution in Fig. 1.8 (g). Additional real-space contraints in iterative methods
can further improve the reconstruction convergence [41, 42]. For this purpose,
we enlarged the computational field of view to AFOV = 5122 pixels leaving the ob-
ject size and the pixel size unchanged. Using the additional support constraint
P ′

1 presented in Eq. (1.61) the iterative method yields

ψ(x, y) = lim
Nit→∞

(P1P ′
1D−zP2Dz)Nit ψNit=0(x, y), (1.66)

which we denote as ER-GS algorithm.

3We have used the free-space propagator for simulation whereas the used oversampling
condition is derived for the (approximated) Fresnel propagator. Nevertheless the holograms are
found to be identical for both propagators.
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Figure 1.8: (a) Hologram of the Siemens star object (T = 1, φ= 0.4), simulated

for an energy E = 17.5 keV, a pixel size Δx ×Δy = 802 nm and a distance

z = 4.5 mm. (b) Holographic reconstruction, phase in [rad]. Phase recon-

struction using (c) GS and (d) ER-GS algorithm. (e) The reconstruction error

of the ER-GS algorithm is lower than of the GS algorithm. (f)-(g) Histograms

corresponding to the phase distributions in (b)-(d), respectively, exhibiting

the improved phase recovery of the ER-GS algorithm compared to GS and

holographic reconstruction.
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Fig. 1.8 (d) shows the phase reconstruction of the Siemens star after applying
Nit = 2000 iteration steps of the ER-GS algorithm. Compared to the GS algorithm
the reconstruction convergence is optimized as underlined by the run of the
error curves in Fig. 1.8 (e). The improved phase recovery is further illustrated
by the two distinct peaks in the histogram of the ER-GS reconstructed phase
distribution shown in Fig. 1.8 (h). For both, GS and ER-GS reconstruction, the
phase shift of 0.40 rad is in excellent agreement with the expected phase shift of
0.4 rad.

Finally, we consider reconstruction of complex-valued object function in the
holographic regime without knowledge of the amplitude in the object plane.
Fig. 1.9 (a) shows the hologram of a Siemens star test object with T = 0.96 and
φ= 0.4 simulated for the same parameters as for the pure phase object hologram
and a computational field of view AFOV = 5122 pixels. Fig. 1.9 (b) shows the phase
distribution of the holographic reconstruction as obtained by using Eq. (1.64).
Compared to the holographic reconstruction presented in Fig. 1.8 (b) the phase
distribution shows similiar characteristics except enhanced interference effect
at the outer region of the object due to diffraction at the mask edges. Fig. 1.9
(c) shows the phase reconstruction of the Siemens star after applying Nit = 50
iteration steps of the ER algorithm

ψ(x, y) = lim
Nit→∞

(P ′
1D−zP2Dz)Nit ψNit=0(x, y). (1.67)

Fig. 1.9 (d) shows the phase reconstruction of the Siemens star after applying
Nit = 50 iteration steps of the HIO algorithm

ψNit+1(x, y) =
{

ψ′
Nit

(x, y), (x, y) ∈S ,
ψNit (x, y)−βψ′

Nit
(x, y), otherwise,

(1.68)

where the input and output are given by ψNit (x, y) = (P ′
1D−zP2Dz )Nit ψNit=0(x, y)

and ψ′
Nit

(x, y) = (D−zP2Dz)ψNit (x, y), respectively, in the Fresnel regime. In
contrast to pure phase object phase retrieval the histograms of the iteratevely
reconstructed objects do not exhibit improved phase recovery compared to holo-
graphic reconstruction as show in Fig. 1.9 (f) and (h), respectively. Nevertheless
diffraction effects at the edges of the reconstructed image are efficiently sup-
pressed by iterative algorithms. The error metrics of the ER and HIO algorithm
shown in Fig. 1.9 (e) are rather low whereas image reconstruction is not of high
quality. Longer runs of the algorithms further decrease the reconstruction errors
without improving reconstruction. Hence, both algorithms were trapped in a
local minimum.
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Figure 1.9: (a) Hologram of the Siemens star object (T = 0.93, φ= 0.4) simu-

lated for the same parameters as in Fig. 1.8 (a) besides AFOV = 5122 pixels.

(b) Holographic reconstruction, phase in [rad]. Phase reconstruction using

(c) ER and (d) HIO algorithm. (e) The reconstruction error of the HIO algo-

rithm is lower than of the ER algorithm. Both error curves yield a minimum

at only few iteration steps. (f)-(g) Histograms corresponding to the phase

distributions in (b)-(d), respectively, showing no improvements in phase

recovery of the iterative methods compared to holographic reconstruction.
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This last example of phase retrieval simulation reveals limitation of iterative
object reconstruction. It has been shown that complex-valued reconstruction
are intrinsically harder than real-valued reconstruction4 as it demands a stronger
support constraint [43, 44, 45, 46]. The use of a tight but rectangular support
might therefore not be sufficient to reconstruct efficiently the complex-valued
object function from the Fresnel pattern [44]. To us it is still an open question if
improved complex-valued reconstruction from Fresnel pattern of the convex5

and centrosymmetric Siemens star object without knowledge of the amplitude
in the object plane can be achieved by more elaborated support constraints
and/or iterative algorithms. On the other hand, pure phase object reconstruction
enabling the use of additional real-space constraints noticeably improves phase
recovery. Fortunately, biological samples consisting of low electron density
elements act as pure phase objects in the hard x-ray energy range (see section
5.2).

1.6 Conclusion

We have shown that propagation of undisturbed and disturbed waveguide field
in free-space can be carried out using free-space or Fresnel diffraction operator
and simple Fourier transform depending on the propagation distance. The
waveguide-field disturbed by diffraction from a sample is expressed by the prod-
uct of the optical transmission function with the undisturbed wave-field in the
projection approximation. Simulation of the object wave for different propa-
gation distances and feature sizes of the object illustrate the possible imaging
regimes. Depending on the imaging regime wave-field in the detection plane
can be associated to exit object wave-field using the introduced backpropaga-
tion techniques. In particular, the Fresnel pattern of a sample illuminated by a
waveguide can be treated as parallel beam propagated Fresnel pattern of the
object exit wave after suitable variable transformation. Since in x-ray imaging
experiments only the intensity of the object wave is measured we have presented
phase retrieval algorithms based on single-step holographic and iterative recon-
struction methods. Simulations show that for waveguide-based imaging, a priori

4Complex-valued objects are described by the optical transmission function τ(x, y) =
exp

[
iφ(x, y)−μt (x, y)/2

]
within the projection approximation. For physically thin sample the

attenuation term μt (x, y) = 2kβt(x, y) can be discarded and the transmission function yields
τ(x, y) = exp

[
iφ(x, y)

]
for complex-valued pure phase object. If further φ is small compared to

one the optical transmission function can be approximated by τ(x, y) ≈ 1+ iφ(x, y). Under this
condition, the imaginary unit i is only a multiplicative term in propagation and reconstruction
is real-valued.

5Recall that in Euclidean space, an object is convex if for every pair of points within the object,
every point on the straight line segment that joins them is also within the object.
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knowledge of the object leading to strong real-space constraints considerably
improves the phase recovery in reconstruction.



2 Waveguide optics

In the previous chapter we have treated image generation and reconstruction

based on idealized x-ray sources, i.e. plane waves and spherical waves. In this

chapter we present a concept for realization of a waveguide-based point-like

(secondary) x-ray source6.

We start with a general overview of x-ray optics followed by a section on x-

ray waveguides (section 2.1). Propagation inside planar waveguides is studied

using the concept of mode propagation by means of analytical calculations

and numerical simulations (see section 2.2). We discuss the influence of the

mode structure on the coherence and transmission properties (2.3). Finally,

we study the near-field and the exit wave-field propagation in the Fresnel and

the Fraunhofer regime using a novel waveguide design offering significantly

enhanced efficiency (section 2.4).

2.1 State of the art in x-ray optics

The development of x-ray optics plays a key role for improving high resolution
imaging using synchrotron radiation. In this context, the aim is to focus the
radiation to small beam sizes and eventually enhance the degree of coherence
of the x-ray beam in order to ideally get a coherent nanofocus.
X-ray optics can be classified into reflective, diffractive, refractive and absorbing
optical elements as shown in Fig. 2.1. Reflective optics such as multilayer mirrors
have the advantage of very high gains (105 −106), i.e. low intensity losses with
respect to the incoming synchrotron beam [4, 48, 49]. Focusing can be achieved
by elliptical curvatures of the mirrors as in the case of Kirkpatrick-Baez (KB)
optics. Quite small spot sizes of 48×46 nm2 have been reported in the hard x-ray
energy regime at 15 keV [50]. Only recently, one-dimensionally beam confine-
ment of sub-10 nm have been demonstrated using a laterally graded multilayer
mirror [51]. In contrast to waveguides, mirrors are one-to-one projections of the
wave-field in the sense that the degree of coherence of the focal spot is limited
to the coherence properties of the synchrotron beam.
The same holds for the most prominent diffractive and refractive optical ele-
ments, Fresnel zone plates (FZP) and compound refractive lenses (CRL), respec-
tively. The FZP usually consists of a suitable circular absorbing grating where the
highly absorbing material gold with the refractive index n2 is electron deposited
into a pre-structured resist on a low absorbing Si3N4 foil. The focal spot size is
limited by the thickness of the outer rings of the grating, i.e. the aspect ratios
which can be fabricated. Sub-15 nm two-dimensionally beam confinement have

6Contents of this chapter have been published in [47] and [20].
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Figure 2.1: Overview on different classes of x-ray optics used for x-ray imaging.

Schematics of the Kirkpatrick-Baez mirrors (a), the Fresnel zone plate (b),

the compound refractive lenses (c) [53] and the pinhole (d).

been reported at ∼ 700 eV and the efficiency was on the order of 1% [1, 3]. In the
hard x-ray range significantly higher aspect ratios are needed to preserve the
efficiency. FZPs with an aspect ratio of 20 and an outmost zone width of 45 nm
reach a beam confinement of approximately 40 nm at 8 keV [52].
Hole array lenses were the first type of CRL manufactured [54]. The lenses
consisted of an aluminium or beryllium metal bar with a row of drilled holes
in it. Other CRL types exist such as bubble compound refractive lenses (BCRL)
or alligator lenses [55, 56]. Highest beam confinement has been achieved by
nanofocusing refractive lenses (NFL) made of a large number of lenses in silicon
that have parabolic shape. A focal spot size of 47×55 nm2 at 21 keV has been
reported by two crossed NFLs [5]. Compared to multilayer mirrors the flux
density gain is about 1-2 orders of magnitude lower [9].
Finally, x-ray imaging experiments are also carried out using absorbing optical
elements such as beam limiting apertures. A pinhole consists of an absorbing
foil, e.g. gold, with a small hole up to sub-1 μm diameter in the centre usually
fabricated by focused ion beam (FIB). It is used amongst other techniques for
holography and ptychography [57, 58]. Compared to the previously mentioned
optical elements, the degree of coherence is enhanced with respect to the pri-
mary beam. The main disadvantage is the loss of intensity as the photon flux
not passing through the aperture is completely absorbed.
As discussed in [47], x-ray waveguides can be used to filter hard x-ray beams
[15, 17, 16, 59], being an alternative to beam confinement with conventional
x-ray optics such as pinholes. Waveguides can thus provide localized and highly
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coherent beams with two-dimensional cross sections down to about d � 10 nm
[60] for diffraction studies at significantly reduced sample volume [61], as well
as for coherent x-ray imaging and holography [57, 18, 62]. For optimized high
transmission waveguide design [20], simulated transmission can reach values
above 90%, if the waveguide is illuminated coherently, i.e. by a plane wave. Fur-
thermore, the coherence properties and cross section of the beam are decoupled
from the primary source. Over-illumination and stray radiation, often accompa-
nying other forms of x-ray focusing, is efficiently blocked by the cladding and
cap layers, since the radiation in the near-field is confined to � d . And finally,
the photon flux exiting the waveguides can be significantly enhanced by using
focusing optics such as KB mirrors, FZPs or CRLs as pre-focusing optics.

2.2 Planar waveguides

The symmetric slab waveguide design is shown in Fig. 2.2 with n1 and n2 being
the refractive index of the guiding layer and the cladding, respectively.
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via a standing wave above the substrate (c). (d) Flux density enhancement
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The first x-ray waveguide experiment was demonstrated by Spiller and Segmüller
in the resonant beam coupler (RBC) scheme where the different waveguide
modes are excited by varying the incidence angle through an evanescent wave-
field which penetrates the upper cladding layer [63]. The coherent wave-field
exiting the waveguide is at worst superposed by strongly reflected and transmit-
ted (primary) beams which may compromise x-ray imaging experiments. To
circumvent this severe drawback, we chose the front coupler (FC) scheme where
the incident beam is coupled in at the front face of the waveguide. Contrarily to
the RBC, no intrinsic flux enhancement is achieved by the FC, but a significant
flux density gain compared to the primary synchrotron beam can be obtained
by using pre-focusing optics as mentioned in the previous section. Coupling
of a pre-focused beam into planar waveguides have been demonstrated using
linear FZP or CRL via a standing wave above the substrate first [64, 65].

2.2.1 Analytical solution

An x-ray beam impinging onto a FC waveguide partly propagates through the
guiding core of thickness d by total internal reflection if n1 > n2 (guided modes).
The remaining part of the incoming beam is attenuated in the cladding (radiative
modes). Here, we consider propagation of the waveguide modes, in particular
transverse electric (TE) modes, in z-direction. Assuming an refractive index
profile independent of z, the z dependance of the mode fields can be written
as exp(−iβz). The one-dimensional reduced wave equation for ψ(x) then reads
[66]

∂2ψ(x)

∂x2
+ (n2k2 −β2)ψ(x) = 0. (2.1)

The propagation constant β is referred to the projection kz in z-direction of
the wave-vector k in the corresponding medium. Note that within the above
description the y coordinate is left out as the refractive index and the electric
fields are considered to be independent of y.

The solutions of the wave equation (2.1) satisfying the boundary conditions (i)
ψ(x) is continuous at the dielectric interfaces x = 0 and x =−d and (ii) vanish at
x =±∞ are given by

ψ(x) =
⎧⎨
⎩

A exp(−γx), for x ≥ 0
A cos(κx)+B sin(κx), for 0 ≥ x ≥−d
[A cos(κd)−B sin(κx)]exp[γ(x +d)], for x ≤−d

(2.2)
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where A and B are constants, κ= (k2n1
2 −β2)1/2 and γ= (β2 −k2n2

2)1/2. Apply-
ing the boundary condition of ∂ψ(x)/∂x being continuous at the interfaces, we
obtain the following system of equations

γA+κB = 0 (2.3)[
κsin(κx)−γcos(κd)

]
A+ [

κcos(κd)+γsin(κx)
]

B = 0. (2.4)

The eigenvalue equation of this homogeneous equation system is given by

γ
[
κsin(κx)−γcos(κd)

]+κ
[
κcos(κd)+γsin(κx)

]= 0, (2.5)

which can also be written in the form [66]

tan(κd) = 2κγ

κ2 −γ2
. (2.6)

The intersection points of the functions tan(κd) and F (κd) = 2κγ/(κ2 −γ2) de-
termine the discrete solutions corresponding to the guided modes denoted as
ψm(x) in the following. The number of guided modes can be calculated by

N =
[

V

π

]
int

, (2.7)

where []int indicates the term is rounded up to the next integer and V denotes
the waveguide parameter

V :=
√

(n1
2 −n2

2)kd . (2.8)

Hence, the characteristic properties of the planar waveguide at a given x-ray en-
ergy depend on the guiding and cladding materials employed and the thickness
of the guiding layer. The graphical solution of the transcendental equation (2.6)
as well as the eigen functions of a waveguide supporting 3 guided modes are
shown in Fig 2.3.

The electromagnetic field inside the waveguide can be expressed by a su-
perposition of guided modes ψm [67]

ψ(x, z) =
N−1∑
m=0

cmψm(x)exp(−iβm z), (2.9)

sufficiently far away from the waveguide entrance (no contribution of the ra-
diative modes). The amplitude cm is determined by the overlap integral of the
mode ψm(x) with the incident electromagnetic field ψi n(x) [64]

cm =
∞∫

−∞
ψi n(x)ψm(x)d x. (2.10)



38 Waveguide optics

-50 0 50
-1

0

1

2

3

4

5

fie
ld

am
pl

itu
de

[a
rb

. u
ni

ts
]

x [nm]

(b) �



�
�

�
�

0 2 4 6 8

-5

0

5

d

tan(d)
F(d)

(a)

Figure 2.3: (a) The number of intersection points of tan(κd) and F (κd) for a

planar waveguide with n1 = 1−1.5 ·10−6, n2 = 1−5.8 ·10−6 and d = 35 nm

indicates 3-mode propagation (V = 9.1) for a photon energy E = 17.5 keV.

(b) Calculated amplitudes of the corresponding eigen functions ψ0, ψ1 and

ψ2.

We consider the absorption of the electromagnetic wave at the guiding lay-
er/cladding interface by expanding the right-hand side of Eq. (2.9) by a term
exp(−μm x/2) [68]

ψ(x, z) =
N−1∑
m=0

cmψm(x)exp
[−(iβm +μm/2)z

]
, (2.11)

where the effective linear absorption coefficient μm is weighted with respect to
the intensity distribution of the mth mode

μm = 1

||ψm ||2
∞∫

−∞
|ψm(x)|2μ(x)d x. (2.12)

The exact solutions for the electromagnetic field along z inside planar waveg-
uides, taking into account absorption, can be calculated but is comparably time
consuming.

2.2.2 Numerical method

The fact that (i) materials have a refractive index close to 1 and (ii) the propa-
gation of modes takes place in the paraxial approximation enables the use of
an approximated wave equation. The second argument is related to the critical
angle of total reflection θc [27]

θc ≈
√

2(δ2 −δ1). (2.13)
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Eq. (2.13) is an expansion of Snell’s law

n1 cos(θi ) = n2 cos(θr ), (2.14)

for θi = θc and θr = 0. Here, θi is the grazing angle of a incident beam propagat-
ing in a medium with a refractive index n1 and θr the grazing angle of a refracted
beam in a medium with n2. As δ2 −δ1 is on the order of 10−5, the k-vector of
wave propagating inside the guiding core of the waveguide makes an angle of
less than 0.3°. Substitution of the paraxial Ansatz (see also section 1.1.3)

ψ(x, y, z) = u(x, y, z)exp(−i kz) (2.15)

into the Helmholtz equation (1.23), which amounts of taking out the fast oscil-
lating term exp(−i kz), and neglecting the small term ∂2u(x, y, z)/∂z2 yields

(
2i k

∂

∂z
+∇2

⊥+ [n2(x, y, z)−1]k2
)

u(x, y, z) = 0. (2.16)

This inhomogeneous paraxial wave equation is called parabolic wave equation
(PWE). The PWE was adopted by Leontovich and Fock for radio wave propaga-
tion and later on adapted for studying diffraction inside x-ray optics like FZPs
and waveguides [69, 70, 60]. Note, that the form of Eq. (2.16) has already been
introduced in section 1.2.2 for the scattering of a plane wave on a medium in the
projection approximation. Further analogy to x-ray propagation imaging pre-
sented in the previous chapter concerns ψ(x, y, z) in Eq. (2.15) which describes
the propagation of a plane wave in free-space through the factor exp(−i kz) and
the modulation of the wave-field by the waveguide medium through u(x, y, z).

A numerical implementation of the PWE for waveguide propagation was re-
alized by Christian Fuhse using the finite-difference (FD) method based on the
Crank-Nichelson scheme [19, 68, 71, 72]. In case of the slab waveguide design,
neglecting the y-dependance, the PWE yields

∂u(x, z)

∂z
=C

∂2u(x, z)

∂x2
+D(x, z)u(x, z), (2.17)

with

C :=− i

2k
and D :=− i k

2

[
n2(x, z)−1

]
. (2.18)

The finite-difference method approximates the solutions to PWE by replacing
derivative expressions in Eq. (2.17) with approximately equivalent difference
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quotients. In case of the Crank-Nichelson scheme, it is second order accurate in
Δx and Δz:

un+1
i −un

i

Δz
= C

2(Δx)2

[
(un

i−1 −2un
i +un

i+1)+ (un+1
i−1 −2un+1

i +un+1
i+1 )

]

+ D
n+ 1

2
i

2
(un

i +un+1
i ), (2.19)

with un
i := u(xi , zn) and D

n+ 1
2

i := D(xi , zn+ 1
2

). The area fulfilling the PWE is

divided into a finite number of grid points equidistantly spaced by Δx and Δz of
a grid (Mx +1)× (2Mz +1) with

xi := i Δx, i = 0,1,2, ..., Mx , (2.20)

zn := nΔz, n = 0,
1

2
,1,

3

2
,2, ..., Mz , (2.21)

as illustrated in Fig. 2.4 (a). The boundary conditions

u(x,0) = u0(x,0), u(x0, z) = u0(x0, z) and u(xMx , z) = u0(xMx , z) (2.22)

allow for the determination of un+1
i from un

i . The u0(x, z) are described by an
incident plane wave or a damped wave propagating in the cladding, respectively.
In fact, we assume that the wave-field is not significantly disturbed by the guided
wave-field far away from the guiding core. For a more detailed explanation of
the numerical implementation along with the source code we refer to the thesis
of Christian Fuhse [19].
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Figure 2.4: (a) The FD calculation of the electromagnetic field un
i uses a grid

equidistantly spaced by Δx and Δz. The incident field is assumed to be a

plane wave impinging normal to the front face. (b) FD calculation inside a

waveguide with a 35 nm thick C guiding layer surrounded by a Mo cladding

for E = 17.5 keV showing 2-mode propagation.
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FD simulation of a Mo/C[d = 35 nm]/Mo waveguide with a waveguide parame-
ter V = 9.1 for a photon energy E = 17.5 keV is shown in Fig. 2.4 (b) illustrating
2-mode propagation. Note that based on symmetry considerations a normal
incidence plane wave only excites even modes. In fact, even modes are sym-
metric while odd modes are antisymmetric and the overlap integral (2.10) thus
vanishes for all odd modes.

2.3 Transmission and coherence

The beam shape, the coherence and the transmission T (transmitted intensity)
strongly depend on the waveguide core diameter d and the waveguide length
l [20]. Large slits and pinholes with d � l can be considered as apertures in
a fully absorbing frame. In contrast, the wave-field behind a device of higher
aspect ratio (l/d) is not only determined by a stepwise constant transmission
function (diffraction aperture function) where the intensity behind the frame
is pratically zero and the field behind the aperture is merely altered by a phase
shift. The propagation of the wave-field through the optic is rather affected by
volume diffraction and interference effects for d ≤ dc = l tan(θc ) ≈ lθc [73]. With
decreasing d , waveguide modes are excited and for small d the propagation
changes from multi-modal to mono-modal waveguiding as shown in Fig. 2.5.
To avoid contributions of radiative modes in the exit wave-field, the length of
the waveguide l must be long enough, i.e. the transmission of the cladding Tcl

for a given energy E and diameter d must be correspondingly small. Inherently,
this task becomes more difficult with decreasing d . Further, the absorption
in the cladding decreases with increasing E . In order to take the effect of d
into account, the differential transmission σ := T /Tcl of the guiding layer to the
cladding is considered. Especially at high energies, x-ray waveguides need very
large aspect ratios l/d with l/d � 105 being a typical value, which on the other
hand is accompanied by small transmission T [16].
We define the transmission T of a waveguide as the ratio of the intensity Ii n =
|ψi n |2 impinging onto the waveguide and the intensity I =∫ |ψ|2 d x exiting the
waveguide

T = I

Ii n

di n

d
, (2.23)

normalized by the size di n of the incident beam at the waveguide entrance and
the guiding core diameter d . In case of the FD simulation, the transmission is
calculated for di n = d . Multi-modal waveguides have an improved efficiency at
a given di n compared to the mono-modal waveguides due to the larger d since
the field intensity parts in the cladding of the excited modes for multi-modal
propagation is smaller than for mono-modal propagation as shown in Fig. 2.6.
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Figure 2.5: Electromagnetic field intensities in a C guiding core surrounded

by a Mo cladding at E = 17.5 keV. At large d , differences from a plane wave

are only visible near the interfaces (a). When d/l falls below θc , waves

are reflected back into C showing guided wave contributions (b). Further

decreasing of d leads to typical interference pattern of multi-mode (c) and

mono-modal (d) waveguides.

The beam exiting a mono-modal or multi-modal waveguide is fully coherent if
the incident wave-field is a plane wave (independent of the angle of incidence).
The deviation of a incident synchrotron beam to an idealized plane wave can
be discussed by the concept of coherence lengths. The longitudinal coherence
length LL is given by [27]

LL = 1

2

λ2

Δλ
(2.24)

for partially coherent beams. Typically, monochromators at synchrotron beam-
line setups have an energy resolution of ΔE/E ≈ 10−4 corresponding to LL ≈
0.5 μm for x-rays with a wavelength of 0.1 nm. The most important parameter to
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n2 = 1− 5.8 ·10−6, d = 35 nm and E = 17.5 keV for the calculations. (d)

The cladding field intensity part strongly decreases at larger guiding core

diameter d as shown for the ψ0 mode. The propagation is mono-modal for

d ≤ 12 nm.

explain the spatial coherence of the incident beam is the transverse coherence
length. The transverse coherence length LT can be calculated by7

LT = λ

2

R

D
, (2.25)

where D is the synchrotron source extension and R the distance source - waveg-
uide entrance.
A lower degree of longitudinal coherence increases the photon flux exiting the
waveguide but might affect the resolution in waveguide-based imaging appli-
cations as discussed in chapter 5. In contrast, a lower degree of transverse
coherence decreases the transmission since the waveguide essentially accepts
only the coherent flux. A more detailed explanation of the transverse coherence
effect is given in chapter 4 for the different experimental setups. In summary,
the waveguide acts as a spatial filter but does not improve the energy resolution.

2.3.1 Mono-modal waveguides

A planar waveguide supports only the fundamental mode if d is smaller than the
critical width W corresponding to the limit of the waveguide parameter V =π.
The critical width is given by [60]

W = λ

2
√

(n1
2 −n2

2)
≈ λ

2
√

2(δ2 −δ1)
. (2.26)

7Assuming (i) the source is incoherent and (ii) there are no optical elements on the optical
path between the source and the waveguide.
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Accordingly, the wave-field of a mono-modal waveguide yields

ψ(x, y) = c0ψ0(z)exp
[
(−iβ0 −μ0/2)z

]
, (2.27)

sufficiently far away from the waveguide entrance. The transmission as a func-
tion of the waveguide length l is given by [19]

T (l ) =
∫ |c0ψ0(x)exp

[
(−iβ0 −μ0/2)l

] |2d z∫0
−d |ψi n |2d z

. (2.28)

Eq. (2.28) can be simplified (i) assuming plane wave illumination ψi n = 1 and (ii)
determining numerically the propagation constant β0 as well as the constants
κ0 and γ0. Solving the transcendental eigenvalue equation (2.6), we obtain
β0W ≈ 1.064·103 which we used to calculate κ0W ≈ 1.868 and γ0W ≈ 2.526. We
determine |c0|2 ≈ 1.979W and the transmission for d =W yields

T (l ) = |c0|2 exp(−μ0l )

d
≈ 1.979exp(−μ0l ), (2.29)

where μ0 is the effective linear attenuation coefficient of the fundamental mode.
The length of the waveguide as a function of the differential transmission σ=
T /Tcl can be expressed by [19]

l (σ) = ln(σ)− ln(|c0|2/d)

μcl −μ0
, (2.30)

where μcl denotes the linear attenuation coefficient of the cladding. The trans-
mission as a function of σ yields

T (σ) = (|c0|2/d)1/(1−μ0/μcl )σ−(μ0/μcl )/(1−μ0/μcl ). (2.31)

The transmission reaches a maximum for a given σ if μ0/μcl is minimal which
requires a vacuum guiding layer. Then we find μ0/μcl ≈ 0.156 and Tvac (σ) ≈
2.246σ−0.185. Note that the presented derivation and calculation is applied
within simplified assumptions. Nevertheless, taking into account that the differ-
ential transmission σ depends on the experimental setting and requirements, it
allows for an estimation of possible waveguide transmission T .

2.3.2 Optimized cladding design

So far, x-ray waveguides essentially consist of one cladding material and one
guiding core material. Thus, the transmission T is optimized by choosing low
density guiding core materials. We present a novel waveguide design based on
an appropriate interlayer between the cladding and the guiding core, relaxing
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the requirements for the waveguide length l [20]. Thereby, the absorption of the
evanescent tails of the guided modes is significantly reduced, while a second
(outer) cladding with a high absorption coefficient is used to efficiently block
the radiative modes.
In fiber optics, index profiles have long been used to optimize the propagation
properties of visible light, in particular, to reduce dispersion effects [74]. The
present design represents a first step towards optimized radiation transport
and mode filtering of x-rays by waveguiding in generalized index profiles. The
refractive index profile of the two-component Ge/Mo/C/Mo/Ge waveguide is
shown in Fig. 2.7, simulated for the photon energy range E = 12−18 keV and for
the optical constants corresponding to ideal (bulk) electron densities [75].
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Figure 2.7: (a) Schematic of the two-component waveguide. The profiles of

(b) the dispersive δ and (c) the imaginary β parts of the refractive index

n = 1−δ+ iβ, calculated for E = 12−18 keV.

At 18 keV, the C guiding layer embedded in the high δMo = 5.5·10−6 Mo cladding
forms a relatively deep potential well. At the same time, a relatively low βMo =
9.1·10−8 value of Mo reduces the absorption in the (interlayer) cladding and
hence enables an increased transmission T . The thickness di = 30 nm of the Mo
cladding is thin enough so that beam parts of the interlayer do not significantly
reduce the absorption of the primary beam. On the other hand, the comparably
high βGe = 1.7·10−7 enables short waveguide length l of sub-500 μm. Note that,
at this energy, the low electron density C layer with βC = 3.5·10−10 contributes
less than 2% to the effective absorption μe f f = μm . In other words C ”acts”
essentially like a vacuum guiding layer.
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The same δ and β characteristics hold for the whole x-ray energy range 12−
18 keV but is less pronounced at lower energies. In fact, away from absorption
edges, the ratio δ/β increases with decreasing wavelength λ. This effect is
more pronounced at lower electron densities ρ. For a given layer system at an
appropriate energy range, the efficiency of a waveguide is more easily enhanced
at higher energies due to the lower β values. Nevertheless, the profiles of δ and
β remain their characteristics over several keV so that the waveguiding property
remains.

The choice of a favourable outer/inner cladding characteristic depends on the
respective absorption edges. The material of the outer cladding should ideally
have the absorption edge just below the choosen energy range as the absorption
is specifically high at these energies. In contrast, the interlayer material should
have the absorption edge just above the the choosen energy range to reduce the
absorption at the interface guiding layer/cladding. The electron density ρ of the
interlayer is usually higher than for the outer cladding leading to an enhanced δ,
i.e., ensuring the guided modes to be trapped in a deeper potential well.

Let us now consider the transmission of a planar waveguide with and with-
out an interlayer. More general waveguide design schemes including the two-
component cladding need to be treated by FD simulations. The calculations in
Fig. 2.8 (a) and (b) are carried out for l = 400 μm, d = 12 nm and E = 17.5 keV.
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Figure 2.8: (a) and (b) Transmission of a mono-modal waveguide (d = 12 nm)

is strongly enhanced by the presence of Mo interlayer with di = 30 nm. (c)

Calculated transmission T as a function of the waveguide length l exhibiting

the flux gain of more than a factor 6 even at very short l .

The absorption losses at the interface guiding layer/cladding are strongly re-
duced by the presence of the Mo interlayer. The transmission T = 0.618 of
the Ge/Mo/C/Mo/Ge waveguide is more than a factor 15 higher than for the
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Ge/C/Ge layer system with T = 0.040. The transmission differences are even
more favourable at longer waveguide length l as shown in Fig. 2.8 (c).

For many other x-ray energies favourable material combinations can be found.
Due to the absorption edge of Mo at E = 20.0 keV, the efficiency of the Ge/-
Mo/C/Mo/Ge waveguide is reduced for x-ray energies of E ≈ 8 keV. This energy
range is quite interesting for biological imaging as the interaction of low elec-
tron density elements like C with x-rays is stronger. A more adequate interlayer
material is Ni (absorption edge 8.3 keV) and NiO which can easily be deposited
on Ge using sputtering techniques as well (see section 3.2).

An optimized waveguide design at an energy range of 6−8 keV is Cr/Ni/Be/Ni/Cr.
The absorption of βBe = 7.4·10−9 (E = 8 keV) is lower than βC = 1.2·10−8. Fur-
ther, Cr with βCr = 2.2·10−6 enables shorter waveguide length l than Ge with
βGe = 4.4·10−7 8. The comparison of the above mentioned layer system waveg-
uides is shown in Fig. 2.9 for a guiding layer thickness d = 18 nm and an interlayer
thickness di = 30 nm.
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Figure 2.9: At E = 8 keV, the transmission increases from T = 0.040 of a Mo

interlayer waveguide (a) to T = 0.412 of a Ni interlayer system (b), and by

choosing a Be guiding layer yielding T = 0.542 (c). A Cr outer cladding

enhances the absorption of the radiative modes compared to Ge (see red

circles for the radiative modes).

The fabrication of multilayer slices with the required dimensions is possible as
shown in chapter 3.

8Note that Ge has an absorption edge at 11.3 keV. Therefore, Ge is not suitable as an outer
cladding material just below 11 keV. Nevertheless, the absorption βGe is sufficient at E = 8 keV
taking into account that at lower energies shorter waveguide length are needed due to higher βC.
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2.4 Exit wave-field propagation

Due to the filtering properties, the waveguide acts as a secondary source. Thus,
the wave-field at the exit of the waveguide determines the quality of the object
reconstruction in waveguide-based microscopy. The resolution in holographic
imaging is directly related to the beam size of the exit wave-field. Small cross-
section at the waveguide exit face leads to an increased divergence of the waveg-
uide beam. Therefore, it is important to know the shape of the waveguide exit
wave-field.

The exit wave-field can be simulated using the FD method. Knowing the exit
wave-field, the wave-field might be propagated over a distance z2 − z1 either
using FD calculations or free-space propagation as introduced in the first chap-
ter. In case of propagation distances up to several tens of micrometer, the
free-space propagator (or the Fresnel propagator) has to be applied. As an ex-
ample, assuming a beam size of d = 35 nm, the Fresnel number Eq. (1.20) yields
NF = d 2/λ(z2−z1) = 0.64 for a photon energy E = 17.5 keV and a propagation dis-
tance z2 − z1 = 50 μm. Propagation distances of several hundreds of micrometer
results in NF 
 1 and the Fraunhofer approximation can be used.

Fig. 2.10 (a) shows the electromagnetic field intensity inside the Ge/Mo/C/-
Mo/Ge waveguide as well as the intensity exiting the waveguide and further
propagating in vacuum. As expected for a quasi-point source, the waveguide
beam in free-space diverges. Fig. 2.10 (b) shows the line scan of the electromag-
netic field intensity in Fig. 2.10 (a) at the exit face of the waveguide (distance z1,
red dashed line) and at a distance z2 = 90 μm (blue dashed line) behind the exit
face of the waveguide. To compare the FD simulation to Fresnel simulations
(FS), we have applied the free-space propagator to propagate the FD field at z1

through z2 (black dashed line in Fig. 2.10 (b)). The FD simulation and the FS
simulation are in good agreement. For longer propagation distance z3, 190 μm
behind z1, we have used the Fraunhofer formalism which consists of applying
the fast Fourier transform (FFT) on the FD field at z1. Fig. 2.10 (d) shows the
the field intensity propagated to z3 using the FD simulation (blue dashed line)
and the FFT (black dashed line). Again, the shape of the curves are in good
agreement. Starting propagation using Fresnel or Fraunhofer calculations from
FD fields at z with z1 < z < z2, the FS and the FFT propagated fields are not in
agreement with the FD propagated field, respectively (not shown in Fig. 2.10).
Fig. 2.10 (c) shows the phase distribution of the electromagnetic field inside the
Ge/Mo/C/Mo/Ge waveguide as well as the phase distribution of the exiting field
propagating in vacuum. Around the propagation distance z1 (indicated by a
black arrow), the tails of the phase distribution along the x-direction is slowly
varying. For larger propagation distances z > z1 some pronounced edge effects
are visible in the tails of the phase distribution. We assume that these edge
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effects causes the propagation of the Fresnel and Fraunhofer calculated fields to
fail.
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Figure 2.10: (a) Electromagnetic field intensity of the Ge/Mo/C/Mo/Ge for

d = 35 nm and E = 17.5 keV using FD simulation. The dashed lines indicate

the guiding core dimension and the exit face of the waveguide. The dotted

lines indicate the propagation distance z2 = 90 μm (white) and z3 = 200 μm

(white) from the waveguide exit face z1 (red). (b) Line scans of the propa-

gated intensity (FD simulation) shown in (a) at z1 (indicated by a red dashed

line) and z2 (indicated by a blue dashed line). The black dashed line indi-

cates the propagation of the FD simulated field at z1 to z2 using free-space

propagation (FS). (c) Phase distribution calculated using FD simulation.

The black arrow indicated the region around z = z1. (d) Line scan of the

FD simulation at a distance z3 indicated by a blue dashed line. The black

dashed line indicates the propagation of the FD simulated field at z1 to z3

using the fast Fourier transform (FFT).

2.4.1 Waveguide near-field

First, we compare the waveguide near-field of the optimized Ge/Mo/C/Mo/Ge
with the Ge/C/Ge layer system shown in Fig. 2.11. The former system does not
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Figure 2.11: (a) Electromagnetic field intensity of the Ge/C/Ge for d = 35 nm

and E = 17.5 keV using FD simulation. (b) Near-field distributions along

with Gaussian fits of the waveguide with and without Mo interlayer.

only offer a significantly higher transmission but also a smaller near-field distri-
bution in case of the waveguide length l = 400 μm considered here. Gaussian fits
to the exit wave-fields yields Δx = 23.5 nm for the Ge/C/Ge waveguide compared
to Δx = 13.6 nm for the optimized waveguide. The higher absorption at the C /Ge
interface leads to a damping out of the second mode and, after a propagation
length of l = 300 μm, the fundamental mode is the only remaining mode.

We now consider the near-field intensities of the two-component waveguides
with different layer materials and different guiding layer thicknesses d . The
near-field distributions of the Ge/Mo/C/Mo/Ge waveguide with d = 18 nm
and d = 9 nm, respectively, are shown in Fig. 2.12 (a) and (b). For a photon
energy E = 17.5 keV and a waveguide length l = 600 μm, the beam size Δx =
12.9 nm is significantly smaller than the guiding layer thickness d = 18 nm. In
contrast, Δx = 8.8 nm is close to d = 9 nm. This effect is due to the higher ratio
cladding/guiding core intensity part as shown in Fig. 2.6. In fact, for very small
guiding core dimensions, the width of the guided modes becomes significantly
larger than the guiding core diameter due to the evanescent wave in the cladding
[60].

Bergemann et al. [60] pointed out that the task of focusing an x-ray beam is
equivalent to that of confining a quantum wave function inside a potential well
of height U0. Comparing the parabolic wave equation (2.16) for u = u(x, z) and
approximated by n2 ≈ 1−2δ

− i

k

∂u

∂z
= 1

2k2

∂2u

∂x2
−δu (2.32)
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Figure 2.12: Near-field distributions along with Gaussian fits of different waveg-

uide systems simulated for a photon energy E = 17.5 keV (a) and (b) as well

as for E = 8 keV (c) and (d). Lowest FWHM is obtained for the smallest

guiding layer thickness d = 9 nm (b).

to the time-dependent Schrödinger equation describing a particle of mass m in
a potential U (x) [76]

−iħ∂ψ
∂t

= ħ2

2m

∂2ψ

∂x2
−Uψ, (2.33)

where ħ denotes the Planck constant, one recognizes t ≡ z, ħ≡ k−1, m = 1, and
U ≡ δ. In analogy to the guided modes in a slab waveguide we consider bound
states of a potential well [76]

U (x) =−U0Θ(a/2−|x|), (2.34)

where Θ denotes the step function and a the width of the potential well. The
energies of a bound state are in the interval −U0 ≤ E ≤ 0. For a given guiding
core diameter d , theoretically highest confinement of x-rays in a slab waveguide
is obtained for δ→∞. In ‘quantum analogy’, the wave functions in an infinitely
deep potential well U0 →∞ are given by [76]

φn(x) =
√

2

a
sin

(
nħx

a

)
, (2.35)

where n denotes the quantum number. Considering only the fundamental state
n = 1 inside the potential well the wave function yields

φ(x) =
√

2

a
sin

(ħx

a

)
. (2.36)

Correspondingly, we consider the limiting case d =W of a waveguide supporting
only the fundamental mode. The particle position uncertainty Δx of the bound
state then yields

Δx =
√
〈x2〉−〈x〉2, (2.37)
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with the expectation values 〈x〉 and 〈x2〉 given by

〈x〉 =
∫a/2

−a/2
|φ(x)|2 x d x, (2.38)

and

〈x2〉 =
∫a/2

−a/2
|φ(x)|2 x2 d x. (2.39)

Note that, in case of a infinitely deep potential well Δx is smaller than for finite
potential wells as the wave function is only confined in the interval [−a/2, a/2].
Evaluating Eq. (2.37) using Eq. (2.36), we obtain a criterion for the universal
lower limit of the beam size given by

Δx = 0.18a = 0.18W. (2.40)

The position uncertainty Δx is the root of the variance (Δx)2 = 〈x2〉−〈x〉2 of the
presence probability density |ψ(x)|2 of the bound state. The bound state φ(x) is
of the same shape as the guided mode inside the waveguide. Accordingly, the
presence probability density of the bound state is directly comparable to the
near-field intensity distribution at the waveguide exit. The near-field intensity
distribution of waveguides with d � W can be approximated by a Gaussian
function

f (x) = A exp

[
(x −x0)2

2σ2

]
, (2.41)

where σ2 is the variance. We might therefore identify Δx with σ. The con-
sidered beam sizes of the near-field distribution are given by the full width at
half maximum FWHM = 2

�
2ln2σ as obtained by Gaussian fits (see Fig. 2.12).

Accordingly, the lower limit presented in Eq. (2.40) corresponds to a minimal
focusing of 0.42W in terms of FWHM of the near-field distribution.
Numerical calculations of the electromagnetic field intensity inside the waveg-
uide show that an ideally minimal focusing of 0.42W can not be reached. In
fact, the exponentially decaying wave-field outside the guiding core diverges for
d → 0 causing the near-field width to increase again for a certain value d <W .
The minimal near-field width of a Ge/Mo/C/Mo/Ge waveguide (critical width
W = 12 nm) simulated for l = 600 μm and E = 17.5 keV is Δx = 7.7 nm (0.64W )
at d = 5.3 nm (0.44W ). Fig. 2.13 shows the simulated near-field width Δx as a
function of the guiding layer thickness d .
The FWHM of the near-field distribution of the Ge/Ni/C[d = 18 nm]/Ni/Ge and
the Cr/Ni/Be[d = 18 nm]/Ni/Cr waveguide are of the same order of magnitude
(l = 300 μm, E = 8 keV). Due to more favourable refractive index difference
n2 −n1, Δx = 13.0 nm of the later waveguide is smaller than Δx = 13.3 nm of the
former waveguide as shown in Fig. 2.12 (c) and (d).
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Figure 2.13: FWHMΔx of the near-field distribution as a function of the guiding

layer thickness d , simulated for a Ge/Mo/C/Mo/Ge waveguide with l =
600 μm and E = 17.5 keV. For d = 5.3 nm, highest beam confinement with

Δx = 7.7 nm is expected.

2.4.2 Waveguide far-field

So far, it is not possible to measure the waveguide near-field directly. The spa-
tial resolution of the measurable intensity is restricted to the resolution of the
detectors nowadays available. Scintillator-based detectors9, optimized for high
resolution imaging, reach spatial resolution on the order of ≈ 1 μm which is,
obviously, not sufficient to detect intensity distribution in the nm-range [77].
Therefore, x-ray waveguide properties are measured in the far-field regime taking
advantage of the divergence of the waveguide beam.

In the small-angle approximation, the intensity of the Fraunhofer diffraction
pattern of a one-dimensionally waveguide is given by [22]

I (2θ) ∝
∣∣∣∣
∫

ψ(x)exp(i k 2θ x)d x

∣∣∣∣2

, (2.42)

where 2θ is the exit angle of the waveguide beam (see Fig. 2.14). Thus, the far-
field intensity represents the square modulus of the Fourier transform of the
near-field which is given by the field at the end face of the waveguide.

9The detectors consist of a scintillator, a light microscopy optic and a charge-coupled device
(CCD). The scintillator converts part of the x-ray absorbed by a material into a visible-light image
which is projected onto the CCD by the light optics.
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Figure 2.14: (a) The Fraunhofer diffraction pattern of a planar waveguide is

a function of the angle 2θ in the (x, z) plane. (b) Far-field intensity as a

function of the momentum transfer q . The far-fields of the d = 18 nm and

d = 9 nm waveguides are calculated from the near-field distributions shown

in Fig. 2.12 (a) and (b), respectively. The corresponding FD simulations are

performed with Δx = 0.1 nm, Mx = 16000, Δz = 100 nm and Mz = 1500.

Instead of using the exit angle 2θ, the far-field might also be displayed in recip-
rocal space by the momentum transfer q

q = 4π

λ
θ, (2.43)

dropping the wavelength dependance of the far-field. The divergence of the
waveguide beam increases with smaller guiding layer thicknesses as shown in
Fig. 2.14 (b). Gaussian fits yield a width Δq = 0.0227 Å−1 for d = 9 nm and Δq =
0.0222 Å−1 for d = 18 nm. Compared to the near-field FWHM Δx obtained above,
the differences in Δq are significantly less pronounced. However, reducing d
leads to more pronounced tails which enhances the effective numerical aperture,
i.e. the covered range in reciprocal space. The oscillation of the tails corresponds
to the periodicity Δq = 2π/d in good approximation but also depend on the
exact waveguide length l .

2.4.3 Mode beating effect

A waveguide supporting more than one mode shows a periodically alternating
electromagnetic field (mode beating) as shown in Fig. 2.15. Correspondingly, an
oscillating confinement of the fields depending on the propagation distance is
observed as illustrated by the dashed lines in Fig. 2.15 (a) as well as oscillating
near-field profiles as shown in Fig. 2.15 (b). Thus, the exit wave-field will depend
on the exact length of the waveguide. The FWHM of the simulated near-field
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Figure 2.15: (a) Electromagnetic field intensity inside the Ge/Mo/C[d =
35 nm]/Mo/Ge waveguide calculated for E = 17.5 keV within a range of

221-261 μm in propagation direction z. (b) Field intensities which corre-

spond to the dashed lines in (a) illustrating differences in possible mode

structures. (c) FWHM of the simulated near-field distribution (top) and

far-field distribution (bottom) as a function of the waveguide length l .

Δx and the corresponding far-field intensity Δq as a function of the waveguide
length l are plotted in Fig. 2.15 (c).
The near-field width is minimal Δx = 12.6 nm in the considered waveguide
length range of 221−261 μm, well below the guiding layer thickness of 35 nm,
whereas the maximal width is Δx = 33.5 nm. The corresponding FWHM of the
far-field intensity are Δq = 0.0252 Å−1 and Δq = 0.0114 Å−1, respectively. The
periodicity of the oscillation is approximately 15 μm.

2.5 Conclusion

The main result of the current chapter is the improved waveguiding property by
changing from a 3 layer sequence to a 5 layer sequence waveguide: The improve-
ment is due to the introduction of an additional inner cladding layer adjacent to
the guiding layer which reduces the interface attenuation of the guided modes
and trap the guided modes in a deep potential wall. The blocking of the radiative
modes is achieved by a strongly absorbing outer cladding material.





3 Fabrication of x-ray waveguides

In this chapter we describe the fabrication of multilayer x-ray waveguides. Two-

dimensionally confining x-ray waveguides are obtained by combining two mul-

tilayer slices in a crossed geometry.

We present the technical concept and fabrication of waveguides with the design

as described in section 2.3.2. In particular, the waveguide consist of a Ge/-

Mo/C/Mo/Ge optical layer sequence optimized for an x-ray energy range of

12−18 keV.

Furthermore, we discuss additional details which are needed to implement the

general technical concept. Amongst the additional problems to solve is the

fixing of a top Ge plate on the optical layers. As an alternative to the Ge plate,

chemical deposition of a thick Ni cap layer is presented.

This chapter also addresses technological measures to improve the transparency

properties of the waveguide. In particular, different polishing techniques are

presented in order to clean the entrance and the exit faces of the waveguide.

3.1 Fabrication steps

The fabrication steps for a representative waveguide system are shown schemat-
ically in Fig. 3.1. First, a Mo/C/Mo optical layer sequence is deposited on a
3 mm thick single crystal Ge substratee, see subfigure (a). A sputtered Ge layer
(polycrystalline) of 1 μm thickness serves as first capping layer above the optical
films, finishing the block denoted as the WG wafer.

An additional thick and absorbing capping layer is needed to block the beam
areas not impinging onto the waveguide entrance. Therefore, a second so-called
cap wafer (Ge, 440 μm) is bonded onto the WG wafer by an alloying process.
Bonding was achieved by a thin InSn alloy as shown in subfigure (b). The alloy is
’sandwiched’ between the WG and cap wafers, under pressure and heated up
under vacuum conditions as illustrated in subfigure (c).

The resulting one-dimensional waveguide ’sandwich’ is then cut into slices by
a wafer dice as shown in subfigure (d). The cutting process leads to smearing
of material at the entrance and exit faces. Therefore the multilayer slices were
further treated using the Focused Ion Beam (FIB) polishing as illustrated in
subfigure (e).

Finally, two-dimensionally confining x-ray waveguides are obtained by gluing
two polished waveguide slices on top of each other in a crossed geometry, see
subfigure (f).
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Figure 3.1: Schematic illustrating the different steps of the waveguide fabrica-

tion.

3.2 Deposition of optical layers

The optical films are deposited using Magnetron sputtering (MAK, US Inc.). The
use of magnetron cathodes enables the homogeneous deposition on the large
70×70 mm2 face of the Ge substrates. The inert gas employed is Ar at a pressure
of 1.8e-3 mbar which leads to pure and dense layers avoiding their oxidation.
The average target voltage and the average target current was 334.5 V and 240 mA
in case of Mo as well as 575 V and 810 mA in case of C, respectively.

The thickness of the individual layers is controlled by reflectivity measure-
ments (Incoatec GmbH). Fig. 3.2 shows the calibration curves of a SiO/Mo and
a SiO/Mo/C layer sequence on a Si substrate measured at a photon energy
of E = 8.048 keV (Cu-K line). The experimentally obtained reflectivity curves
are modeled using the Marquardt curve fitting algorithm [78]. The thickness
of the Mo layer obtained in (a) is 30.2 nm and the thickness of the C layer in
(b) is 19.2 nm. The roughness of the individual layers is sub-6 Å allowing for
high transmission of the x-ray waveguides. The parameters as obtained from
modeling of the reflectivity curves are summarized in Tab. 1.
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Figure 3.2: Measured reflectivity as a function of the angle of incidence θ along

with the simulation of (a) SiO/Mo and (b) SiO/Mo/C layer sequence on a Si

substrate.

SiO2/Mo
N material thickness [nm] roughness [nm] density [g/cm3]
1 Mo 30.24 0.48 10.22
2 SiO2 1.07 0.57 2.10

substrat Si - 0.52 2.33

SiO2/Mo/C
N material thickness [nm] roughness [nm] density [g/cm3]
1 C 19.21 0.44 2.30
2 Mo 0.96 0.45 10.22
3 SiO2 0.98 0.47 2.10

substrat Si - 0.59 2.33

Table 1: Thickness and roughness of the individual layers as obtained from

modeling of the reflectivity curves using the Marquardt algorithm.

3.3 Wafer cleaning

The waveguide sample without additional beam blocking material is cut into
blocks of 10×10 mm2 by the wafer dicer. These blocks have to be cleaned after
contact with the contamined cutting water. The same holds for the tailored
cap wafers. For the cleaning process, the samples are successively put into the
following solutions:

• ammonia cleaner RW77 (Tickopur) 5% concentration, 15 min ultrasonic
bath;
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• distilled water, 15 min ultrasonic bath;

• acetone, 15 min ultrasonic bath;

• methanol, 15 min ultrasonic bath;

• distilled water, 15 min ultrasonic bath;

• distilled water and isopropanol dip, then drying of the samples with nitro-
gen.

3.4 Bonding process of the Ge cap wafer

The top face of the WG wafer and the cap wafer consist of Ge. Both faces are
bonded by the use of an InSn alloy (see below), shown in Fig. 3.3. In order to
improve the bonding interlayers of Cr and Ni are deposited on both Ge faces
using electron beam evaporation (Leybold Univex 350). The thin Cr layer (3 nm
thickness) acts as an adhesive layer between the Ge and the relatively thick
(120 nm) and strongly absorbing Ni layer.

Ge capping layer

Ge cap wafer

InSn alloy

Cr

Ni

Ni

Cr

Figure 3.3: Schematic illustrating the layer sequence above the optical layers

in case of a waveguide with a bonded beam blocking material. Note that the

Cr and Ni layers are not shown in Fig. 3.1.

The bonding material must ensure adhesion and wetting properties on the Ni
faces. Different alloys were tested, lead and lead-free alloys. Only In containing
alloys offered sufficient wetting on the Ni faces. In alloys have some favourable
properties such as the low melting point [79]. Best adhesion properties were
obtained with the In52Sn48 alloy in form of 25 μm thick ribbon (GPS Tech-
nologies GmbH, indalloy number 1E, Tsolidus=118°C). To further improve the
bonding process, the alloy ribbon which is ’sandwiched’ between the Ni faces
of the WG and cap wafers is put under a pressure of p = 1 bar10, and heated up

10We have used a weight of 3 kg which is put onto the top face of 3 equidistantly placed
samples, each having a lateral extension of 10×10 mm2.
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to T = 250°C under vacuum conditions (sub-1 mbar). The reproducibility of
the bonding process is improved if the fabrication steps are carried out under
clean room conditions in order to avoid contaminations at the interfaces of the
materials.
Due to the thickness of the In52Sn48 layer, the alloy must behave as a beam
blocking material on a wide x-ray energy range, too. The transmission of a
500 μm thick In layer at an energy range of 8-20 keV [80] is shown in Fig. 3.4
giving an estimate for the beam blocking behaviour. Note that, the transmission
of Sn with an atomic number of 50 is even lower than of In with an atomic
number of 49. In summary, the In52Sn48 alloy offers a sufficiently high primary
beam absorption for most waveguide applications up to 18 keV.
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Figure 3.4: Transmission of a 500 μm thick In layer as a function of photon

energy.

3.5 Electroless Nickel plating

Electroless nickel plating (EN) is an alternative for the Ge cap wafer. Ni of-
fers higher absorption than the In52Sn48 alloy as shown in Fig. 3.5 making the
electroless nickel plating technique suitable for x-ray waveguides operating at
energies even up to 20 keV. Due to the K absorption edge, Ni is less applicable as
a beam blocking material for energies below 8.33 keV.
In analogy to the bonding process, a 3 nm thick Cr and a 120 nm thick Ni layer
is deposited on the Ge capping layer of the waveguide block by electron beam
evaporation (see Fig. 3.6). We used a low Phosphor EN electrolyte solution (En-
finity 4LF, Enthone) for the deposition of a wear resistant and uniform beam
blocking layer onto the Ni face. The deposited NiP layer has a 2-4 weight %
P concentration and thus does not decrease the absorption properties signif-
icantly compared to a pure Ni layer. Although the 4LF solution is suitable for
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Figure 3.5: Transmission of a 500 μm thick Ni layer as a function of photon

energy.

the deposition on non-metallic surfaces, the electron beam evaporated Ni layer
optimizes the deposition of the NiP layer.
EN is an auto-catalytic chemical technique where the EN activation and the
deposition rate is controlled by the temperature and the ph-value of the solution.
The process relies on the presence of a reducing agent (sodium hypophosphite)
which reacts with the metal ions to deposit the NiP alloy.

Ge capping layer
Cr

Ni

NiP

Figure 3.6: Schematic illustrating the layer sequence above the optical layers

in case of an EN fabricated waveguide.

We chose a 200 ml EN solution and a glass ph-meter in a non-reactive beaker
glass placed on a heating plate (see Fig. 3.7). A magnetic stirrer is used to control
the electrolyte circulation. The solution is heated up to T = 83°C and depend-
ing on the exact electrolyte composition the ph-range for the EN activation
is 5.4−5.6. In order to prevent sample motion, the sample is fixed on a non-
reactive teflon holder by a masking lacquer (Toluol-PVC-lacquerGalvano resist
SLOTOWAX, Schlötter Galvanotechnik) which is not affected by the electrolyte
and easily removable after deposition.
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Figure 3.7: (a) Electroless nickel bath along with the WG wafer and the different

constituents for the EN process. (b) The WG wafer fixed on the teflon holder

using a masking lacquer before plating and the Fe wire used for activation

of the EN process. (c) Semi bright Ni deposit on the WG wafer surface after

1 h of EN plating.
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Ni and less noble metals self-initiate nickel plating since they have self-catalytic
acting surfaces. We observed that the waveguide sample hardly self-initiates
nickel plating. We assume that the thin Ni layer on the top face of the waveguide
does not have the self-catalytic properties of bulk Ni samples. Initiation of the
nickel plating process can be achieved by activating the surface. Activation can
be achieved by seeding the surface with self-catalytic metals. One way of doing
this is to simply contact the surface with a self-catalytic metal. The activation
of the waveguide block includes two steps. First, the sampled is dipped in a
1:80 HCl solution (pickling, removes oxides) for a few seconds only preventing
the acid to affect the optical layers of the waveguide. After placing the holder
in the solution, the deposition starts by activating the Ni face by a corrosion-
free (to prevent contamination of the bath) Fe wire previously dipped in a 1:2
HCl solution. After contact with the Fe wire, instantaneously blistering at the
waveguide surface indicate the initiation of the nickel plating process.
The deposition rate at the beginning is approximately 22 μm/h and can be
increased by choosing higher temperatures up to 89°C or higher ph-values up to
6.2. A 0.1 higher ph-value or a 1°C higher temperature increases the deposition
rate by 1.5 μm/h. The Ni content in a 200 ml solution is 1 g at the beginning
corresponding to 100 % activity. The Ni consumption is approximately 0.2 mg/h
for a 10×10 mm2 WG block surface. Thus, after 10 h the activity is still 80 %,
and for a roughly 200 μm thick NiP layer there is no need to regenerate the
electrolyte solution during the EN process. However, in practice, it is difficult
to avoid evaporation of the electrolyte solution. Further, even if the faces of
the WG wafer on which the NiP layer should not be deposited are protected by
the masking lacquer, there might be additional unwanted Ni deposition on the
sample and Ni precipitation in the solution. Therefore, it is recommended to
choose at least a 400 ml solution for thick NiP layers.
Several factors may lead to problems in the EN process such as organic or
metal impurities in the electrolyte bath. Most likely, the restricted sample pre-
treatment (acid treatment might affect the optical layers) causes often observed
roughness on the deposited layers.
In the following, a detailed description of the EN process used is presented:

• passivating of the following constituents in a HNO3 solution for 60 min:
1000 ml beaker glas, teflon sample holder, magnetic stirrer, temperature
and pH sensor;

• rinsing of the constituents using acetone and distilled water;

• bath formulation 200 ml with the Enfinity 4LF solution: 100 ml distilled
water, 47.5 ml part B, 12.5 ml part C, 2.4 ml part D, 37.5 ml distilled water;
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• placing of the beaker glas on the heating plate which is connected to the
temperature control unit, bath circulation using the magnetic stirrer (max-
imum speed circulation), capping of the beaker glas using an aluminium
foil;

• heating-up of the bath: 83°C, at stable temperature the pH value should
be 5.5±0.1 (pH regulation possible using NaOH ( 1 ml for +0.2 pH value
increase) or HCl);

• low-to-middle speed circulation, fixing of the lower side of the waveguide
sample on the teflon holder using the masking lacquer;

• dipping of the sample holder in 1:80 HCl solution for a few seconds, circu-
lation stop, placing of the sample holder in the solution, sample should be
approximately on the level of the stirrer;

• dipping of the corrosion-free Fe wire in 1:2 HCl solution for 10 s, careful
contacting of the Fe wire on the sample surface for a few seconds until
blistering at the sample surface is observed;

• low-to-middle speed circulation, process duration 10 h, continuous check-
ing of the temperature, the pH-value and the quality of the sample surface
(semi bright deposits are expected).

A widely used alternative to EN is electroplating which has also been tested on
the WG wafer. Compared to electroplating, EN has two crucial advantages. It
provides an even deposit regardless of sample geometry, and once the sample is
activated, there is no need for a conductive contact on the face to be deposited.

3.6 Cutting process

In the first fabrication step, the approx. 3 mm thick WG wafer is cut into 10×10×
3 mm3 blocks using a dicing saw (DISCO DAD 321) and a diamond dicing blade
(DISCO NBC-ZB 1070 59x0.15x40). The sample is fixed on the lower side on a
dicing tape sheet (Type: 1008RL-11.0, Ultron Systems Inc.). The optical layers
are protected by a synthetic resin lacquer (Illmar P4, Pieplow & Brandt GmbH).
A thin lacquer film is coated on the sample surface using a paint brush and is
then dried for 2 h. The lacquer is removed using acetone after cutting. Cutting at
a feed rate of 0.5 mm/s is carried out in a two step process preventing breakage
of the WG wafer. The base of the first cut remains 2.5 mm away from the the
waveguide base. The second cut goes through the total height of the WG wafer.
The cutting of the WG wafer with an additional bonded cap wafer was successful
down to a slice thickness of sub-150 μm. The difficulty in this cutting process
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relies on the fact that the relatively ductile InSn alloy (tensile strength 1720 PSI
[81]) is surrounded by the comparably hard Ge substrate and cap wafer. The
reproducibility of the sample cuts is higher for the thicker slices, sub-400 μm
slices sometimes suffering from a chipping of the cap wafer. Concluding on the
difficulties of the cutting process: In view of the large lateral sample dimensions
compared to the desired sample thickness, the brittleness of the sample material
and the different mechanical properties of the waveguide constituents it is rather
astonishing that intact sample slices of sub-150 μm can be prepared.
The WG wafer with the EN fabricated cap layer have the opposite problem of an
enhanced NiP layer hardness (Vickers Hardness Number V H N = 700±30 HV
[82]) compared to the Ge substrate and the optical layers. Further, the effect of
compression stress at the Ge/(Ni-NiP) interface might be taken into account.
The compressional stress induced by the dicing blade is able to produce shear
strain at the Ge/metal interface resulting in crack formation starting at the Ge
surface (see Fig. 3.8). A breakage of the Ge substrate part of the slices is often
observed while the NiP layers usually remained intact. We obtained slices down
to minimal 1 mm thickness.

NiP

Ge

Figure 3.8: Scanning electron microscopy (SEM) image of an EN fabricated

waveguide slice. The Ge substrate of the WG wafer is broken at the lower

side.

3.7 Waveguide polishing

Highly efficient Ge/Mo/C/Mo/Ge waveguides need slice thicknesses of sub-
500 μm. Therefore, the EN fabricated slices are mechanically polished after
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cutting, applying the same sample preparation technique as used for trans-
mission electron microscopy (TEM) samples. For the polishing, the WG slice
is glued (Cristalbond mounting wax 40-8150, Buehler) on a borosilicate glass
(Gebr. Rettberg GmbH) between two additional Si wafers which are used to fix
the waveguide and to determine the actual thickness of the slice during polish-
ing. The waveguide is successively polished with wet abrasive paper (kernel:
PS11 P500C + P1000C, Klingspor, lubricant: water) and a diamond paste (Winter
diaplast SS D15-D1, lubricant: Winter diaplastol, Saint-Gobain GmbH) on a
dimpling disc (Beta Grinder-Polisher, Buehler).
Although the ’TEM’ technique enables polishing up to 1 μm face roughness,
an additional FIB (Nova 600 Nanolab, FEI) polishing step is needed to bare the
entrance and exit sides of the waveguide slices (see Fig. 3.9). As mentioned
above, cutting leads to smearing of material at the slice faces in case of bonded
waveguides, too. Typical parameters for the FIB polishing of the optical layers
and creating of markers are shown in Tab. 2. Given these parameters, one FIB
area is limited to approximately 350 μm length along the guiding layer of the
waveguide (y-direction of the horizontally placed waveguide). The polishing of
such an area takes about 70 min. The markers (not shown in Fig. 3.9) are used to
localize the FIB areas on the on-axis microscope in an experiment on one hand
and to achieve orthogonality of two-crossed waveguide slices on the other hand.

9 nm

300nm

InSn

Ge

Ge unpolishedpolished

Mo/C/Mo

(a)

35 nm

C

Mo

Mo

Ge

(b) (c)

Ni

Figure 3.9: (a) SEM image of a bonded waveguide slice showing the waveguide

exit sides before and after FIB polishing. The 35 nm and 9 nm C guiding

layers are clearly identified as shown in the high resolution images (b) and

(c), respectively. SEM parameters: (a) accelerating voltage EHT = 10 kV,

working distance WD = 4 mm, magnification mag = 200 kx; (b) EHT = 10 kV,

WD = 3 mm, mag = 200 kx; (c) EHT = 10 kV, WD = 4 mm, mag = 300 kx.

Fig. 3.9 (a) shows the exit sides of a bonded waveguide slice after FIB polishing,
exhibiting the C guiding layer, the Mo interlayers, the Ge cladding, the evapo-
rated Ni layer and the bonding InSn alloy. The 3 nm thick Cr layer can hardly
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be identified. The right hand side of the scanning electron microscopy (SEM)
image Fig. 3.9 (a) clearly demonstrates the need for polishing. The 35 nm C
and the 9 nm C waveguide layer systems are exemplarily shown in 200 kx and
in 300 kx magnification (SEM: Leo Supra 135, Zeiss NTS) in Fig. 3.9 (b) and (c),
respectively.

Parameter Optical layers Marker
EHT [kV] 30 30

Ion current [nA] 5 5
x-size [μm] 10-350 10-20
y-size [μm] 10 60-150
z-size [μm] 1 0.8-1

Rotation [deg] -10 0
Dwell time [ns] 300 300

Overlap (x-,y-direction) [%] 50 50
Scan Type CCS Raster RCS Raster

Table 2: The table shows the FIB parameters that were used to clean the optical

layers and to create markers. For further description see [83, 84].

3.8 Crossing of multilayer slices

Two polished waveguide slices are glued on top of each other by a solvent free
two part epoxy resin adhesive (UHU Plus schnellfest, working time 5 min, final
strength 1900 N/cm2), applied only to the Ge sides away from the interaction
of the optical films. Orthogonality is achieved by marking the adhesive bond
sites by FIB polished 10×80 μm2 areas and in-situ stereo light microscopy (Stemi
DV4, ZEISS, 32x magnification) during the bonding process.

First crossed waveguides are fixed on a 200 μm thick W lamella as shown in
Fig. 3.10. The lamella has a thin 500 μm slab on a level of the optical films.
The strongly absorbing W suppresses possible higher harmonics of the primary
beam. The P10 beamline Petra 3 setup dedicated to waveguide-based imaging
uses a small W pinhole to suppress residual scattering of the beam exiting the
Kirkpatrick-Baez (KB) mirrors [85]. Here, the waveguide slices are fixed on an
adapted and easily removable iron holder.
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Ge cap wafer

W lamella

adhesive

Ge substrat

2D region

1D region
optical layers

(a) (b)

waveguide 2

waveguide 1

3 mm

Figure 3.10: Two crossed waveguide fixed on a W lamella, shown from the front

side (a) and from the back side (b) where the two-dimensional confined

waveguide beam exites.

3.9 Conclusion

Magnetron sputtering is an ideal technique for the fabrication of multilayer
slices due to the low interface roughness and the controlled thickness of the
optical films. Further, the possibility of sputtering interlayers such as Ni and
NiO (reactive sputtering) improves the transmission properties of waveguides at
lower x-ray energies.
An additional beam blocking material above the optical layers is needed to
absorb the tails of the primary beam. Considering waveguides with an additional
Ge cap wafer, bonding by use of an InSn alloy and subsequent cutting proved to
be efficient and relatively simple fabrication techniques to obtain thin waveguide
slices. The difficulties in the cutting process of EN fabricated waveguide might
be overcome by plating pre-cut waveguide slices. The use of mechanical and
FIB polishing was not only successful to clean the waveguide entrance and exit
sides but further enabled to correct the waveguide length up to sub-1 μm.
At high x-ray energies and relatively large primary beam diameters EN fabricated
waveguides offer higher absorption allowing for shorter waveguide lengths.
As discussed in [47],the serial arrangement of two crossed multilayer slices glued
onto each other presents a compact device, where the horizontal and the vertical
focal planes of the waveguide are close to each other (within the thickness of the
second waveguide). Important advantages of this scheme are the compatibility
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with a wide range of thin layer deposition techniques, geometric parameters
and material choices. Compared to channel waveguides prepared by electron
lithography, smaller guiding core diameters and more complex layer systems
become amenable.



4 Experiments I: X-ray waveguide characterization

In this chapter the angular acceptance, the transmission and the far-field prop-

erties of planar and two-crossed waveguides are investigated11.

In section 4.1, an extended study of the planar waveguide properties as a func-

tion of the waveguide length, the guiding layer thickness and the photon energy

is presented. The direct coupling of a pre-focused beam into planar waveguides

is demonstrated and the transmission properties of the waveguides depend-

ing on the experimental setups are discussed (section 4.2). The characteri-

zation of two crossed waveguides is presented in section 4.3. From far-field

measurements, the beam diameter in the effective confocal plane of the two

crossed waveguide is retrieved using an iterative algorithm. Finally, first results

of waveguide characterization at the novel holography endstation dedicated to

waveguide-based x-ray imaging are presented (section 4.4).

4.1 Direct coupling into planar waveguides

In the this section, we focus on the planar waveguide experiments carried out
using an essentially unfocused synchrotron beam. The Ge/Mo/C/Mo/Ge waveg-
uides measured have guiding layer thicknesses d = 9−35 nm. We demonstrate
transmission and far-field properties subject to waveguide length and photon
energy, along with finite-difference (FD) simulations.

4.1.1 Experimental setup BM20 beamline, ESRF

The experiments were performed at the BM20 bending magnet beamline at
the third-generation synchrotron facility ESRF (Grenoble, France) where the
waveguides are characterized using synchrotron radiation. The third-generation
synchrotron at the ESRF operates at a rather high electron energy of 6 GeV
enabling high brightness, small angular divergence and small source sizes [27].
The x-ray beam of the bending magnet source with an angular divergence of
2.8 mrad is defined by a double Si(111) monochromator, placed in the middle
between two conjugate Pt mirrors for higher harmonic rejection as shown in
Fig. 4.1. The energy resolution of 1.5−2.5·10−4 for an energy range of 5−35 keV
increases with decreasing wavelength. The beam size at the horizontally placed
waveguide was maximal 0.04 mm (vertical) × 2 mm (horizontal) as controlled by
motorized entrance slits. Thus, the waveguide entrance front side was placed
in an essentially unfocused monochromatic beam. The effect of stray radiation
from the slit edges is reduced by setting the distance of the entrance slits to
the waveguide to sub-15 cm. We chose an energy range of 11.5− 18 keV for

11Contents of this chapter have been published in [47], [20] and [85].
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Figure 4.1: Schematic of the experimental setup at the BM20 beamline. Draw-

ing adapted from [86].

the experiments, depending on the waveguide length l . The total photon flux
impinging onto the front face of the waveguide was 1−3·107 photons/sec (slit
settings 0.02 mm × 2 mm), depending on the ring current. The waveguide
beam was measured using an one-dimensional NaI scintillator, positioned at a
distance of 0.59 m from the waveguide.

4.1.2 Waveguide alignment

Fig. 4.2 shows the sample holder with four waveguides placed on the diffrac-
tometer.

entrance slit

sample holder

diffractometer

waveguides

Figure 4.2: Waveguides placed on the diffractometer of the BM20 beamline.
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First, the entrance of the waveguide was placed horizontally in the rotation
center of the 6-circle Huber diffractometer using laser and a telescope for rough
alignment. The diffractometer offers 3 translational degrees of freedom x (per-
pendicular to the propagation direction and the waveguide guiding layer), y
(perpendicular to the propagation direction and collinear to the waveguide guid-
ing layer) and z (collinear to the propagation direction) as well as 3 rotational
degrees of freedom α (around the y axis), β (around the z axis) and γ (around
the x axis). The detector rotates at an angle 2θ with respect to the z axis.
In a second step, the position of the edges of the waveguide are determined
by blocking the synchrotron beam by means of the waveguide. Knowing the
distance of the guiding layer from the top of the waveguide, the latter is aligned
by subsequent waveguide translation x and waveguide rotation αi measure-
ments at the height of the waveguide guiding layer as shown in Fig. 4.3. The
waveguide is aligned for maximum intensity I exiting the waveguide. Note that
the entrance slits and the detector slits are wide open offering higher photon
flux and thus, facilitating the alignment procedure. As the waveguide guiding
core is extended in y direction and the beam size di n of the incident beam 3
orders of magnitude larger than the guiding layer thickness d , the rotation angle
β does not play an important role in detecting the waveguide beam but should
be β ≈ 0° with respect to the y z plane. The same holds for the rotation angle
γ≈ 0° with respect to the x y plane.
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Figure 4.3: Integrated far-field intensity as a function of waveguide rotation

(angle of incidence αi ) and translation through the beam (x) along with

Gaussian and linear fits (solid lines). The I (x) scan enables a precise mea-

surement of the beam size di n of the incoming synchrotron radiation.

4.1.3 Angular acceptance

The angular acceptance of the waveguide is determined by rotating the waveg-
uide by an angle αi and measuring the far-field intensity at a fixed angle 2θ = 0
of the detector. The far-field intensity I as a function of the waveguide rotation
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αi along with Gaussian fits are shown in Fig. 4.4. Subfigure (a)-(c) correspond to
measurements of Ge/Mo/C/Mo/Ge waveguides with guiding layer thicknesses
d = 35 nm, d = 18 nm and d = 9 nm, respectively. In case of (a) the photon
energy was E = 11.5 keV whereas (b) and (c) where measured using an x-ray
energy E = 13.5 keV.
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Figure 4.4: Measured far-field intensity of the Ge/Mo/C/Mo/Ge waveguide as

a function of the waveguide rotation αi in case of guiding layer thicknesses

d = 35 nm (a), d = 18 nm (b) and d = 9 nm (c), respectively, along with

Gaussian fits. (d) Angular acceptance measurement shown in subfigure

(a) along with FD simulation. (e) Energy dependance of the angle of total

reflection θc for the C/Mo interface, along with linear fit. (f) The angular

acceptance as a function of the photon energy shows no clear evidence of

energy on the mean FWHM Δαi .

We compared the experimental data of the angular acceptance to FD simulations
as exemplarily shown in Fig. 4.4 (d) for d = 35 nm. Gaussian fit to the experi-
mental data yields a FWHM Δαi = 0.125° which is 73% of the simulated value
(Δαi = 0.171°). At the moment there is no explanation for this deviation. The
difference in experimentally obtained angular acceptance and finite-difference
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simulation is less pronounced in case of smaller guiding layer thicknesses (not
shown in Fig. 4.4).
The angular acceptance depends on the angle of total reflection θc ≈

√
2(δMo −δC)

at the C/Mo interface. The high δMo value leads to high θc values, i.e., en-
hances the angular acceptance of the Ge/Mo/C/Mo/Ge waveguide compared to
Ge/C/Ge waveguides. As predicted by theory, the calculated θc [75] decreases
with increasing photon energy E as shown in Fig. 4.4 (e). In fact, δC (dispersive
part of the refractive index) of the low electron C material varies less with photon
energy as δMo of the comparably high electron density material Mo. Further, we
expected a slight guiding layer thickness dependance on the angular acceptance
due to the mode excitation dependance on the angle of incidence.
Out of a series of angular acceptance measurements for waveguides of different
length l (the angular acceptance is independent of l ), we calculated the mean
values Δαi for each photon energy. The FWHM Δαi from Gaussian fits of the
waveguide rotation measurements as a function of the photon energy E are
shown in Fig. 4.4 (f). The maximum standard deviation is 0.033° for a given
energy E and guiding layer thickness d . In case of d = 18 nm and d = 9 nm
we could observe a decrease of Δαi with increasing photon energy whereas for
d = 35 nm this was not the case. The FHWM Δαi are summarized in table 3.
The angular acceptance of the Ge/Mo/C/Mo/Ge waveguides is in the range of the
divergence (mrad) of Kirkpatrick-Baez mirrors and Fresnel zone plates, enabling
the use of pre-focusing optics for direct coupling of the beam. This is also one
of the main advantages compared to resonant beam coupling waveguides and
planar waveguides using standing wave above the substrate (see section 2.1)
which are comparably sensitive to the angle of incidence αi of the incoming
synchrotron radiation.

4.1.4 Transmission

After careful alignment of the waveguide translation z, the angle of incidence αi

and the rotation angle γ (may influence the propagation distance of the beam
through the waveguide), the transmission T of the waveguides was determined
for αi = 0 and 2θ = 0. As introduced in section 2.3, the transmission of a waveg-
uide is calculated as the ratio of the intensity Ii n impinging onto the waveguide
front face and the intensity I exiting the waveguide

T = I

Ii n

di n

d
, (4.1)

normalized by the size di n of the incident beam at the waveguide entrance and
the guiding core diameter d .
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35 nm C layer
E [keV] l [μm] Texp Tsim Texp/Tsim(%) E [keV] Δαi [deg ]

11.50 460 0.165 0.627 26 11.50 0.131
11.50 690 0.140 0.847 29 13.50 0.164
15.00 460 0.512 0.847 60 15.0 0.129
15.00 690 0.379 0.714 53

18 nm C layer
E [keV] l [μm] Texp Tsim Texp/Tsim(%) E [keV] Δαi [deg ]

12.50 300 0.177 0.413 43 13.50 0.190
12.50 480 0.083 0.197 42 18.00 0.153
13.00 300 0.287 0.462 62
13.00 480 0.164 0.236 69
13.50 300 0.315 0.513 61
13.50 480 0.205 0.279 73
14.00 300 0.404 0.565 72
14.25 480 0.218 0.350 62

9 nm C layer
E [keV] l [μm] Texp Tsim Texp/Tsim(%) E [keV] Δαi [deg ]

13.50 200 0.256 0.305 84 13.50 0.165
13.50 300 0.072 0.107 67 18.00 0.164
13.50 390 0.036 0.044 84
13.50 470 0.013 0.018 71
15.50 300 0.209 0.324 65

Table 3: Transmission and angular acceptance of planar Ge/Mo/C/Mo/Ge

waveguides with guiding layer thicknesses d = 35 nm, d = 18 nm and

d = 9 nm. On the left: the experimentally obtained transmission Texp and

the simulated transmission Tsim as a function of the photon energy E and

the waveguide length l . On the right: The mean angular acceptance Δαi

(FWHM) as function of E . The Δαi values are calculated from individual

determinations of Δαi as obtained from angular acceptance measurements

of waveguides with different lengths.

The transmissions of the 35 nm and 18 nm C layer waveguide for 15.0 keV and
13.5 keV with waveguide lengths of 460 μm and 300 μm, respectively, are above
T = 0.5 whereas the measured transmission of the 9 nm guiding layer waveguide
is maximal T = 0.256 (l = 200 μm). The transmission T as a function of the
waveguide length l for a photon energy E = 13.5 keV is shown in Fig. 4.5 (a).
It indicates the strong transmission dependance of the 9 nm C guiding layer
waveguide to the waveguide length. Likewise, Fig. 4.5 (b) illustrates the depen-
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dance of the transmission on the energy of the incoming synchrotron beam. As
expected, the transmission increases for larger guiding layer thicknesses. The
experimental results, summarized in table 3, are below the efficiencies simulated
by FD, but the overall trend is in agreement with the simulations. Most of the
waveguides measured reached above 60% of the ideal (theoretical) transmission.
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Figure 4.5: (a) Simulated and measured transmission T as a function of the

waveguide length l for a 9 nm C waveguide (E=13.5 keV). (b) Simulated and

measured transmission T as a function of the photon energy E for waveg-

uides of length l = (460±10) μm and of different guiding layer thicknesses.

4.1.5 Far-field properties

First, the shift of far-field intensity is measured with changing incidence angle αi

to align the angle of incidence to αi = 0, i.e., to align the entrance beam exactly
perpendicular to the waveguide front end. In these scans, the center (maximum)
of the far-field distribution is always found to be α f ≈ 0. Correspondingly, the
maximum position is constant in the waveguide coordinate system. Conversely,
at a constant primary beam, tilting of the waveguide shifts the far-field pattern in
proportion to the tilt angle αi , as discussed in [20]. The total intensity decreases
with increasing |αi | as shown in Fig. 4.6 for Ge/Mo/C/Mo/Ge waveguides with
guiding layer thicknesses d = 35 nm, d = 18 nm and d = 9 nm. Note that, if we
had measured the intensity of a beam exiting an assumingly leaky area of the
beam blocking material, the position of maximum intensity 2θmax would not
have been changed for different angle of incidence αi .
Next, we compared the shape of far-field pattern of the waveguides. The far-field
distributions as a function of the reciprocal coordinate q = 4πθ/λ for the differ-
ent guiding layer thicknesses d are shown in Fig. 4.7 (a), along with the respective
FD simulations. The obtained FWHM Δqexp approximated by Gaussian fits (not
shown in Fig. 4.7) are larger than expected from FD simulations.
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Figure 4.6: (a)-(c) Far-field intensity as function of 2θ for different incidence

angle αi , along with Gaussian fits. Subfigures (a)-(c) show measurements of

the d = 35 nm, d = 18 nm and d = 9 nm C guiding layer waveguides, respec-

tively. (d) The maximum position of the far-field is always approximately

collinear with the axis of the (tilted) waveguide, i.e., the slopes of the curves

2θmax (αi ) obtained from linear fits are close to 1.

In case of the 35 nm guiding layer C, Δqexp = 0.0185 Å−1 is 14% larger than the
simulated value for the waveguide length l = 690μm. As shown in the simulation
4.7 (b), a 35 nm guiding layer C waveguide supports multiple modes, leading to a
periodically alternating field distribution (inside the waveguide) by interference
of the modes. In section 2.4.3 we have shown that depending on the exact
length of the waveguide slice, varying exit fields and thus far-field patterns of
different FWHM are obtained. For comparably long waveguide length and/or
lower energy, the second mode is more and more damped out by absorption.
Within the experimental condition (E = 11.5 keV), the simulated FWHM of
the far-field are in the range of 0.0155− 0.0160 Å−1 for l = 690± 15 μm, not
including the experimentally obtained value. Accordingly, the width of the near-
field distribution must be correspondingly lower than the simulated FWHM
Δzsim = 23.2 nm, i.e. Δz = 20.0 nm.
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Figure 4.7: (a) The far-field intensity distributions for αi = 0 as a function of q ,

along with simulations, exhibit the guiding core dimension dependance on

the far-field width. The curves are shifted for clarity. (b) The periodically

alternating field oscillations are successively damped out, and for l = 690±
15 μm (white box), no significant near-field width periodicity is present in

the simulation. (c) The simulated near-field distributions (shifted for clarity),

corresponding to the far-field simulations in (a), indicate the broadening

for increasing guiding layer thicknesses. (d) Far-field distribution of the

18 nm C waveguide shown in (a) on double logarithmic scale, along with FD

simulation (solid blue line) and a quasilinear (algebraic) fit (solid red line).

(e) Far-field distribution of a 9 nm C waveguide (l = 300 μm, E = 13.5 keV)

on the same scale and q-range as in (d).

The 18 nm C guiding layer waveguide has a length of l = 300 μm and was
measured using a photon energy E = 13.5 keV. Gaussian fit to the far-field yields
a FWHM Δqexp = 0.0257 Å−1 which is 9% higher than the simulated width (Δqsim =
0.0233 Å−1). Accordingly, we expect a near-field width Δz = 11.3 nm (Δzsim =
12.6 nm). The experimentally obtained divergence of the 9 nm C guiding layer
waveguide (l = 460 μm, E = 15.5 keV) differs by 2% from the simulated value
(Δqexp = 0.0254 Å−1 and Δqsim = 0.0248 Å−1). Hence, the corresponding width of
the near-field distribution must be Δz=8.4 nm (Δzsim = 8.6 nm). The simulated
near-fields are shown in Fig. 4.7 (c).
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Fig. 4.7 (d) shows the line shape of the far-field distribution on a double-logarith-
mic scale along with the curve from the FD simulation. As discussed in [20], the
far-field distribution of the 18 nm C waveguide exhibits pronounced algebraic
tails I ∝ q−ν, which are not well described by a Gaussian lineshape. A compar-
ison to the simulation shows that the tails of the beam with an experimental
exponent of about ν= 2.7 forms an envelope to the oscillations with periodicity
Δq = 2π/(18 nm), which occur in the simulations. Note that in the simulations,
the guiding layer thickness results in far-field oscillations, notwithstanding the
continuity of the near-field and its derivative at the interface. However, the
experiment only shows algebraic tails, which may be attributed to thickness
fluctuations and/or roughness in the waveguide channel.
Fig. 4.7 (e) shows the far-field distribution of the 9 nm C waveguide. The oscil-
lations with periodicity Δq = 2π/(9 nm) shift the tails of the far-field to higher
q-values. Due to the low photon flux impinging onto the front face of the waveg-
uide and thus exiting the waveguide, the tails in the high q-range could not be
measured. However, it becomes obvious from the measurements and simula-
tions, that the decay of intensity as a function of q is comparably low in case of
the 9 nm C waveguide.
Finally, we discuss the far-field distribution of the 35 nm C waveguide. In con-
trast to the previous mentioned far-field patterns, the measured curve shown in
Fig. 4.7 (a) exhibits two shoulders which can be attributed to the side maxima of
the simulations. The filling of the minima might be caused by small imperfec-
tions of the waveguide interfaces. Further, the tails of the far-field distribution
are not symmetric which is not fully understood yet. In line with the larger
far-field width compared to the simulation, the ’maxima’ of the tails are shifted
to higher q-values.

4.1.6 Beam blocking materials

In this section we address the beam blocking materials used for the waveguides.
In particular, we analyzed the efficiency of the InSn alloy and the NiP layer, which
are on top of the first 1 μm thick Ge cap layer (see chapter 3). Note that the x-ray
beam impinging onto to the front end of the waveguide has a width of 40 μm
(vertical), and therefore also hits the additional cap layers in case of the aligned
waveguide as shown schematically in Fig. 4.3 (a).
The attenuation length of the beam blocking materials InSn, NiP and Ge de-
creases with increasing energy. At a waveguide length l = 300 μm and a photon
energy E = 18.0 keV, Ge and In have an (theoretical) intensity transmission
of TGe = 1.1·10−4 and TIn = 4.2·10−3, respectively [75]. The InSn layer of the
waveguide has a thickness of approx. 2−3 μm. The photon intensity of the
primary beam was ≈ 1·107 cps at a width of 40 μm (vertical). Consequently,
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we expect an enhanced background signal for the measured far-field intensity
of the waveguide of approx. 103 −104 cps. This is demonstrated in Fig. 4.8 (a),
showing the far-field intensity as a function of the waveguide translation x. For
x-ray beam energies up to 15.5 keV, the background signal is constantly below
102 cps (TGe = 1.2·10−6 and TIn = 2.6·10−4 at E = 15.5 keV). Note that longer
waveguide lengths enable the use of higher photon energies.
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Figure 4.8: (a) InSn beam blocking material: The far-field intensity as a function

of the waveguide translation z exhibits the enhanced background signal at

E = 18.0 keV compared to the curves measured using lower photon energies.

(b) NiP beam blocking material: The far-field intensity distribution as a

function of 2θ indicates a leaky area of the beam blocking material (arrow).

Next, we measured the energy dependance of a 18 nm C waveguide with a NiP
beam blocking layer and a slice thickness l = 340 μm. Fig. 4.8 (b) shows the
far-field intensity as function of 2θ for an energy range E = 13.5−18 keV. The
theoretical absorption TNi = 2.6·10−6 of Ni at E = 18.0 keV indicate that the
the 340 μm thick NiP layer should be sufficient to block the primary beam of
I ≈ 1·107 cps. However, a side maximum is shown at the higher energy curves.
We attribute this maximum to a leaky area of the beam blocking materials or at
the layer interfaces. In the present experimental setup, beam parts of leaky area
are likely to be observed due to the large horizontal primary beam size of 2 mm.

4.1.7 Conclusions

The two-component waveguides combine small guiding core dimensions, i.e.
high divergences of the exiting beam, with high transmissions. We have demon-
strated for the first time sub-20 nm beam confinement with transmission T > 0.5
using a planar waveguide. Compared to Fresnel zone plates, Laue lenses and and
compound refractive lenses, the achieved (secondary) source size in one dimen-
sion is lowest with the 9 nm C waveguide. Sub-10 nm beam confinement has
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been demonstrated using Kirkpatrick-Baez mirrors too, at a specially dedicated
beamline [51].
Simulation of the transmission and the far-field intensity distribution are in
semiquantitative agreement, but also show that the simulation is still too ideal-
ized. The reproducible and well defined tails of the far-fields may be employed
to increase the effective numerical aperture and thus resolution in waveguide
based holography. The tailoring of the near-field evanescent wave and the corre-
sponding algebraic tails in the far-field will indeed be an important next step in
optical design. Finally, the used beam blocking material proved to be efficient
up to energies of 15.5 keV for waveguide length l = 300 μm.

4.2 Direct coupling of a pre-focused beam into planar waveg-
uides

This section demonstrates the direct coupling of focused synchrotron beam into
the front face of a planar two-component waveguide using Kirkpatrick-Baez
mirrors and Fresnel zone plates. Locating the waveguide in the focus of a pre-
focused device allows for the combination of the high flux density provided by
the focusing device with an even smaller beam size and well-defined intensity
distribution of multi-modal and mono-modal waveguide.

4.2.1 ID22 experiment: setup and results

In contrast to the bending magnet beamline BM20, the ID beamlines at the ESRF
take advantage of insertion devices (ID’s) which are introduced in the straight
sections of the storage ring [27].
Two undulator systems are installed at the beamline ID22 [87]: One ex-vacuum
undulator (U42) with a magnet period of λU = 42 mm and one in-vacuum
undulator (U23) with a magnet period of λU = 23 mm, which were used simulta-
neously in the experiment. The energy distribution of the undulator radiation
is harmonic and each harmonic has an energetic width of ΔE/E � 10−2. The
undulators are operated with different harmonics, depending on the energy.
The maximum intensity of the undulator spectrum as a function of the energy
can further be fixed by the gap opening, as discussed in [88].
As it is the case at the BM20 beamline, for monochromatization and suppression
of high energy contributions a combination of mirrors and monochromator
crystals can be used, located in the optical hutch of the beamline. The ID22
mirror is made of Si with additional Pd and Pt coating which are separated
laterally. The two silicon single crystals used as monochromators provide a
x-ray beam with a monochromacy of ΔE/E ≈ 10−4. Three different beam modes
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can be chosen: monochromatic, pink (without monochromators) and white
(without monochromators and mirrors).
A Kirkpatrick-Baez (KB) mirror optic [89, 90] was used to increase the photon
flux density in front of the waveguide (see Fig. 4.9). The KB is located in the first
experimental hutch of the beamline. For the experiment, the waveguide was
placed in the focal spot of the KB. Two elliptically curved RH coated Si mirrors
demagnified the x-ray source into a spot of 8 μm × 3.7 μm in horizontal and
vertical direction, respectively, at a photon energy E = 12.0 keV. The spot size
of the KB mirrors was measured by translation of a Au stripe, recording both
the transmitted intensity by a diode and the AuLα fluorescence by a silicon drift
detector (Vortex-EX, SII NanoTechnology Inc.) [29]. The respective nominal
focal distances are fh = 190 mm and fv = 390 mm from the middles of the
horizontally and vertically focusing mirrors, respectively [48]. The far-field of
the KB mirrors at a distance of 2.955 m from the focal spot is shown in Fig. 4.10.

KB box

waveguide

2D detector

KB box

190 mm 2955 mm

390 mm

41000 mm

from
undulator

slit unit
0.5 mm (vert.) 3.7 m (vert.)�

Figure 4.9: Focusing of the x-rays onto the front end of the waveguide using a

KB mirror system and recording of the waveguide beam on a 2D detector.

The experiment at the beamline ID22 is carried out in the so-called pink

beam mode.

The experiment was carried out in the pink beam mode using the intrinsic
monochromaticity of the undulators and the bandpass of the KB mirror sys-
tem, resulting in about Δλ/λ≈ 0.02. In addition, the flat horizontally deflecting
Pd coated Si mirror was used for higher harmonic rejection. The waveguide
was placed horizontally on a Huber stage (Huber Diffraktionstechnik, Rim-
stig, Germany) equipped with additional microstep translation stages (Micos
GmbH, Eschbach, Germany) for the high resolution translational axes. The two-
dimensional detection of the waveguide far-field was carried out using a charge-
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coupled device (CCD) camera (PI-LCX:1300, 1340 × 1300 pixels, 20×20 μm2

pixel size, Princeton Instruments) positioned at a distance of 2.955 m from the
waveguide.
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Figure 4.10: Far-field as a function of the reciprocal coordinates qx and qy of

the focused beam from the Kirkpatrick-Baez mirror system. The intensity in

[cts] is encoded in the colormap. The visible pattern in the far-field is very

likely caused by imperfections on the surface of both mirror.

Fig. 4.11 (a) shows the far-field pattern as a function of qx and qy of the 9 nm C
waveguide with a length l = 340 μm as measured on the 2D detector (exposure
time 0.1 s). Compared to the far-field of the KB mirrors (see Fig. 4.10), the waveg-
uide pattern is strongly extended in vertical direction due to the significantly
reduced beam size. The linescan of the diffraction pattern along qy shown in
Fig. 4.11 (b) exhibit pronounced maxima and minima in the center and at the
left tail which are not described by theory. We attribute these fringes to the
smeared exit face of the waveguide which has not been polished prior to this
first measurement using a pre-focused x-ray beam.
The far-field pattern as a function of the waveguide rotation αi is shown in
Fig. 4.11 (c). Gaussian fit to the measured curve yield a FWHM of Δαi = 0.131°.
Hence, the angular acceptance of the waveguide is not altered by the focused
beam impinging onto the front face of the waveguide.
The total photon flux exiting the waveguide was 1.6·106 ph/s as measured by
a diode. With a photon flux of 3.5·1011 ph/s impinging onto the front face of
the waveguide and a beam size of the focused beam Dv = 3.7 μm vertical to
the waveguide guiding layer, the transmission is calculated to Texp = 0.002. The
measured transmission is significantly lower than the simulated transmission of
Tsim = 0.020.
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Figure 4.11: (a) Far-field distribution of the unpolished 9 nm C waveguide as

a function of qx and qy (logscale colorbar in units [cts]). (b) The linescan

of the farfield presented in (a) shows characteristic fringes. (c) Measured

angular acceptance along with Gaussian fit.

We attribute the discrepancy to the fact that the simulation assumes a coherent
plane wave impinging on the waveguide (under normal incidence angle), while
the wave front of the KB focus may not be well described by an idealized plane
wave. Hence, we must take several factors into account which lower the effective
transmission of the waveguide for the given setup. The beam cross-section of
0.5 mm in front of the KB and the focal length of 390 mm (vertical focusing)
results in a KB beam convergence of 0.07°. Taking the convergence angle of 0.07°
of the incident beam into account, the simulated value reduces to Tsim ≈ 0.018.
Next, we consider the effect of partial coherence of the beam. From the theory of
coherence propagation (Gaussian shell model) [91] we can calculate the degree
of coherence in front of the KB. The emittance εS of a Gaussian shell model
(GSM) source is given by [91]

εS =σS σ
′
S , (4.2)

where σS is the source size and σ′
S the source divergence. The transverse coher-

ence length at the undulator source ξS can be calculated by

ξS = 2σS√
4k2ε2

S −1
, (4.3)

and the degree of coherence qS then yields

qS = ξS

σS
. (4.4)
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Using the definition of the angular width θΞ of the coherent part of the beam

θΞ =
√

4+q2
S

2kσS
, (4.5)

we can determine the the coherence length Ξ(z) of the beam at a distance z
from the source by

Ξ=
√
ξ2

S +θ2
Ξ z2. (4.6)

In the vertical direction, the source size σSvert = 30 μm and the source divergence
σ′

Svert
= 5 μrad from the undulator yield a degree of coherence of qs = 0.18 at

the source. At a distance of 41 m from the undulator the coherence length is
calculated to Ξy = 85.9 μm. Cutting the beam size by the 500 μm vertical slit
size in front of the KB, the degree of coherence of the beam illuminating the
KB increases to 0.17. Thus in front of the KB, as in its focus, about 17% of the
flux is coherent in the vertical direction. Since the mono-modal waveguide
accepts only the coherent flux a factor of about three in the discrepancy can thus
be attributed to partial coherence. Consequently, the calculated transmission
yield Tcalc ≈ 0.003 and thus is in approximate agreement with the measured
transmission of Texp = 0.002.

4.2.2 ID22-NI experiment: setup and results

The ID22-NI experiment is performed in the second experimental hutch of
the ID22 beamline. The second hutch is under clean room condition avoiding
enhanced sample contamination, and the room temperature is controlled up to
±0.01° reducing drift effects of the optical elements and motorized positioning
systems. As in the case of the ID22 experiment, a KB mirror is used to pre-focus
the synchrotron beam onto the front face of the waveguide. Two bent Si mirrors
with graded multilayer coatings (30 W/B4C layers with a period of 4.7 nm at the
center [4]) ideally focus the x-ray beam down to sub-100 nm in both direction (at
E = 20.5 keV [4]). In the present experimental setup, the focal spot in horizontal
direction was Dhorz = 286 nm at a photon energy E = 17.5 keV, as measured
by translation of the waveguide through the beam. The focal lengths of the
vertically focusing first mirror and the horizontally focusing second mirror are
fv = 280 mm and fh = 93 mm, respectively [4].
The experiment was carried out in the pink beam mode using the intrinsic
monochromaticity of the undulators and the bandpass of the KB mirror system,
resulting in Δλ/λ� 0.016. The horizontally deflecting Pd coated Si mirror was
used for higher harmonic rejection. As shown in Fig. 4.12, the waveguide was
vertically placed on a compact rotator (Attocube Systems, Germany), fixed on an
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additional translational stage (Princeton Instruments, Germany). The detector
(CCD camera FRELON 2000, 2048 × 2048 pixels, 2.4×2.4 μm2 effective pixel size,
Analog Transient Electronics Group (ATEG) of the ESRF Instrument Support
Group) was positioned at a distance of 1.185 m from the waveguide.

waveguide

2D
detector

KB box

30 mm 1185 mm

36000 mm

from virtual
source

slit unit
0.19 mm (horz.) 286 nm (horz.)

waveguide

sample holder

nanopositioner

(a) (b)

Figure 4.12: (a) Schematic of the ID22-NI experimental setup. (b) The waveg-

uide is vertically placed on a compact rotator.

To corroborate the assumption that the ’blurred’ far-field measured at the ID22
setup is due to a smeared exit face of the waveguide, we made a measurement
with a polished waveguide at the ID22-NI beamline. The far-field pattern of
the 18 nm C waveguide with a length l = 1 mm is shown in Fig. 4.13 (a)12. In
contrast to the previously presented waveguide far-field pattern, a uniform and
flat intensity distribution is visible in the center. The high frequency fringes in
horizontal direction are KB mirror effects (mirror imperfections). The waveguide
far-field integrated over the KB area is shown in Fig. 4.13 (b). Gaussian fit (not
shown) to the measured curve yields a FWHM of Δqexp = 0.0186 Å−1 which
is substantially below the simulated FWHM of Δqsim = 0.0225 Å−1. Further,
additional fringes are visible at the tails. The side maxima are separated by a
mean value of Δqmax = 0.0024 Å as determined by Gaussian fits and correspond
to a quasi-periodicity of Δxmax = 262 nm in the sample plane. This distance can
not be attributed to a periodicity of the optical layer arrangement. In fact, the
Mo/C/Mo optical layer sequence has a combined thickness of 78 nm. Besides,
the Mo interlayer yields a transmission TMo = 1.5·10−8 which is 8 orders of
magnitude lower than TC = 0.9 of the guiding layer, at the given length and
energy.

12Note that the FRELON CCD does not count true photons.
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The total photon flux in the focal spot of the KB beam with a horizontal spot size
of Dh = 286 nm was 1.7·1010 ph/s and the integrated far-field intensity of the
waveguide exiting beam was 3.0·107 ph/s, as measured by a diode.
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Figure 4.13: (a) Far-field distribution of the polished 18 nm C waveguide as a

function of qx and qy (rotated by 90°, logscale colorbar: I [arb. units]). (e)

Linescan (summed over the KB area) of the far-field presented in (a) along

with simulation. The black arrows indicate the side maxima.

The measured transmission Texp = 0.028 is significantly lower than predicted by
finite-difference calculations (Tsim = 0.331) assuming plane wave illumination
under normal incidence. Using the GSM formalism and the parameters for the
source size and source divergence of the ID22 undulator, we can calculate the
degree of coherence in horizontal direction. A virtual source realized by a 10 μm
slit at a distance of 27 m downstream from the undulator provides a nearly
completely coherent beam over the 190 μm horizontal KB slit size located at a
distance of 36 m from the virtual source. The KB beam of the ID22 NI setup yields
a convergence angle of 0.10° in horizontal direction. Taking the convergence of
the KB beam into account, the simulated transmission reduces to Tsim = 0.125
which is still significantly below the measured transmission of Texp = 0.028.

4.2.3 ID1 experiment: setup and results

The x-ray beam of the undulator at the ID1, ESRF, is defined by a double Si(111)
monochromator, placed in the middle between two conjugate Rh coated Si
mirrors for higher harmonic rejection [92]. A fixed beam-stop located after
the monochromator vessel intercepts the white beam and the Bremsstrahlung
radiation. The energy resolution of the x-ray beam is ΔE/E < 10−4. We used a
Fresnel zone plate (FZP) as pre-focusing optic (see Fig. 4.14). The FZP is made of
Au/Si and has a diameter of 200 μm.
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Figure 4.14: (a) Schematic of the experimental setup at the ID1 using a Fresnel

zone plate as pre-focusing optic. (b) Far-field pattern of the focused beam

from the FZP as a function of qx and qy (logscale colorbar in units [cts]).

A central beam stop (CS) with a diameter of 60 μm was positioned in front of
the FZP to block the primary beam. By using an order sorting aperture (OSA),
placed behind the FZP, only the first order of the focused beam propagates to the
focal plane of the FZP. The waveguide (d = 35 nm, l = 400 μm) was positioned
vertically on a Huber goniometer in the focal plane of the FZP. The focal spot
size of the FZP in horizontal direction is Dhorz = 220 nm at a photon energy
E = 8.0 keV, as measured by translation of the waveguide through the beam. The
total flux impinging onto the front face of the waveguide was 4.7·109 ph/s. A low
noise direct counting pixel detector (Maxipix, ESRF ) with a pixel size of 55 μm
and an active area of 256×256 pixels was used to record the far-field pattern
of the waveguide beam at a distance of 0.95 m from the waveguide. A vacuum
flight tube was placed in between the waveguide and the detector to prevent
absorption and scattering by air.
The far-field shown in Fig. 4.15 (a) is a combination of two accumulations (expo-
sure time each 5 s) with the detector shifted in y-direction to increase the field of
view. The far-field pattern of the polished 35 nm C waveguide shows similar char-
acteristics as the diffraction pattern presented in Fig. 4.13 (a). On one hand, the
far-field is not fully symmetric. On the other hand, a uniform and flat intensity
distribution in the center is framed with characteristic fringes. Gaussian fit to the
linescan shown in Fig. 4.15 (b) yield a FWHM of Δqexp = 0.0148 Å−1 compared to
Δqsim = 0.0159 Å−1 obtained from the simulated far-field distribution.
In analogy to pre-focusing by KB mirrors, the angular acceptance of the FZP
pre-focused waveguide is on the same order as for waveguides illuminated by
essentially unfocused beam: Gaussian fit to the far-field distribution measured
as a function of αi yield a FWHM of Δαi = 0.127° as shown in Fig. 4.15 (c).
The focal spot was approximately 6 times larger in horizontal direction as the
guiding layer thickness, resulting in a flux of 7.5·108 ph/s at the entrance.
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Figure 4.15: (a) Far-field pattern of the 35 nm C waveguide as a function of

qx and qy (rotated by 90°). (b) Linescan (summed over the FZP area) of

the far-field presented in subfigure (a) along with simulation. (c) Measured

angular acceptance along with Gaussian fit.

The total photon flux exiting the waveguide of 1.7 ·107 ph/s thus corresponds to a
transmission Texp = 0.023 which is only 8% of the simulated transmission (Tsim =
0.294) assuming plane wave illumination under normal incidence angle. The
FZP diameter of 0.2 mm defining the beam size and the focal length of 130 mm
result in a beam convergence of 0.09°. The simulated transmission reduces
to Tsim = 0.256 taking the convergence of the FZP beam into account. In the
horizontal direction, the source size σShorz = 134 μm and the source divergence
σ′

Shorz
= 208 μrad from the undulator yield a degree of coherence of qs = 0.001

at the source. At a distance of 46 m from the undulator source the coherence
length is calculated to Ξy = 21.5 μm. Cutting the beam size by the 200 μm
horizontal slit size in front of the FZP, the degree of coherence of the beam
illuminating the FZP increases to 0.11. Since the waveguide essentially accepts
only the coherent flux13, a factor of about ten of the discrepancy between the
measured and simulated transmission can be attributed to the partial coherence
of the beam. Taking the convergence of the FZP beam and the effect of partial
coherence into account, the measured transmission of Texp = 0.023 is in good
agreement with the calculated transmission of Tcalc ≈ 0.027.

4.2.4 Conclusions

The measurements of the planar Ge/Mo/C/Mo/Ge waveguide using pre-focusing
optics demonstrate that a coherent flux of 106−107 ph/s is obtained correspond-
ing to a gain in flux density of about 10−100 compared to the beam in front

13Srictly speaking, only a mono-modal waveguide acts as a perfect coherence filter. However,
numerical simulations of the coupling process show that even for a waveguide with three modes,
coherence is already significantly filtered.
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of the pre-focusing optics. A higher coherent flux and thus a higher gain in
flux density is expected for less ’conservative’ waveguide systems as used in
the presented experiments (for example: using a photon energy E = 17.5 keV
at the beamline ID22 NI, the length of the 18 nm C waveguide can be reduced
to 600 μm). On the other hand, the experiments and simulations show that
the gain in flux density cannot be enhanced by pre-focusing optics with higher
angular acceptance as the transmission of the waveguide significantly decreases
with increasing convergence angle of the incident focused beam.

4.3 Two crossed waveguides

In this section we demonstrate direct coupling of a pre-focused beam into a
two crossed waveguide. The optimized waveguide length of each waveguide
slice results in a highly confined beam in two dimensions. The near-field of the
obtained secondary source is reconstructed from the far-field measurements
using an iterative algorithm.

4.3.1 Experimental setup ID22-NI beamline, ESRF

The experiment was carried out at the ID22-NI undulator beamline of the ESRF.
Two undulators were used simultaneously, working at the second and fifth har-
monic, respectively. The radiation was used in the so-called pink mode (no
crystal monochromators) at a photon energy of E = 17.5 keV, taking advantage of
the intrinsic monochromaticity of the undulators and the bandpass of the multi-
layer KB mirror system, resulting in Δλ/λ� 0.016. In addition, a flat horizontally
deflecting Pd-coated Si mirror was used at 0.15 degree incidence angle for higher
harmonic rejection. The focus of the KB mirrors was characterized by transla-
tion of an Au stripe, recording both the transmitted intensity by a diode and the
AuLα fluorescence by a silicon drift detector (Vortex-EX, SII NanoTechnology
Inc.). The measured focal spot size was Dhorz = 129 nm (FWHM of fluorescence
intensity) in the horizontal and Dvert = 166 nm (FWHM of fluorescence intensity)
in the vertical direction, respectively. The total intensity in the focal spot was
on the order of 1011 ph/s, depending on the ring current and the slit settings
in front of the KB. A low noise direct photon counting pixel detector (Maxipix,
ESRF [93]) with a pixel size of 55 μm and an active are of 256×256 pixels was
used to measure the far-field pattern at a distance of 3.09 m from the waveguide.

4.3.2 Waveguide alignment

The waveguide system consist of two planar waveguide slices, each with a guid-
ing layer thickness d = 35 nm, in a crossed geometry. The first horizontal com-
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ponent (planar waveguide-1) with length l1 = 400 μm and the second vertical
component (planar waveguide-2) with a length l2 = 207 μm are glued on each
other (see section 3.8). The two crossed waveguide was aligned in terms of three
translations and two rotations (Attocube Systems, Germany) in the focal plane
of the KB. We first aligned each waveguide slice separately resulting in a first
guess of the x and y positions (perpendicular to the propagation direction z) and
the incident angles (around the x and y axis) for alignment of the two crossed
waveguide. The alignment of the waveguide was facilitated by the fact, that
only the combined thickness of the waveguide slices l1 + l2 is thick enough to
block completely the incoming beam. Hence, the photon flux exiting the aligned
horizontal planar waveguide and propagating through the vertical slice even
not perfectly aligned was measurable. Finally, an iterative procedure of trans-
lation and rotation measurements enabled the alignment of the two crossed
waveguide.

4.3.3 Transmission

The total flux exiting the waveguide was 6.4·108 ph/s as measured by a single
photon counting diode (integrated far-field intensity). The intensity of the KB
beam used as reference value was 2.7·1011 ph/s. The corresponding transmis-
sion of the two crossed waveguide Texp = 0.052 is significantly lower than the
value of Tsim = 0.916 obtained by simulation assuming plane wave illumination
under normal incidence angle. As presented in section 4.2.1, the effect of partial
coherence and the convergence angle of the beam must be taken into account.
First, we calculate the degree of coherence in front of the KB. In the vertical
direction, the source size σver t = 30 μm, the source divergence σ′

ver t = 5 μrad
and the 63 m distance from the undulator yield a degree of coherence of 0.18 at
the source. Cutting the beam size by the 400 μm vertical slit size in front of the
KB, the degree of coherence of the beam illuminating the KB increases to 0.33. In
the horizontal direction, on the other hand, a virtual source realized by a 10 μm
slit at a distance of 27 m downstream from the undulator, provides a nearly
completely coherent beam over the 190 μm horizontal KB slit size. Thus in front
of the KB, as in its focus, about 33% of the flux is coherent. Since the waveguide
essentially accepts only the coherent flux, a factor of three in the discrepancy
can thus be attributed to partial coherence. The highly confined KB beam of the
ID22 NI setup yields a convergence angle of 0.10° and 0.08° in horizontal and
vertical direction, respectively, as determined from the measured KB far-field
(Fig. 4.16). Taking the effect of partial coherence and the convergence angles
into account, the calculated transmission reduces to Tcalc ≈ 0.229.
The remaining factor of about 4-5 must be due to other factor(s). The most
likely reason is the finite depth of focus (DOF ), which must be compared to the
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thickness of the waveguide slices. If, for example, the first vertically oriented slice
(planar waveguide-1) was exactly in the focus, the entrance of the second slice
(planar waveguide-2) would already be displaced by 400 μm, corresponding
to the thickness of planar waveguide-1. We estimate the depth of focus by
DOF ≤ 2zR , where zR = kσ2

KB is the Rayleigh length, k the wavenumber, and
σKB the lateral width of the focus, to DOFvert = 440 μm and DOFhorz = 266 μm,
for the two directions, respectively. Since the DOF is likely to be smaller for a
partially coherent beam (see coherence factor above), this may very well account
for the 4-5 fold intensity ratio not explained by the coherence argument. Note
that the equality in the expression for the DOF holds only in the limit of full
coherence.
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Figure 4.16: KB mirror far-field as a function of the reciprocal coordinates qx

and qy . The intensity is encoded logarithmically in the colormap.

4.3.4 Far-field pattern

Fig. 4.17 (a) shows the measured far-field pattern of the two crossed waveguide
as a function of the two reciprocal space coordinates qx and qy after combina-
tion of 15 accumulations (exposure time 2 s each) with the detector shifted in
the x y-plane to increase the field of view. A relatively uniform and flat intensity
distribution in the center is framed by a characteristic arrangement of vertical
and horizontal fringes. We attribute the fringes to interference of the wave ψx y

guided by both planar waveguide slices slices, with the wave components ψx ty

and ψy tx . The latter terms denote the waves guided only by one of the planar
waveguide slices and attenuated by the other, with simultaneous diffraction
from its planar interfaces. Fig. 4.17 (b) shows a two-dimensional representation
of the simulated planar waveguide-1 and planar waveguide-2 far-field, obtained
by multiplication of the respective simulations of planar waveguide slices. The
simulation is based on the finite-difference algorithm to obtain the simulated
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electromagnetic field distribution of the propagating modes inside the planar
waveguides and the near-field distributions. The far-fields are obtained by a
fast Fourier transformation (FFT) of the near-field distribution. The simulation
does not account for the simultaneous diffraction at the planar interfaces of the
planar waveguides but illustrates the form of the far-field around the maximum
intensity. As mentioned above, only the combined thickness of the two crossed
slices l1 + l2 is thick enough to completely block the beam, while a single slice
exhibits measurable transmitted photon flux. At the same time, the finite pla-
nar waveguide contributions do not impede holographic imaging, as shown in
chapter 5.
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Figure 4.17: (a) and (b) Measured and simulated far-field pattern of the two

crossed waveguide, the intensity is encoded logarithmically in the colormap

(I [cps] and I [arb. units], respectively).

4.3.5 Near-field reconstruction

To corroborate this and to further characterize the near-field distribution in
amplitude and phase, we have adapted an inverse scattering approach, where
the near-field is reconstructed iteratively from the measured far-field pattern by
use of the error-reduction (ER) algorithm [34], introduced in section 1.5.2:

ψ(x, y) = lim
Nit→∞

(P ′
1F−1P2F )Nit ψNit=0(x, y), (4.7)

where the real-space constraint is given by

P ′
1ψ(x, y) =

{
ψ(x, y), (x, y) ∈S ,
0, otherwise.

(4.8)

By application of a support constraint in the exit plane of the two crossed waveg-
uide with a cross section of S = 150×150 nm2 (smoothed by an error function),
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the near-field intensity in a virtual plane behind the two crossed waveguide
can be retrieved iteratively in intensity and phase. Fig. 4.18 (b) shows the recon-
structed near-field intensity, obtained after Nit = 1000 iterations and an initial
guess of a Gaussian amplitude with FWHM = 35 nm. The reconstruction for
Nit = 1000 did not show any significant differences with respect to shorter and
longer runs, e.g. Nit = 10 or Nit = 10000, underlining the rapid convergence.
The ER reconstruction always yields a flat exit wavefront (no curvature). The
reconstructed near-field must thus be associated with a virtual plane which can
be considered as the effective confocal plane of the two crossed waveguide. The
high beam confinement is also in agreement with the autocorrelation function of
the field at the exit surface of the two crossed waveguide calculated as the modu-
lus of the FFT applied to the measured far-field intensity. The beam confinement
in both directions due to the 2D waveguide effect is clearly evidenced by the
center maximum, visible in Fig. 4.18 (a). The nearly isotropic shape indicates
that the two crossed waveguide-source can be described as quasi point-like. The
full width of the autocorrelation function (FWHM) obtained by Gaussian fits
was 14.2 nm and 17.9 nm for the vertical and horizontal direction, respectively.
Note that for the calculations the far-field is placed in a 5 times larger grid filled
with zeros to obtain sufficiently sampled reconstructions.
Next, we have compared the reconstructed near-field distribution to finite-
difference simulations of the planar waveguide slices. A waveguide with a 35 nm
C guiding layer supports three modes, leading to a periodically alternating field
distribution by interference of the modes (mode beating), as shown in Fig. 4.18
(c) for a closeup of a 17.5 keV simulation (see also section 2.4.3). A Fourier
transformation of the field with respect to the propagation direction z decom-
poses the simulated electromagnetic field into the guided modes which are
shown in Fig. 4.18 (d). Δk corresponds to the difference between the respective
propagation constants βm and the wavenumber k in free space. In Fig. 4.18 (d)
only the ψ0 and the ψ2 modes are visible, the ψ1 mode is not exited by a plane
wave impinging on the waveguide at normal incidence due to symmetry. The
observed difference β0 −β2 = 2.28·10−4 nm−1 is in excellent agreement with
the analytical result. Due to the periodically alternating field, a corresponding
oscillating confinement of the fields depending on the propagation distance is
obtained, as illustrated by dashed lines in Fig. 4.18 (c), and the corresponding
near-field profiles in Fig. 4.18 (e). Thus, the exit wave field will depend on the
exact length of the WG slice. The FWHM (full width at half maximum) of the
simulated near-field intensity Δx [nm] and the corresponding far-field intensity
Δq [Å−1] as a function of the waveguide length l are plotted in Fig. 4.18 (f). Fi-
nally, Fig. 4.18 (g) and (h) show the comparison of the FD simulation and the ER
reconstructions for the vertical and horizontal direction, respectively. The width
(FWHM) of the Gaussian fit to the near-field intensity distributions obtained by
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ER reconstruction is 9.2 nm and 9.6 nm, compared to 12.5 nm and 13.6 nm of
the FD simulation, for the vertical and horizontal direction, respectively.
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Figure 4.18: (a) Autocorrelation of the measured far-field distribution shown

in Fig. 4.17. (b) Reconstructed near-field intensity obtained from the ER

algorithm. (c) Simulated electromagnetic field intensity inside the planar

waveguide at E = 17.5 keV within a range of 221−261 μm in propagation

direction z. (d) Fourier transformation with respect to z of the simulated

electromagnetic field in the planar waveguide showing the modes ψ0 (right)

and ψ2 (left). (e) Field intensities which correspond to the dashed lines in

subfigure (c) illustrating the mode beating. (g) and (j) Reconstructed inten-

sity along with the simulated near-field intensity of the planar waveguide-1

and planar waveguide-2.
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4.3.6 Conclusions

The formation of a two-dimensional waveguide quasi-point source has been
demonstrated by combination of two crossed planar waveguide structures, in
a compact geometry, with the horizontal and vertical focus coinciding within
207 μm. A total flux in the waveguide beam of 6.4·108 ph/s was achieved by
focusing a KB beam into the front face of the waveguide. From measurements
of the far-field diffraction pattern, the phase and amplitude of the near-field
distribution is retrieved using the error-reduction algorithm. In agreement
with FD field simulations (forward calculation), the reconstructed exit wave
intensity distribution (inverse calculation) exhibits a FWHM below 15 nm in
both dimensions, i.e. below the focal spot size of other focusing optics currently
achieved in the hard x-ray energy range. The crossed waveguide device is used
for holographic imaging as shown in chapter 5.

4.4 Waveguide setup for new holography endstation

We present first results of Ge/Mo/C/Mo/Ge waveguide measurements obtained
at the new holography endstation [85] of the P10 coherence beamline, Petra
III (Hamburg, Germany). The holography endstation is dedicated inter alia to
waveguide-based imaging experiments.

4.4.1 P10 beamline: experiments and results

The P10 coherence beamline is currently under construction. In the experimen-
tal setup used for the experiments the x-ray beam of the undulator is defined
by a double crystal Si(111) monochromator (mirrors will be installed later on).
The holography endstation [85] uses Pd coated silicon and Pd coated silica
KB mirrors for vertically and horizontally focusing, respectively. As presented
in [94], the focal spot size was minimal Dhorz = 203 nm in the horizontal and
Dvert = 221 nm in the vertical direction, respectively, at a photon energy of
E = 7.9 keV. The intensity in the focal spot of the KB beam was 2·1011 ph/s. The
waveguide was positioned in the focal spot of the KB system using a goniome-
ter mounted upside down on a vibration-reduced extension arm with three
miniaturized translations and two miniaturized rotations (Attocube Systems,
Germany), along two directions, orthogonal to the optical axis. An additional
translation below the rotation was used to select the whole range of the waveg-
uide along its guiding layer. A more detailed description of the endstation setup
can be found in [85]. A noise-free single-photon counting detector (Pilatus, SLS
[95]) with a pixel size of 172 μm and an active are of 487×619 pixels was used to
measure the far-field pattern at a distance of 5.15 m from the waveguide.
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First measured far-fields of a planar 35 nm C waveguide and a two crossed 35 nm
C waveguide with waveguide slice thicknesses of 200 μm each are presented in
Fig. 4.19. Fig. 4.19 (a) shows the characteristic far-field pattern of a horizontally
placed planar waveguide with polished entrance and exit faces. The total photon
flux exiting the waveguide was approx. 6·107 ph/s.
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Figure 4.19: (a) Far-field pattern of the 35 nm C planar waveguide as a function

of qx and qy (rotated by 90°, exposure time 0.1 s). (b) Far-field pattern of the

35 nm C two crossed waveguide as a function of qx and qy (exposure time

500 s). The image is altered by the presence of the optical in-line microscope

(circular lens) accidentally remaining in the optical path during exposure

and the flight tube (bars top and down) whose diameter was chosen to small.

The intensity [cts] of the diffraction pattern is encoded logarithmically in

the colormap.

The measured spot size of the KB in vertical direction was Dvert = 382 nm in the
actual experimental configuration, as measured by translation of the waveguide
beam through focal plane. The corresponding transmission of the waveguide is
Texp = 0.003. The simulated transmission is Tsim = 0.574 assuming plane wave
illumination. The large discrepancy between Texp and Tsim cannot be explained
even by taking the angle of convergence of the KB in vertical direction (0.11° [94])
and the partial coherence of the synchrotron beam into account. The problem
of low transmission values has to be addressed in the following experiments.
The alignment of the two crossed waveguide was difficult and we are not yet
sure if we succeeded. The shape of the diffraction pattern shown in Fig. 4.19
(b) is similar to the far-field pattern presented in Fig. 4.17 (b) exhibiting the
high divergence of the waveguide source. However the total flux exiting the two
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crossed waveguide was rather low, i.e., we needed a particular long exposure
time of 500 s to record the shown far-field pattern on the 2D detector.
In future experiments, we will address the problem of low two-dimensional
waveguide beam intensity at the holographic endstation and further focus on
the angular acceptance as well as on the transmission of two-component waveg-
uides with different layer systems.

4.5 Conclusions

An extended study of planar waveguide with an optimized cladding design has
been presented (section 4.1). The experiments show that short waveguide length
combined with efficient blocking of radiative modes enable small beam sizes
at the waveguide exit along with high transmission values of the spatially and
coherently filtered synchrotron beam. The use of pre-focusing optics resulted in
a quite high gain of flux density of the primary beams (section 4.2). Simulations
taking the divergence and the coherence properties of the pre-focusing beams
into account have to be developed to further understand the far-field properties
of the waveguides. The experiment with the compact two-crossed waveguide
demonstrated the formation of a quasi point-like source of sub-15 nm beam
confinement in both lateral dimension (section 4.3). The effective near-field
distribution was determined by reconstructing the waveguide exit wave-field
from the measured far-field by using an error-reduction algorithm. A total
flux of 6·108 ph/s exited the two-crossed waveguide making this waveguide
optics suitable for high resolution x-ray imaging. Finally, the novel holography
endstation dedicated to waveguide-based imaging and first results of waveguide
characterization at the P10 beamline are presented (section 4.4).





5 Experiments II: Phase contrast imaging

This chapter describes lensless x-ray imaging of well-defined test pattern (sec-

tion 5.1) and unstained biological cells (section 5.2) using the in-line holography

geometry 14. We carried out the experiments using two-crossed waveguide and

planar waveguide as highly confining optical elements presented in chapter 4.

Measured holograms are reconstructed in the effective parallel beam geometry.

Two types of reconstruction algorithms are used. Holographic reconstruction

allowing for fast and deterministic reconstructions on one hand, and iterative

algorithms allowing for optimized phase recovery on the other hand. Itera-

tive reconstructions take advantage of the fact, that the investigated samples

essentially act as pure phase object in the hard x-ray energy range.

5.1 Imaging of test pattern

Waveguide-based x-ray imaging experiments on test pattern with well-defined
spatial frequencies are performed. Special emphasizes is put on the effect of non-
transferred spatial frequencies in holographically and iteratively reconstructed
holograms. Spatial resolution of phase reconstructions are determined. Resolu-
tion limits depending on the waveguide properties and additional constraints in
the experimental setup are discussed.

5.1.1 Layout of the test pattern

The high resolution chart (NTT-AT, Japan; model # ATN/XRESO-50HC) consist
of a 500 nm thick nanostructured tantalum layer on a Ru/SiC/SiN membrane
fabricated using electron beam lithography. The thickness of the individual
membrane layers are 20 nm (Ru), 200 nm (SiC) and 50 nm (SiN), respectively.
The membrane is fixed on Si holder of size 10×10×1 mm3 with a hole of 1×1 mm3

in the center where the nanostructured pattern area of size 300×300 μm2 is
placed.
Different structures are placed on the test pattern as shown in Fig. 5.1 (a). We
used the Siemens star pattern, the grid pattern with 1 μm pitch and the 50 nm
lines-and-spaces (LS) pattern for imaging applications. Scanning electron im-
ages (SEM: Leo Supra 135, Zeiss NTS) of the radial pattern with a minimum
pattern size of 50 nm and the 50 nm LS pattern are shown in Fig. 5.1 (b), recorded
with a magnification factor of 6 kx and 40 kx, respectively. Note that in contrast
to the Siemens star design used for simulation (see chapter 1) the radial stripes
diverging from the center are separated into rings of defined spatial period at
the innermost radius.

14Contents of this chapter have been published in [47] and [11].
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(c)(b)

(a)

Figure 5.1: (a) Layout of the NTT-AT test pattern [96]. We used the Siemens star

pattern (center), the grid pattern with 1μm pitch (bottom left) and the 50 nm

lines-and-spaces (LS) pattern (left, on the top) for the waveguide-based

imaging experiments. (b) Scanning electron image showing the central

region of the Siemens star pattern. The radial stripes diverging from the

center are separated into rings of defined spatial period at the innermost

radius (50 nm line width at the beginning of the central (first) ring, 100 nm

line width at the beginning of the second ring, 200 nm at the third ring).

(c) Scanning electron image showing part of the 50 nm LS pattern. The LS

pattern has a half-period of 50 nm as measured by the scanning electron

microscope. SEM parameters: (b) accelerating voltage EHT = 10 kV, working

distance WD = 4.5 mm, magnification mag = 6 kx; (c) EHT = 10 kV, WD =
4.5 mm, mag = 40 kx;
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5.1.2 Holographic imaging: Siemens star

The imaging experiments were carried out using the setup and the experimental
settings presented in section 4.3.1. The test pattern was placed on microstep
translation stages (Micos GmbH, Eschbach, Germany) for translations of the
sample in x, y and z direction and equipped with an additional piezo positioning
stage (Princeton Instruments, Germany) for more precise translations in the y z-
plane. The distance z1 between the two crossed waveguides (placed in the focal
plane of the KB) and the sample was determined optically with a microscope
coaxial with the optical axis (Accel, Germany). The Maxipix detector was placed
at a distance z2 from the sample.

For holographic imaging of the Siemens star the sample was placed at a distance
z1 = 4.48 mm downstream from the waveguide and the in-line holograms were
imaged at a distance z2 = 3.09 m from the sample. The Siemens star was mapped
by translation in the x y-plane as illustrated in Fig. 5.2 (a). Mapping allows to
image an extended sample on a larger region, i.e. to increase the field of view.
The defocus position of z1 = 4.48 mm correspond to a beam size of 6.72 μm
(intensity FWHM) at the sample.
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Figure 5.2: (a) Schematic illustrating the mapping of the Siemens star by trans-

lation in the x y-plane. A mesh of 15× 15 scan points was recorded. (b)

Measured single hologram of the Siemens star pattern corresponding to

scan point 56 of the 225 total scan points and normalized by the mean far-

field pattern of the waveguide beam. Scale bar indicate 2 mm (coordinate

system in the detector plane). The normalized intensity is encoded in the

colormap.
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A mesh of 15×15 scan points was recorded with an exposure time of 2 s for each
recording. After the mesh, the sample was removed from the optical path and 10
accumulations of the waveguide far-field pattern each of 2 s exposure time were
recorded (without shifting the detector). Out of the 10 accumulations the mean
intensity distribution Im of the waveguide far-field pattern was calculated. A
single hologram corresponding to the scan point 56 of the 225 total scan points
recorded is shown as an example in Fig. 5.2 (b). The hologram is normalized by
the mean waveguide far-field intensity Im . The structure of the Siemens star can
already be recognized, especially the low frequency features. The resemblance
to the object gets more and more lost towards the center of the Siemens star
(high frequency features). The normalized hologram exhibit some artifacts in
horizontal direction (center region) and vertical direction (left region) due to
fluctuations and long-term drift in the waveguide exit wave-field. These artifacts
can be minimized by recording the waveguide far-field pattern after each scan
point of the sample mesh and then normalizing each hologram by the respective
(subsequently recorded) waveguide far-field pattern. Note that short time delays
on the order of a second in between sample and empty exposures are enabled
by the fast piezo sample stage and the short readout time of the detector.
At the photon energy E = 17.5 keV used in the experiment, the expected phase
shift of the 500 nm thick Ta pattern is φ= 0.40 rad, and the (intensity) transmis-
sion is T = 0.93. The expected phase shift and the absorption of the Ru/SiC/SiN
membrane is comparably low (phase shift of φ = 0.06 rad and absorption of
A = 8.3·10−4). Phase shifts of individual parts (membrane and Ta structure) of
the test pattern are summed up. Since the membrane is extended over the whole
region of the pattern we expect only an additional offset in phase reconstruction
of the sample. Transmission of individual parts of the test pattern are multiplica-
tive. Since the transmission of the membrane is T � 1 we expect no effects of
the membrane in reconstruction.
The total photon flux measured on the detector was 4.0·107 ph/s (field of view in
the sample plane: 1.72×1.72 mm2) for the single hologram (scan point 56). The
intensity is lower than the total photon flux of the perfectly aligned waveguide
of 6.4·108 ph/s as measured by a diode. Besides the drift effect of the waveg-
uide, the lower photon count is due to the limited field of view of the detector
compared to waveguide divergence, i.e. not the full waveguide beam intensity
is recorded. Note that the photon flux losses due to absorption by the test pat-
tern can be neglected. The mean photon count per pixel is ca. 103 ph/s and
lowest photon count per pixel is 40 ph/s indicating that high image resolution
in reconstruction is in principle not adulterated by signal-to-noise ratio [19].
Noise limited resolution is assumed for intensities below I (x, y) = 25 photon
counts (Rose criterion [97] for the signal-to-noise ratio in case of Poisson noise:
I (x, y)/

√
I (x, y) ≥ 5).
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Fig. 5.3 shows the power spectrum of the hologram as a function of the resolution
d(q) = 1/ν where ν = q/(2π) denotes the spatial frequencies present in the
power spectrum. The power spectrum is calculated by radially integrated and
averaged Fourier transform of the diffraction pattern windowed by a Hann
window function to account for aliasing by use of the discrete Fourier transform
(DFT), i.e. allowing for ’perfect’ periodic extension at the image ’edges’ for
the DFT [98]. The highest frequency present (Nyquist rate, see appendix B)
corresponding to d = 160 nm (cut-off in the power spectrum) is limited by the
detector pixel size.

101001000
resolution [nm]

po
w

er
sp

ec
tr

um

10
1

10
2

10
3

10
4

Figure 5.3: Power spectrum of the windowed diffraction pattern (scan point

56) as a function of the resolution d(q) = 2π/q . The minimal resolution is

rather limited by the detector pixel size than by the signal-to-noise ratio.

5.1.3 Holographic reconstruction: Siemens star

For holographic reconstruction the projection geometry used here was mapped
onto parallel beam propagation by a variable transformation based on the Fres-
nel scaling theorem introduced in section 1.4. Given the distance z1 between
source and sample and z2 between sample and detector, parallel beam recon-
struction by Fresnel backpropagation of the recorded intensity can be applied
using the effective defocus (propagation) zeff = z1z2/(z1 + z2) = 4.47 mm. At the
same time the hologram is magnified corresponding to the geometrical projec-
tion by a factor of M = (z1 + z2)/z1 = 690. The Siemens star is reconstructed by
applying the free-space diffraction operator D−zeff on each measured hologram
I (x, y)

ψ(x, y) =D−zeff I (x, y). (5.1)

For the experimental parameters relevant in this work, the hologram is domi-
nated by the phase shift in the sample, rather than by absorption (amplitude).
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We thus focus the attention on φ(x, y) of ψ(x, y) = A(x, y)exp
[
iφ(x, y)

]
. We

stress, however, that the analysis presented here is valid in the general case, and
can in fact be used on experimental data to determine the relative weight of the
absorption and phase contrast.

Fig. 5.4 shows the image reconstruction after combining 15×15 scan points in
real space and a line scan through the phase distribution of the reconstructed
image near the center of the Siemens star. Each hologram was reconstructed
from the intensity in the center of the far-field, corresponding to |qx |, |qy | ≤
0.0035 Å−1 (roughly 1/10 of the region covered by the detector). The raw images
were regridded by a factor of 2 for the image reconstruction and by a factor of 16
in the linescan15. The image resolution was determined from a fit of phase step
to an error function using
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Figure 5.4: (a) Holographic reconstruction of the Siemens star test pattern

after combination of 15×15 scan points. Scale bar and colorbar indicate

4 μm and phase in [rad], respectively. (b) Line scan through the phase

distribution indicated by the vertical red line in subfigure (a) along with a fit

of a Gaussian error function to a single phase step yielding a width (FWHM)

of 87 nm (image resolution).

15Regridding is performed using the cubic spline interpolation method (matlab routine in-
terp2.m) [99].
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f (x) = A erf

(
x −x0�

2σ

)
+B , (5.2)

where the error function is given by

erf = 2�
π

∫x

0
exp

(−t 2) d t . (5.3)

The fit yields a width (FWHM) of 87 nm (FWHM = 2
�

2ln2σ). Note that the
magnification M = 690 for the given defocus corresponds to an image pixel size
of 80 nm (before regridding).
The overall structure of the test pattern is recovered up to very fine details in the
center region. However, the highest obtained resolution of 87 nm is significantly
above the reconstructed near-field width of the waveguide beam of sub-15 nm.
In fact, the resolution is rather limited by the low magnification factor M (high
defocus z1). Due to steric constraints in the setup, z1 smaller than 4.47 mm and
thus possibly higher resolution imaging could not be tested. In section 5.1.6 we
discuss the resolution limit for the same experimental settings except the values
of z1 and z2.
The retrieved phase values are only in coarse agreement with the expected phase
shift of 0.4 rad between the void areas (high phase values) and the Ta structure
(lower, retarded phase values). Further, holographic reconstruction shows arti-
facts (in particular twin-image artifacts, noise effects are successfully reduced
by scanning procedure) and non-reconstructed spatial frequencies which are
due to the non-uniform phase contrast transfer function (see below). Artifacts
and poor phase recovery can partly be overcome using iterative reconstruction
algorithms as presented in section 5.1.4.
Fig. 5.5 (a) shows the two-dimensional representation of the phase contrast
transfer function PCTF = sinχ (with χ= (λz/4π)(k2

x +k2
y ), see also section 1.3).

We used the same parameters λ, kx and ky as for reconstruction of the exper-
imental data. The white dotted circles indicate the first two zeros of the PCTF.
Fig. 5.5 (b) shows the Fourier transform of the measured hologram indicating
the spatial frequencies of the object which are not transferred. Although the test
pattern is not a pure phase object (T = 0.93 at E = 17.5 keV) the non-transferred
spatial frequencies correspond in good approximation to the zeros of the PCTF
(the white dotted circles in subfigure (b) have the same radii as the circles shown
in subfigure (a)). Minima related to zeros of the amplitude contrast transfer
function ACTF = cosχ are not observed. Fig. 5.5 (c) shows the holographically
reconstructed Siemens star. The non-reconstructed spatial frequencies of the
Siemens star, indicated by a red dotted circle, again reflects the effect related to
the CTF.
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Figure 5.5: (a) Phase contrast transfer function (PCTF), calculated for the pa-

rameters corresponding to the experimental settings. The white dotted

circles indicate the first two zeros of the PCTF. (b) Fourier transform of the

measured Siemens star hologram, along with white dotted circles corre-

sponding to the zeros of the PCTF in subfigure (a). (c) Holographic recon-

struction of the Siemens star, along with red dotted circle indicating the

region of lack of spatial information due to the zero of the PCTF. (d) Fourier

transform of the propagated Siemens star (simulation), radially integrated,

for a pure amplitude object (T = 0.5), a pure phase object (φ = π/2), an

object with T = 0.93 and φ = 0.4 and an object with T = 0.5 and φ = π/2.

The curves are shifted for clarity. The minima of the curves corresponding

to objects with T < 1, φ> 0 are slightly shifted compared to the pure phase

object curve.
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To quantify the effect of the CTF on the reconstructed image we have deter-
mined the radius r = 3.3 ± 0.2 μm corresponding to the non-reconstructed
spatial frequency. Using the relation kx = 2π/r we obtain sinχ= (1.7±0.1) ·10−7

(one-dimensional PCTF). Thus, the non-reconstructed spatial frequency is in
excellent agreement with the zero of the PCTF (sinχ= 0).
To further investigate the dependance of transmission and phase shift properties
of an object on non-transferred spatial frequencies we have performed Siemens
star simulations. Fig. 5.5 (d) shows radially integrated Fourier transform (am-
plitude) of simulated holograms (propagated Siemens star) as a function of the
normalized Fourier component

�
z/2πk kx . The minima of a pure amplitude

object and a pure phase object correspond to the zeros of |ACTF| and |PCTF|,
respectively. The curve corresponding to the object simulated for T = 0.93 and
φ = 0.4 rad is slightly shifted compared to the pure phase object curve. Inter-
estingly, an object of comparably high absorption T = 0.5 and of high phase
shift φ=π/2 rad shows minima close to the zeros of the PCTF. Thus, the phase
shifting property of an object is dominant compared to its absorption property
in terms of non-transferred spatial frequencies.

5.1.4 Iterative reconstruction: Siemens star

Next, we consider a full-field hologram of the Siemens star taken at a distance
z1 = 7.48 mm and normalized by the waveguide far-field pattern as shown in
Fig. 5.6 (a). The total photon flux measured on the detector was 7.6·107 ph/s.
Note that, in contrast to the hologram shown in Fig. 5.2 (b), artifacts due to the
waveguide exit beam fluctuations are not observed as the waveguide far-field
pattern was subsequently recorded after imaging the test pattern.
The phase reconstruction using the holographic reconstruction is shown in
Fig. 5.6 (b). The iterative reconstruction of the test pattern is carried out using
the GS algorithm

ψ(x, y) = lim
n→∞(P1D−zeffP2Dzeff )

Nit ψNit=0(x, y). (5.4)

The theoretical amplitude transmission of the Ta structure is T = 0.96 which is
close to one. Approximating the overall transmission to T = 1, the real-space
constraint is expressed by

P1|ψ(x, y)| = 1. (5.5)

To prevent possible overfitting of the noise in the diffraction data, the stop
criterion presented in [11] is introduced in the algorithm. The algorithm stops
when the error χ2 is below 2/〈I0〉 where 〈I0〉 is the mean photon count per pixel
of the empty beam intensity measured on the detector.
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Figure 5.6: (a) Normalized Siemens star diffraction pattern. The scale bar indi-

cate 3 mm. (b)-(d) Reconstructed phase of the normalized hologram shown

in subfigure (a): (b) Holographic reconstruction, (c) GS reconstruction, (d)

GS-Gaussian GS reconstruction. Scale bar and colorbar indicate 4 μm and

phase in [rad], respectively. (e)-(g) Histograms corresponding to the recon-

structions (b)-(d), respectively, exibhiting the improved phase recovery by

use of the iterative algorithms. The distance between the maxima of the

histograms of (f) 0.36 rad and (e) 0.38 rad are in approximate agreement

with the expected phase shift of 0.4 rad.
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The first guess in the sample plane ψNit=0(x, y) is given by the holographic recon-
struction of the object wave. The phase reconstruction of the Siemens star after
Nit = 33 iteration steps is shown in Fig. 5.6 (c). Compared to the holographic
reconstruction, the expected phase shifts are significantly better recovered. The
histograms of the holographic and GS reconstructed phase distribution shown
in Fig. 5.6 (e) and (f), respectively, exhibit this effect.
To further optimize the phase recovery we used an additional reconstruction
tool proposed by Marchesini et al. [100] which consists of using a blurred version
of the current estimate of the object under reconstruction. The blurring acts
to smooth out noise and provides a form of regularization. The blurring was
carried out by convolving the reconstructed wave-field with a Gaussian of width
σ at each iteration step. The width σ is set to 1 pixel (full width at half maximum
of 2.3548σ). The projection operator acts on the amplitude of the convolved
estimate of the object

P ′
1|conv(ψ(x, y),φGauss)| = 1. (5.6)

Here, conv is the convolution and φGauss the Gaussian of width σ. We denote
the algorithm GS-Gaussian. Compared to the holographic reconstruction and
the GS reconstruction, applying the GS-Gaussian algorithm reduces the spatial
resolution of the reconstructed object due to the blurring. The resolution can be
recovered by applying the GS algorithm in a second reconstruction step. The
phase reconstruction of the Siemens star after application of Nit = 50 iteration
steps using the GS-Gaussian algorithm and successive application of Nit = 14
iteration steps using the GS algorithm is shown in Fig. 5.6 (d). The histogram of
the phase distribution shown in Fig. 5.6 (f) demonstrate the optimized phase
shift recovery compared to the GS reconstruction. The maxima of the histogram
in subfigure (f) yield a relative phase shift of 0.38 rad compared to the relative
phase shift of 0.36 rad as obtained from the histogram in subfigure (e). The recon-
structed phase shift is in approximate agreement with the expected (theoretical)
phase shift of 0.4 rad between the Ta structure and the void areas.
In a next step, we have used the known informations on the object for the
reconstruction, for instance the transmission to be minimal T = 0.96 (Ta region
of the object) and maximal T = 1 (else). Setting this threshold on the amplitude
of the object wave in the sample plane, the error-reduction algorithm yields

ψ(x, y) = lim
n→∞(P ′

1D−zeffP2Dzeff )
Nit ψNit=0(x, y), (5.7)

with the real-space constraint given by

P ′
1|ψ(x, y)| =

⎧⎨
⎩

1 if|ψ(x, y)| > 1,
0.96 if|ψ(x, y)| < 0.96,
|ψ(x, y)| else.

(5.8)
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We denote the algorithm with the specific real-space constraint ER-min-max.
The first guess in the sample plane is given by the holographic reconstruc-
tion. The phase reconstruction of the Siemens star after Nit = 22 iteration steps
(stop criterion) is shown in Fig. 5.7 (a). The run of the error curve presented in
Fig. 5.7 (b) illustrates the rapid convergence of the algorithm. Compared to the
holographic reconstruction shown in Fig. 5.6 (b), the expected phase shifts are
noticeably better recovered. The histogram of the ER-min-max reconstructed
phase distribution shown in Fig. 5.7 (c) illustrates this effect. However, com-
pared to the reconstruction by use of the GS and the GS-Gaussian algorithm the
relative phase shifts are suboptimal recovered. The maxima of the histogram
indicate a relative phase shift of 0.28 rad which is only in coarse agreement with
the expected phase shift of 0.4 rad.
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Figure 5.7: (a) Reconstructed phase of the normalized hologram using the

ER-min-max algorithm. (b) Reconstruction error of the ER-min-max algo-

rithm. The reconstruction stops after Nit = 22 iteration steps. (c) Histogram

corresponding to the reconstruction in (a).

Fig. 5.8 (a) and (b) show details of the holographic reconstruction and the
GS reconstruction, respectively. The red dotted semi-circle indicate the non-
reconstructed spatial frequencies in the holographic reconstruction. In the GS
reconstruction the non-transferred spatial frequencies due to the zeros in the
PCTF are relatively well recovered. We assume that the constraint set on |ψ(x, y)|
enables to partly fill out the missing information.

5.1.5 Holographic imaging and reconstruction: Grid pattern

The grid pattern with 1 μm pitch is a less sophisticated structure than the
Siemens star which should facilitate reconstruction. Fig. 5.9 (a) shows the nor-
malized hologram of the grid pattern situated at a distance z1 = 4.48 mm of the
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(a) (b)

Figure 5.8: (a) Holographic reconstruction, along with a red dotted semi-circle

indicating the non-reconstructed spatial frequencies. (b) Phase reconstruc-

tion using the GS algorithm. The non-transferred spatial frequencies are

well recovered. The error bar indicates 2 μm.

crossed waveguides during the exposure and measured at a distance z2 = 3.09 m.
The total photon flux measured on the detector was 1.6·107 ph/s. Some en-
hanced noise effects are observed at the outer region of the hologram due to
the lower intensity of waveguide far-field tails. These artifacts are visible on the
holographic reconstruction shown in Fig. 5.9 (b), too. Overall the structure of the
grid pattern is well recovered. A detail of the holographic reconstruction taken
close to the center of the image is shown in Fig. 5.9 (c). For iterative reconstruc-
tion we have used the GS-Gaussian method presented in the previous section.
Fig. 5.9 (d) shows the phase reconstruction after applying Nit = 5 iteration steps
of the GS-Gaussian algorithm starting with the holographic reconstruction as a
first guess, followed by Nit = 2 iterations using the GS algorithm. The iterative
reconstruction yields an improved phase contrast compared to the holographic
reconstruction. To illustrate this effect, the histograms of the holographic and
the GS-Gaussian GS reconstruction are shown in subfigure (e) and (f), respec-
tively. The relative phase shift between the Ta structure and the void areas are
0.26 rad and 0.34 rad as determined from the maxima in the histograms of sub-
figure (e) and (f), respectively. Hence, the reconstruction algorithms only enable
a semi-quantitatively reconstruction of the object in terms of phase recovery16.
In particular, the iterative reconstruction of the grid pattern yields a less efficient
phase retrieval compared to the iterative reconstruction of the Siemens star. We
assume that the iterative reconstruction is influenced by the relatively strong
noise in the diffraction pattern.

16Note that the use of the GS and the ER-min-max algorithm did not improve reconstruction
quality compared to the result of the GS-Gaussian method.
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Figure 5.9: (a) Normalized hologram of the grid pattern. Scale bar indicate

2 mm. (b) Holographic reconstruction of the measured hologram. Scale bar

indicate 3 μm, the phase in [rad] is encoded according to the colormap. (c)

Detail of the phase reconstruction shown in subfigure (b), the scale bar indi-

cate 500 nm. (d) Phase reconstruction using the GS-Gaussian GS algorithm

shows improved phase contrast compared to holographic reconstruction.

Likewise, the peaks of the histogram shown in (f) of iterative reconstruction

are more distant than in case of the histogram shown in (e) of holographic

reconstruction.

5.1.6 Resolution limit

The spatial resolution of reconstructed holographic images obtained with the
present setup is influenced by several factors, which limit the maximum accessi-
ble resolution for a given sample on different levels. On the most fundamental
level the resolution is limited by the highest angle with respect to the optical
axis, at which diffracted photons can be collected, i.e., the numerical aperture of
the diffracted light cone. Depending on the total fluence incident on the sample,
the sample scattering strength and the diameter of the waveguide exit wave the
diffracted light cone can be larger or smaller than the waveguide exit cone.
On a less fundamental level, the resolution can be limited even further by the
geometry of the experiment, i.e., the numerical aperture of the detector, and
the geometric magnification factor. Due to steric constraints in the position-
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ing stages, higher magnifications M (smaller z1) as well as higher numerical
apertures of the detector and thus a possibly higher resolution could not be
tested. In order to estimate the resolution range that can be achieved with the
present setup, i.e., leaving the detector area and pixel size, the sample scat-
tering strength and the photon wavelength constant, we have simulated and
reconstructed holograms with these four parameters identical to those in the
experiment17 [47] (implementation carried out by Klaus Giewekemeyer). The
waveguide exit field was modeled by a Gaussian beam with a waist full width
at half maximum (FWHM) of 10 nm. The simulation of the hologram and the
holographic reconstruction was performed in the parallel beam geometry.

In the simulated experiment, the geometry was optimized to a high spatial
resolution, i.e. a pattern consisting of lines and spaces with a half period of
13.5 nm was placed 74.7 μm downstream of the waveguide exit plane. The
detector received nearly the full waveguide exit cone at a distance of 1.37 m
downstream of the waveguide exit plane and accumulated a total number of
6.4·1012 photons, which could have been collected in about 104 s ≈ 2.8 h in the
real experiment, during which a total number of 6.4·108 photons were exiting
the waveguide per second (see above). The resulting simulated average fluence
on the sample was thus 1.2·1013 ph/μm2 with a geometrical magnification
factor of M = 18394. The normalized hologram resulting from this simulation
is presented in Fig. 5.10 (a) with the corresponding holographic reconstruction
shown in Fig. 5.10 (b), indicating that line pairs with a half period of 13.5 nm
are clearly resolved, with minor artifacts due to the direct holographic inversion
of the data, which can be further improved by iterative methods. Fig. 5.10 (c)
shows a holographic reconstruction from a simulated dataset obtained with
the same set of parameters as before, except a total photon number of 6.4·108,
corresponding to the photon count accumulated in one second on the detector
area in the real experiment. Even here the line pairs are still visible, indicating a
high robustness of the holographic reconstruction with respect to strong noise.

The waveguide-based setup takes advantage of the high spatial coherence due
to the small diameter of the waveguide exit wave-field, i.e. the high transverse
coherence of the waveguide beam. The simulation presented in Fig. 5.10 as-
sumes full longitudinal coherence. However, the longitudinal coherence of the
experimental setup is limited by the spectral bandpass Δλ/λ � 0.016 of the
pre-focused beam.

17A minor difference with respect to one of the four parameters was the following: The detector
area used for the reconstruction shown in Fig. 5.4 was 256×241 pixels, for the simulation we
have used a square area of 248×248 pixels with the same pixel size as in the experiment.
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Figure 5.10: (a) Simulated normalized hologram of a lines-and-spaces (LS)

pattern with the same contrast as the Ta test pattern and a total photon

count on the detector 104 times higher than collected in the experiment

per one second. Scale bar and colorbar indicate 3 mm and normalized

intensity, respectively. (b) Holographic reconstruction corresponding to

the hologram shown in subfigure (a). The LS pattern has a half-period

of 13.5 nm. Scale bar and colorbar indicate 50 nm and phase in [rad],

respectively. (c) Holographic reconstruction corresponding to the hologram

shown in subfigure (a), however now simulated with a total number of

photons 104 times lower. Same scale bar and colorbar indication as for

subfigure (b).

In section 1.3 we introduced the phase and amplitude contrast transfer functions
(CTFs) given by

PCTF = sinχ

ACTF = cosχ, (5.9)

with χ= (λzeff/4π)(k2
x +k2

y ). According to Eq. (5.9), the two ends of a wavelength
interval Δλ will fall onto a maximum and a minimum of the contrast transfer
function, respectively, if Δλ= 4π2/

[
zeff(k2

x +k2
y )

]
. Therefore, the bandpass must

be sufficiently small [29]

Δλ

λ
≤ 4π2

λzeff(k2
x +k2

y )
, (5.10)

to avoid a smearing of the intensity fringes in the hologram. In other words,
the spatial resolution in waveguide-based imaging is not affected as long as
(Δλ/λ) = 4π2/(λzeff k2

x), considering the problem in one dimension here for
clarity. Given a pixel size of Δx the largest possible (full-period) spatial frequency
νx = kx/2π that can be resolved (Nyquist rate) is given as 1/(2Δx), so that the
maximum allowable bandpass becomes [11]

Δλ

λ
≤ 4(Δx)2

λzeff
. (5.11)
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With 4(Δx)2/(λzeff) � 0.007 in case of the simulated experiment, it follows that
high resolution imaging using the presented experimental setup is limited by
partial longitudinal coherence. This is no longer the case if monochromatic
radiation, e.g. by a Si(111) monochromator is used, as in the next subsection.

5.1.7 Holographic imaging and reconstruction:
50 nm lines-and-spaces

The imaging experiment on the 50 nm LS pattern is carried out at the holography
endstation of the P10 beamline (see section 4.4.1 for the experimental setup).
The sample is placed on a bottom up mounted stage enabling short distances
between sample and waveguide placed on an upside down mounted stage.
The sample stage is equipped with an air-bearing rotation (Micos) for ultra-
high precision turns needed for waveguide-based nano-tomography in future
experiments. On top of the rotation, a group of x y z piezos (Physik Instrumente)
is used for aligning the sample in the axis of rotation. Additional x y z stages
(Micos) below the rotation are used for aligning the rotation axis in the x-ray
beam and for distance variation between the waveguide and the sample. In
contrast to the waveguide far-field measurements shown in section 4.4.1 we have
used a CCD camera (PI-LCX:1300, 1340 × 1300 pixels, Princeton Instruments)
with smaller pixel size of 20×20 μm2 to measure the holograms.

The 50 nm LS pattern is structured only in one direction. As the intensity exiting
the planar waveguide was significantly higher than of the crossed waveguide,
imaging was performed using the planar waveguide taking advantage of the
small source size in the direction perpendicular to the sample structure.

The 50 nm LS pattern was imaged at a distance z1 = 1.59 mm downstream
from the waveguide and the in-line hologram was recorded at a distance z2 =
5.15 m. The shorter distance between waveguide and sample resulted in a higher
magnification factor M = 3239 and shorter effective distance zeff = 1.59 mm
compared to the ID22-NI experiment. Taking further advantage of the smaller
pixel size in the detection plane the effective pixel size in the object plane was
only 6.2 nm.

Fig. 5.11 (a) shows the measured hologram normalized by the waveguide far-
field. The small features correspond to the lines-and-spaces pattern. Fig. 5.11 (b)
shows the holographic reconstruction of the hologram region indicated by the
white dotted lines in subfigure (a). To further characterize the reconstruction
we have performed a line scan integration over the horizontal direction. The
integrated line scan is shown in Fig. 5.11 (c). The mean distance between minima
and maxima of the structure yields d = 53 nm whereas a half-period of 50 nm
was determined by electron microscopy. This discrepancy can be attributed to a
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Figure 5.11: (a) Normalized hologram of the 50 nm lines-and-spaces test pat-

tern, the intensity is encoded in the colormap. (b) Holographic reconstruc-

tion from the subregion indicated by the white dotted lines of the hologram

in subfigure (a). Colorbar indicate phase in [rad]. (c) Line scan integrated

over the horizontal direction corresponding to the red dotted bar (in vertical

direction) of the holographic reconstruction shown in subfigure (b).

deviation of the actual from the nominal waveguide-to-sample distance, which
should therefore be calculated independently.

5.2 Biological imaging

Biological samples like cells are mainly composed of low density elements. De-
pending on the nature of the cells the diameter lies usually in between 1−30 μm.
Thus, expected amplitude and phase shifts of x-rays passing through biological
sample are significantly lower compared to thick test pattern composed of the
high electron density material Ta presented in the previous section 5.1. On one
hand the reduced scattering strength of cells necessitates longer exposure times
for high resolution imaging which further raise the problem of radiation damage
to the cell. On the other hand the essentially pure phase object character of
the cell allows the use of iterative algorithms with strong support constraint for
object reconstruction.

5.2.1 Dictyostelium discoideum cell imaging

Waveguide-based imaging on biological cells is presented. The experiment is
performed on the eukaryotic amoeba dictyostelium discoideum prepared by
Klaus Giewekemeyer. The cells of wild-type strain AX2-214 are adhered on a
thin polyimide film (Mitegen, USA) before rapid freezing in liquid ethane to
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prevent crystallization of the phosphate buffer solution. The cells are then
freeze-dried using a commercial freeze-drier (Christ, Germany). Further details
of the preparation process are described in [101].
The experiment at the beamline ID22 was carried out using the setup and the
experimental settings presented in section 4.3.1 as well as the sample stage
presented in section 5.1.2. The unstained cells were placed at a distance z1 =
8.83 mm from the two-crossed waveguide and the holograms were measured
at a distance z2 = 3.09 m from the sample resulting in a geometrical magni-
fication factor of M = 351 taking into account the point-source character of
the waveguide. Describing the imaging experiment in the parallel beam geom-
etry the effective distance sample-to-detector is given by zeff = 8.83 mm. To
eliminate the effect of fluctuations and long-term drift in the waveguide exit
field each hologram was recorded at an exposure time of 0.2 s followed each by
subsequent measurement of the waveguide intensity with equal exposure time.
Fig. 5.12 (a) shows the normalized intensity distribution calculated out of 710
measurements of the holographic intensity diffracted from the sample and the
waveguide far-field intensity corresponding to a total illumination time of 142 s.
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Figure 5.12: (a) Holographic intensity diffracted at unstained freeze-dried cells,

normalized by the waveguide far-field intensity. The intensity is encoded

in the colormap. (b) Reconstructed phase distribution obtained by using a

modified HIO algorithm. The colorbar is scaled in [rad] and in [mg/cm2],

indicating the projected effective mass density of the cells.

The total fluence applied on the sample was 4.9·106 ph/μm2 (taking into account
the total exposure time of 71 s applied on the sample) corresponding to a dose of
about 103 Gy [11]. The expected phase and amplitude shifts of an unstained 3μm
thick biological object with a protein volume content of 50% are φ= 0.13 rad
and A = 8.7·10−5 at a photon energy of E = 17.5 keV.
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The cells were reconstructed using a modified HIO algorithm where the support
constraint is applied on the phase of the updated iterate of the object function
in the object plane. The algorithm was developed and implemented by Klaus
Giewekemeyer. The support of the sample is determined from the holographic
reconstruction. Further details on the reconstruction methods are given in
[11]. Fig. 5.12 (b) shows the phase reconstruction of the cells. The maximum
phase shift of about 0.13 rad due to freeze-dried cells is in agreement with the
expected phase shift. As the cells essentially act as pure phase objects the re-
constructed phase distribution can be rescaled to a projected electron density
map. Using Eq. (1.26) δ= 2πρe re /k2 and Eq. (1.35) φ(x, y) =−kδz(x, y), where
δz(x, y) is the projection of δ(x, y, z) into the direction of the beam after trav-
eling a distance Δ = t , the projected electron density is related to the phase
shift at a pixel (x, y) via ρe (x, y) = −φ(x, y)k/(2πre ). Further the effective area
mass density ρ̃m is given by ρ̃m = 2uρe where u is the atomic mass unit. For
low electron density elements of biological materials the absolute mass density
indicated by the additional colorbar scaling in Fig. 5.12 (b) can be approximated
by ρm = A(x, y)/2Z (x, y) · ρ̃m ≈ ρ̃m with A(x, y) and Z (x, y) denoting the mass
number and the atomic number, respectively. Thus, the waveguide-based imag-
ing experiment enabled quantitative imaging of biological sample which allowed
for structural investigation of characteristic cell features [11].

5.3 Conclusions

Waveguide-based imaging on well-defined test pattern and biological samples
was demonstrated. The imaging setup takes advantage of the spatial and co-
herent filtering of the pre-focused synchrotron beam by use of two-component
cladding waveguides. The high photon flux exiting the waveguide optics and
the high divergence of the waveguide beam resulted in an efficient illumination
of the samples. A photon flux on the order of 107 − 108 ph/s impinged onto
the samples. From measured holograms, the samples are reconstructed using
holographic and iterative methods. Holographic reconstruction proved to be
a fast and robust method to retrieve the phase information. Optimized phase
recovery is obtained by use of iterative algorithms. Image artifacts related to the
twin-image problem and the effect of non-transferred spatial frequencies are
significantly reduced in iteratively reconstructed objects. Finally, x-ray propaga-
tion microscopy on biological cells using waveguides as a quasi-point source
was demonstrated.
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The aim of this work was 1.) to design and fabricate optimized x-ray waveguides,
2.) to investigate their optical properties, and 3.) to demonstrate their use in
lensless imaging in combination with suitable phase retrieval algorithms.

In chapter 2 the theoretical background for propagation of x-ray fields in free
space is described based on the scalar wave theory. We address the projec-
tion approximation and the corresponding optical transmission function, the
contrast transfer function, the Fresnel scaling theorem, as well as object recon-
struction from the measured diffraction pattern. To this end, holographic and
iterative reconstruction methods, namely the Gerchberg-Saxton algorithm, the
error-reduction algorithm and the hybrid input-output algorithm, are compared
based on numerical simulations, in particular with regard to phase contrast
samples.

Image formation and reconstruction sensitively depend on the parameters of the
illumination function, such as extension, coherence, and curvature. In chapter
3 the optimization of waveguide optics for sample illumination is addressed.
The mode structure inside planar waveguide is computed based on analytical
and numerical calculations. To solve the problem of low transmission in par-
ticular for the desired small guiding core cross section, an optimized cladding
design is presented. Simulation shows that the transmission of a waveguide
is enhanced by more than factor of 6 by choosing an appropriate interlayer
(inner cladding) compared to a conventional waveguide. Importantly, the two-
component cladding yields an optimized transmission and mode structure for a
broad range of (hard x-ray) photon energies. Appropriate layer sequences are
worked out and compared using simulations. In particular, the beam diame-
ter of the waveguide exit field is determined as a function of the guiding layer
thickness. Based on an analogy to quantum-mechanical confinement of wave
functions [60], the limit of smallest beam confinement is studied and compared
to numerical results computed for the novel two-component waveguide design.

In chapter 4 the fabrication of waveguides with a Ge/Mo/C/Mo/Ge optical layer
sequence optimized for the hard x-ray range is presented. Magnetron sputtering
allows the deposition of layer sequences with well-defined thickness and low
interface roughness. To efficiently block primary x-ray beams not impinging
onto the optical layers, two techniques based on a bonding process by use of an
InSn alloy as well as electroless nickel plating are developed and ensure proper
capping and sealing of the optical films. By use of a focused ion beam, the
smeared entrance and exit sides of the waveguide slices can be polished and
cleaned. Finally, two-dimensionally confining compact waveguide systems are
obtained by gluing two planar waveguides in a crossed geometry.
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An extended study of planar two-component waveguides [20] as a function of
the guiding layer thickness, the waveguide length and the applied photon energy
has been carried out using an unfocused bending magnet beam, as presented
in chapter 5. The developed beam blocking materials prove suitable also at
high photon energies and short waveguide lengths. The angular acceptance and
transmission of the waveguides are in approximate agreement with simulations.
The experiments confirm that even for waveguides with 9 nm guiding layer
thickness high transmission above 20% can be achieved. The divergence in
terms of full width at half maximum of the 9 nm C waveguide is not much larger
than for 18 nm C guiding layer thickness. However, more pronounced tails of the
beam are observed, which may be employed to increase the effective numerical
aperture and thus resolution in waveguide-based x-ray imaging.
Significantly higher photon flux density exiting the waveguide is obtained by
using a pre-focused undulator beam. Experiments using a compact two-crossed
x-ray waveguide with a cross section of 35×35 nm2 exhibited a photon flux of
108 −109 ph/s [47]. Two-component waveguides supporting at least 2 modes
allow for considerably smaller source dimension than the cross-section of the
guiding core due to the mode beating effect. The reconstruction of the measured
far-field using an iterative reconstruction method demonstrates an effective
source size of sub-15 nm in both lateral dimensions in agreement with the
simulation.
The high divergence of the optimized planar and crossed waveguide system
is used for imaging in the holographic regime (chapter 6). Imaging of a well-
defined test pattern demonstrates a resolution down to 50 nm, whereas simula-
tion has predicted a possible resolution of sub-15 nm. Object reconstruction by
use of iterative algorithms reveals improved phase recovery compared to holo-
graphic reconstruction. Image artifacts related to the effect of non-transferred
spatial frequencies and the twin-image problem are significantly reduced. De-
pending on the total photon flux impinging onto the sample, the iteratively
reconstructed phase shifts are in good agreement with the expected theoretical
values for the binary valued test pattern. Thin biological samples act as pure
phase object in the hard x-ray range. As has been shown by imaging of isolated
cells, a hybrid input-output algorithm with a modified phase constraint can
be used to quantitatively reconstruct the object [11]. In particular, the recon-
structed phase distribution can be attributed to an effective electron density
map.

In summary, imaging with optimized waveguides enables high spatial resolution
in the hard x-ray range. Current limitations in coherence and source size have
been overcome using two-component cladding waveguides. Due to the high
divergence of the waveguide beam and the uniform illumination of the sample,
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current detector technology is fully exploited. The efficiency of the waveguides
especially in the energy range above 15 keV enables imaging of material science
and biological specimens as pure phase objects. This in turn allows the use of de-
terministic and fast converging algorithms for object reconstruction. Along with
the high photon flux provided by the pre-focused waveguide system it opens
a path for high resolution tomography on biological samples. Neither Fresnel
zone plate nor compound refractive lenses has reached two-dimensional beam
confinement down to 20 nm and below, in the hard x-ray range (at least not ac-
cording to published work). Furthermore, the high coherence of the waveguide
beam, decoupled from the source, presents a decisive advantage. In the future,
the potential of waveguide optics can be exploited at the holography endstation
of the P10 beamline [85], Petra III (Hamburg) dedicated inter alia to waveguide-
based imaging. In particular, the advantage of efficient Kirkpatrick-Baez mirror
pre-focusing and of the dedicated instrumentation can be exploited for more
challenging imaging experiments. The European free-electron laser currently
under construction will provide pulses with a duration of smaller than 100 fs,
containing 1012 −1013 transversely coherent photons at wavelength down to
0.1 nm [102]. Here, the use of waveguide optics could possibly help to define
the illumination wavefronts in a single pulse imaging experiment, which oth-
erwise would suffer from the statistical fluctuations inherent in the so-called
self-amplified stimulated emission (SASE) principle.





A Fourier analysis

This appendix summarizes fundamentals of the Fourier analysis relevant for
this work. We only state the theorems and refer the reader to standard textbooks
[22, 26] for more detail and proof.

A.1 Fourier transform

The two-dimensional Fourier transform of a function f (x, y) with respect to x
and y is defined by [23]

f̃ (kx ,ky ) ≡F [ f (x, y)] (A.1)

= 1

2π

�∞

−∞
f (x, y)exp

[−i (kx x +ky y)
]

d xd y,

with kx and ky being the Fourier variables which are respectively conjugate to x
and y .

A.2 Convolution theorem

The Fourier transform of the convolution

f (x, y)∗ g (x, y) ≡
�∞

−∞
f (x ′, y ′)g (x −x ′, y − y ′)d x ′d y ′ (A.2)

of two functions f (x, y) and g (x, y) is given by the product of their individual
Fourier transforms:

F [ f (x, y)∗ g (x, y)] = 2π {F [ f (x, y)]}× {F [g (x, y)]}. (A.3)

A.3 Fourier derivative theorem

The Fourier derivative theorem states that the operators ∂/∂x and ∂/∂y in real
space correspond to a multiplication with i kx and i ky , respectively, in Fourier
space:

F
[
∂m

∂xm

∂n

∂yn
f (x, y)

]
= (i kx)m(i ky )nF [ f (x, y)]. (A.4)

A.4 Friedel’s law

Friedel’s law is a property of Fourier transforms of real functions [24]. Given a
real function f (x), its Fourier transform has the following properties:

f̃ (kx) = f̃ ∗(−kx), (A.5)
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where f̃ ∗ is the complex conjugate of f̃ . The squared amplitude | f̃ |2 is cen-
trosymmetric:

| f̃ (kx)|2 = | f̃ (−kx)|2. (A.6)



B Image processing

B.1 Discrete Fourier transform

The use of computers generally imply a discretization of data. Hence, imaging-
related data processing relies on the discrete Fourier transform which is in the
one-dimensional case of an N long vector fm expressed by:

f̃n =F f = 1�
N

∑N−1
m=0 fm exp[2πi nm/N ] . (B.1)

By assuming f (x) continuous and periodic and by choosing an appropriately
narrow grid spacing Δx to sample the function, the following approximation can
be made

fm = f (mΔx). (B.2)

Accordingly, the Fourier transform is also sampled on a narrow grid spacing Δq

f̃n = f̃ (nΔq). (B.3)

The grid spacings in the discrete form of the Fourier transform are related to the
length N of the vectors fm and f̃n , respectively, by

ΔxΔq = 2π

N
. (B.4)

The numerical implementation of the discrete Fourier transform is optimized by
using the fast Fourier transform (FFT), whose computing time scales as N log(N )
instead of N 2 [103].

B.2 Grid spacing conversion

In section 1.1.4 we have shown that the Fraunhofer diffraction pattern ψz (x ′, y ′)
measured at a distance z in the detection plane is related to the object wave
ψ0(x, y) in the object plane by

ψz(x ′, y ′) = hz(x ′, y ′)ψ̃0(qx = k

z
x ′, qy = k

z
y ′), (B.5)

using slightly changed notations here. In the following we consider only the x-
coordinate pointing out that the same approach is valid for the y- coordinate
too. Assuming the diffraction pattern measured on a detector with pixel size Δx ′

Eq. (B.5) shows that the grid spacing in Fourier space is given by

Δqx = k

z
Δx ′. (B.6)
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According to Eq. (B.4) Δqx is related to the pixel size Δx in the object plane by
Δqx = 2π/(ΔxNx). Inserting this expression in Eq. (B.6) and rearranging the
parameters yields

Δx ′ = λz

ΔxNx
. (B.7)

Hence, the pixel size in the detection plane depends on the wavelength λ as
well as on the propagation distance z. Note that the propagation by use of the
free-space propagator or the Fresnel diffraction operator (see section 1.1.2 and
1.1.3, respectively) does not change the pixel size since both, the forward and
backward Fourier transform, are applied. However, imaging using a divergent
illumination function as it is the case in waveguide-based imaging results in a
magnified image of the object in the detection plane (see section 1.4). Applying
parallel beam reconstruction by Fresnel backpropagation the pixel size Δx in
the object plane is related to the pixel size Δx ′ in the detection plane through
the magnification factor M

Δx = Δx ′

M
= z1Δx ′

z1 + z2
, (B.8)

where z1 denotes the distance focal plane - object plane and z2 the distance
object plane - detection plane.

B.3 Sampling theorem

The sampling theorem was published by Shannon in the context of signal pro-
cessing [38]. The theorem states that an continuous and band-limited function
f̃ (q) with a range of frequencies from 0 to qN has to be sampled at a frequency
higher than 2qN to reconstruct exactly f (x). Here, the so-called Nyquist fre-
quency qN = NΔq/2 = π/Δx is the highest frequency present in the discrete
Fourier transformation for a given sampling interval Δx. The function f (x) is
band-limited if

f̃ (q) = 0 for |q| > B. (B.9)

Further, f (x) is called oversampled according to the Shannon theorem if the
condition B < qN is satisfied. On the other hand, a sampling interval larger than
1/(2Δx) leads to aliasing whereby frequencies higher than qN appear as lower
frequencies in f (x).
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B.4 Oversampling

In case of a diffraction pattern measured on a grid Nx × Ny , the term band-
limitation can be replaced by the term support [104]. The support S has a
maximum extent along each axis sx and sy where the function is non-zero.
In analogy to Eq. (B.9), the support constraint is given by |qx | > Nxπ/sx and
|qy | > Nyπ/sy , respectively, leading to the sampling condition

Δqx ≤ 2π

sx
, Δqy ≤ 2π

sy
. (B.10)

Since the diffraction pattern is only the intensity of the signal and phases are
not known, the sampling theorem has to be applied to the autocorrelation in
case of far-field diffraction pattern. In fact, the number of parameters we can
obtain from the intensity is equal to the number of independent parameters
from the autocorrelation. The autocorrelation is the Fourier transform of the
intensity. The extension of the autocorrelation support is ax = 2sx and ay = 2sy ,
respectively. Hence, aliasing in the autocorrelation is avoided if

Δqx ≤ π

sx
, Δqy ≤ π

sy
. (B.11)

Accordingly, the diffraction pattern is oversampled in the sense of Shannon if
Eq. (B.11) is satisfied. Equally, if the object is extended on an area AS (support
of the object function) and the computational field of view (FOV) is given by an
area AFOV, the Shannon oversampling criterion is fulfilled for

σ= AFOV

AS
≥ 4, (B.12)

where σ is the oversampling ratio. For demonstration of the oversampling crite-
rion, the autocorrelation of Siemens star object for different oversampling ratio
are shown in Fig. B.1.

A different approach to oversampling is derived from a lack of information
in the detection plane [104]. Assuming a complex-valued object function, 2NS
independent real variables are needed to be retrieved from the diffraction pat-
tern: NS variables related to amplitude information and NS variables related to
phase information. Now, if the object occupies the whole computational field of
view of AFOV the number of knowns in Fourier space is only NS since the phase
is missing. Accordingly, the oversampling condition can be expressed by [105]

σ= AFOV

NS
, (B.13)
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(a) (b) (c)

Figure B.1: Autocorrelation of the far-field intensity of the simulated Siemens

star test object (T = 0.93, φ= 0.4 rad) presented in section 1.5.3 for different

oversampling ratio σ. The field of view is AFOV = 5122 pixels for all images.

(a) σ= 1 (AS = 5122 pixels): the autocorrelation support is larger than AFOV,

i.e. the far-field pattern is not oversampled. (b) σ= 4 (AS = 2562 pixels): the

oversampling criterion is fulfilled, i.e. the far-field pattern is oversampled. (c)

σ= 16 (AS = 1282 pixels): again, the oversampling criterion is fulfilled. Note,

however, that the increased oversampling ratio does not provide additional

information for eventual reconstruction compared to the case σ= 4.

with σ≥ 2 being a necessary condition for a unique reconstruction.
The oversampling aspect is closely related to the problem of constraint suffi-
ciencies in iterative methods [106]. As mentioned above, applying the sampling
theorem to the diffraction pattern, the number of parameters we can obtain
from the intensity is equal to the number of independent parameters from
the autocorrelation. Regarding the fact that the measured intensity is a real
function, Friedel’s law is satisfied and according to Eq. (A.6) F−1[|Fψ(x, y)|2] =
F−1[|Fψ(−x,−y)|2], reducing the number of independent parameters to one
half. Thus, the constraint ratio can be written as [106]

Ω= 1

2

Aauto

AS
, (B.14)

where Aauto denotes the area of the autocorrelation support. Since the auto-
correlation support is twice as large as the diffraction pattern in each spatial
dimension, the constraint ratio condition Ω≥ 1 is analogue to the oversampling
condition σ≥ 2.
Obviously, the oversampling condition σ ≥ 2 for two-dimensional diffraction
pattern relaxes the Shannon oversampling criterion. To further investigate
the effect of relaxed oversampling criteria, we simulated the Siemens star test
object for 2 ≤ σ < 4. The field of view is AFOV = 5122 pixels and the object
function extension is chosen to AS = 3502 pixels in the simulation resulting in
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σ= 2.1. First, we consider a complex-valued object function with T = 0.93 and
φ= 0.4 rad.
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Figure B.2: (a) Amplitude of a Siemens star test object given a oversampling

condition σ= 2.1. (b) Phase reconstruction from the far-field intensity of the

complex-valued Siemens star object function shown in subfigure (a) after

application of Nit = 20000 iteration steps using the HIO algorithm. Phase

recovery is limited. (c) Phase reconstruction from the far-field intensity

now of a pure phase Siemens star object after application of Nit = 10000
iteration steps using the HIO algorithm. Improved phase recovery compared

to (b) but still significantly reduced reconstruction convergence compared

to Shannon oversampled reconstruction.

Fig. B.2 (a) shows the amplitude of the Siemens star object. The phase reconstruc-
tion after Nit = 20000 iteration steps of the HIO algorithm is presented in Fig. B.2
(b). The edge structures delimiting the void areas and phase shifting areas of the
Siemens star can be recognized from the reconstruction. However, the global
phase recovery of the object is random. Note that after approximately Nit = 150
iteration steps the edge structures of the Siemens star are recovered. Further iter-
ation steps do not significantly improve the phase recovery. Fig. B.2 (c) shows the
phase reconstruction of a pure phase Siemens star object (T = 1, φ= 0.4 rad) af-
ter Nit = 10000 iteration steps. Here, the phase recovery is significantly improved
compared to the previously mentioned reconstruction. However, compared
to the Shannon oversampled Siemens star presented in section 1.5.3 phase
recovery is still poor. Note that in view of comparableness we did not apply
the additional real-space constraint of the amplitude to be one (GS real-space
constraint) in the HIO algorithm. In summary, the oversampling criterion σ≥ 2
indicates only a necessary condition for reconstruction of far-field pattern but
does not ensure reconstruction to a global minimum solution [42].
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B.5 Oversampling of Fresnel pattern

As presented in section 1.1.3, propagation of Fresnel pattern involves the use
of the forward and inverse Fourier transformation. Hence, the autocorrelation
of the object function does not provide information on oversampling criterion
of the diffraction pattern. Further, propagation by application of the Fresnel
diffraction operator DF

z

ψz(x, y) =DF
z ψ0(x, y) (B.15)

= exp(i kz)F−1 exp

[
i z(k2

x +k2
y )

2k

]
Fψ0(x, y) (B.16)

includes the use of the Fresnel propagator given by

H(kx ,ky ) = exp(i kz)exp

[
i z(k2

x +k2
y )

2k

]
(B.17)

in Fourier space. Eq. (B.16) yields an adequate analysis of the Fresnel pattern
if the Shannon sampling condition is fulfilled [107]. Difficulties appear if the
frequencies of the quadratic phase factor are higher than those of the object, i.e.
if these higher frequencies of the propagator kernel are not sufficiently sampled
[108]. As discussed in [40], extracting the phase function of Eq. (B.17) in case of
backpropagation leads to

φH (νx ,νy ) =−πλz(ν2
x +ν2

y ), (B.18)

with νx = kx /(2π), νy = ky /(2π) and k = 2π/λ. In the following, we consider only
one dimension since the sampling criterion for the two orthogonal variables can
be analyzed individually. Assuming a uniform grid spacing Δνx in Fourier space,
the condition for the unaliased representation of the phase can be expressed by
[40]

Δνx

∣∣∣∣∂φH (νx ,νy )

∂νx

∣∣∣∣
max

≤π. (B.19)

Note that, since the phase appears as a complex exponential term it is also
encoded in a modulo 2π format. Eq. (B.19) exhibits the maximum phase shift
must be less or equal π between two adjacent grid samplings. The derivative is
calculated to

∂φH (νx ,νy )

∂νx
=−2πλzνx . (B.20)
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For fixed experimental conditions, λ and z are constants and the derivative term
reaches a maximum for νx = νxmax . Setting the slope maximum in Eq. (B.19) and
rearranging parameters leads to

Δνx ≥ 1

2λz
∣∣νxmax

∣∣ . (B.21)

Assuming that the computational field of view has an extent of Lx =ΔxNx the
grid spacing in Fourier space yields Δνx = 1/Lx . The highest spatial frequency is
given by the Nyquist rate νxmax = 1/(2Δx). Using Δνx = 1/Lx and νxmax = 1/(2Δx)
and solving Eq. (B.21) forΔx leads to the real-space criterion for the oversampled
H function:

Δx ≥ λz

Lx
. (B.22)

Hence, aliasing in the Fresnel propagator is avoided if the condition given by Eq.
(B.22) is fulfilled.

B.6 Uniqueness of reconstruction

Elser and Millane stated [106], that the degree of nonuniquness in a reconstruc-
tion is very limited in case of a constraint ratio Ω > 1 for space dimensions
d ≥ 2. A Shannon oversampled diffraction pattern has a constraint ratio Ω≥ 2
in case of a convex and centrosymmetric support. Moreover, it was shown that
for almost all finite-extent discrete diffraction patterns reconstruction of the
complex-valued object is unique even in the presence of noise [109, 110]. The
proof relies on the fact that complex functions in more than one dimension can
usually not be factorized [111]. However, a two-dimensional complex-valued
object can be reduced to a factorizable one-dimensional function in case of
symmetries such as radial symmetry [112]. Thus, a Siemens star without an ad-
ditional symmetry breaking object property cannot be uniquely reconstructed.
The HIO algorithm enabled the succesful reconstruction of the Shannon over-
sampled Siemensstar as shown in Fig. 1.7. Reconstruction of the same object us-
ing the ER algorithm failed as the algorithm stagnated in a non-unique solution.
Apart from the considerations presented above, a further aspect of nonunique-
ness has to be taken into account as discussed in [39]. The object ψ(x, y) and its
twin ψ∗(−x,−y), the complex conjugated object rotated by 180°, have the same
Fourier modulus. Furthermore, both objects have the same support since their
support is symmetric with respect to the 180°-rotation. Starting from a random
initial guess there is an equal probability that the algorithm will reconstruct
one of the two objects. As the real-space and Fourier-space constraints in the
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iterative algorithm do not distinguish between both object, characteristics of
the two images can be reconstructed coevally. If the twin image can not be
eliminated during reconstruction, i.e. convergence to one solution can not be
achieved, the ER algorithm is trapped in a local minimum [39]. This problem
particularly arises if the non-unique solution is close to the global minimum, i.e.
the error in the reciprocal space is small.

Note that the ambiguities of ψ(x, y), ψ(x −x0, y − y0), ψ(x, y)eiϕ and ψ∗(−x,−y)
having all the same Fourier modulus is usually not referred to the uniqueness
problem but rather to the local minima problem. The same holds for objects that
belong to the class of homometric structures, i.e object functions h(x, y) that
may be described by two isolated object distributions f (x, y) and g (x, y) through
the convolution theorem [113]. Then for g (x, y) �= g∗(−x,−y), the diffraction
pattern of h(x, y) = f (x, y)∗ g (x, y) and h′(x, y) = f (x, y)∗ g∗(−x,−y) cannot be
distinguished using oversampling methods.

The iterative phase retrieval methods presented in section 1.5.2 are independent
of the nature of the illumination function. Nugent et al. proposed an algorithm
in which at each iteration step in the object plane the wavefront curvature used
to obtain the diffraction pattern is replaced by the curvature corresponding to
the next set of diffraction data [114]. In fact, by introducing the phase perturba-
tion the uncertainties in the phase due to symmetries within the discontinuity
structure are supposed to be overcome and therefore, reconstruction is unique.
In order to use the curvature data as the only real-space constraint, the diffrac-
tion data has to be recorded for varying object-to-focal plane distances. Williams
et al. used the retrieved wavefront information combined with the support con-
straint of the object for a unique reconstruction of a Fresnel diffraction pattern
and called this method Fresnel coherent diffractive imaging (FCDI) [7]. Due
to the need of a support constraint, only isolated objects can be reconstructed
using FCDI. Hoppe et al. proposed the ptychography algorithm [115] which
allows for reconstruction of extended objects. This method was first demon-
strated experimentally in scanning electron microscopy [116] and further on
applied to coherent diffractive x-ray imaging [117, 118, 119]. Ptychography relies
on measuring different diffraction pattern in a scanning procedure. A necessary
condition for efficient reconstruction is fulfilled if the different illuminated areas
overlap. Similar to FCDI uniqueness is obtained by reconstructing the illumi-
nation function which on the other hand is obtained at the same time as the
reconstruction of the optical transmission function. FCDI and ptychography can
both be applied in waveguide-based imaging, the latter has been demonstrated
experimentally [120].
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B.7 Source code in MATLAB

Phase retrieval simulations

HIO_FFT.m
1 %% reconstruction of a simulated Siemens star object from the measured intensity in the far-field using the HIO algorithm
2 clear all;
3 close all;
4 addpath(’/home/skrueger/PHD/Diss_vs3/matlab_tools/tools/’);
5
6 %% parameters
7 % energy [keV]
8 E = 17.5;
9 % wavelength [m]

10 lambda = 12.398/E*1E-10;
11 % wave-number [1/m]
12 k = 2*pi/lambda;
13 % thickness sample [m]
14 t = 500e-9;
15 % Ta index of refraction (source: CXRO)
16 delta = 9.0368e-6;
17 beta = 8.1756e-7;
18
19 %% create object
20 % size of the field of view
21 Nim = 512;
22 % size of the object
23 Ns = 256;
24 % real part of the object
25 ima = zeros(Nim,Nim);
26 imas = star(Ns,20,Ns);
27 imas = exp(-k*beta*t.*imas);
28 ima((Nim/2-Ns/2+1):(Nim/2+Ns/2),(Nim/2-Ns/2+1):(Nim/2+Ns/2)) = imas;
29 % imaginary part of the object
30 imp = zeros(Nim,Nim);
31 imps = star(Ns,20,Ns);
32 imp((Nim/2-Ns/2+1):(Nim/2+Ns/2),(Nim/2-Ns/2+1):(Nim/2+Ns/2)) = imps;
33 imp = exp(-1i*k*delta*t.*imp);
34 % object
35 im = ima.*imp;
36
37 %% intensity in the detection plane
38 I = (abs(fftshift(fft2(im))).^2);
39
40 %% autocorrelation
41 Auto = fftshift(ifft2(I));
42
43 %% support
44 supp = zeros(size(im));
45 supp((Nim/2-Ns/2):(Nim/2+Ns/2-1),(Nim/2-Ns/2):(Nim/2+Ns/2-1)) = 1;
46
47 %% initial guess
48 clear x; clear err;
49 x = 0.5*rand(size(I)).*exp(0.05*1i.*rand(size(I)));
50
51 %% HIO algorithm
52 % beta parameter
53 beta = 1;
54 % initial guess in the object plane
55 in = x;
56 figure;
57 for l = 1:1:1000
58 n=n+1;
59 X = fft2(in);
60 % fourier-space constraint
61 out = ifft2(fftshift(sqrt(I)).*X./abs(X + eps));
62 % real-space constraint
63 in = supp.*out + (1-supp).*(in-beta*out);
64 % reconstruction error
65 err(l) = sum(sum(abs(I-(abs(fftshift(fft2(in.*supp))).^2)))) ./ sum(sum(I));
66 subplot(2,2,1); imagesc(abs(im)); colormap gray; axis equal tight; colorbar; title(’original image: amplitude’); caxis

([0.9 1.05]); drawnow;
67 subplot(2,2,2); imagesc(abs(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed amplitude’); caxis

([0.9 1.05]); drawnow;
68 subplot(2,2,3); imagesc(mod(angle((in)),2*pi)); colormap gray; axis equal tight; colorbar; title(’reconstructed phase’

); drawnow;
69 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
70 end
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star.m
1 %% create star
2 % Author: Martin Tolkiehn
3
4 function [s]=star( r, a, N )
5 s=linspace( -N/2, N/2-1, N);
6 s=repmat(s,N,1);
7 s=s+i*s’;
8
9 s=(abs(s)<r).*(sin(a*angle(s))>0);

holo_recon.m
1 %% holographic reconstruction of a simulated Siemens star object from the measured intensity in the Fresnel near-field
2
3 %% for parameters and create object see HIO_FFT.m
4
5 %% propagation to the detection plane using the free-space propagator
6 % total number of elements
7 N = numel(im);
8 % number of pixels
9 [Ny,Nx] = size(im);

10 % propagation distance in the effective geometry
11 z_eff = 4.48e-3;
12 % magnification factor
13 M = 690.7321;
14 % magnified pixel size in sample plane
15 dx_det = 55e-6;
16 dy_det = 55e-6;
17 % pixel size in sample plane
18 dx = dx_det/M;
19 dy = dx_det/M;
20 % coordinate system in sample plane
21 [X,Y] = meshgrid(dx*((1:1:Nx)-floor(Nx/2)-1),dy*((1:1:Ny)-floor(Ny/2)-1));
22 % magnified coordinate system in detector plane
23 [X_det,Y_det] = meshgrid(dx_det*((1:1:Nx)-floor(Nx/2)-1),dy_det*((1:1:Ny)-floor(Ny/2)-1));
24 % grid conversion in q-space
25 dqx = 2*pi/(Nx*dx);
26 dqy = 2*pi/(Ny*dy);
27 % coordinate system in q-space
28 [Qx,Qy] = meshgrid(dqx*((1:1:Nx)-floor(Nx/2)-1),dqy*((1:1:Ny)-floor(Ny/2)-1));
29
30 % for the free-space propagator
31 kappa = sqrt(k^2-(Qx.^2+Qy.^2));
32 % propagated object
33 Im = fftshift(ifft2(fft2(ifftshift(im)).*ifftshift(exp(1i*kappa*z_eff))));
34 % intensity in the detector plane
35 I = (abs(Im)).^2;
36
37 %% holographic reconstruction
38 in = fft2(ifft2(I).*ifftshift(exp(-1i*kappa*z_eff)));
39 % plot
40 figure;
41 imagesc(mod(angle(in),2*pi)); colormap gray; axis equal tight; colorbar; title(’reconstructed phase’);

GS_Fresnel.m
1 %% reconstruction of a simulated Siemens star object from the measured intensity in the Fresnel near-field using the GS

algorithm
2
3 %% for parameters, create object and propagation tools see above
4
5 %% GS algorithm
6 close all
7 clear x; clear err in;
8 % first guess
9 psi_ampl = rand(size(I));

10 in = psi_ampl.*1i*rand(size(I));
11 % beta parameter
12 beta = 1;
13 figure;
14 n = 0;
15 for l = 1:2000
16 n=n+1;
17 In = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
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18 % fourier-space constraint
19 In = sqrt(I).*(In./abs(In));
20 in = fftshift(ifft2(fft2(ifftshift(In)).*ifftshift(exp(-1i*kappa*z_eff))));
21 % real-space constraint
22 psi_ampl = ones(size(in));
23 in = psi_ampl.*(in./abs(in));
24 % reconstruction error
25 err(l) = sum(sum(abs(sqrt(I)-(abs(fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2) ./ sum(

sum(I));
26 if (n==100)
27 subplot(2,2,1); imagesc(angle(im)); colormap gray; axis equal tight; colorbar; title(’original image: phase’); drawnow;

28 subplot(2,2,2); imagesc(abs(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed amplitude’); drawnow;

29 subplot(2,2,3); imagesc(angle(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed phase’); caxis
([1.3 1.8]); drawnow;

30 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
31 n = 0;
32 end
33 end

ER-GS_Fresnel.m
1 %% reconstruction of a simulated Siemens star object from the measured intensity in the Fresnel near-field using the ER-GS

algorithm
2
3 %% for parameters, create object and propagation tools see above
4
5 %% support
6 supp = zeros(size(im));
7 supp((Nim/2-Ns/2):(Nim/2+Ns/2-1),(Nim/2-Ns/2):(Nim/2+Ns/2-1)) = 1;
8
9 %% ER-GS algorithm

10 close all
11 clear x; clear err in;
12 % first guess
13 psi_ampl = rand(size(I));
14 in = psi_ampl.*1i*rand(size(I));
15 % beta parameter
16 beta = 1;
17 figure;
18 n = 0;
19 for l = 1:2000
20 n=n+1;
21 In = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
22 % fourier-space constraint
23 In = sqrt(I).*(In./abs(In));
24 in = fftshift(ifft2(fft2(ifftshift(In)).*ifftshift(exp(-1i*kappa*z_eff))));
25 % real-space constraint
26 in = supp.*(in./abs(in));
27 % reconstruction error
28 err(l) = sum(sum(abs(sqrt(I)-(abs(fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2) ./ sum(

sum(I));
29 if (n==100)
30 subplot(2,2,1); imagesc(angle(im)); colormap gray; axis equal tight; colorbar; title(’original image: phase’); drawnow;

31 subplot(2,2,2); imagesc(abs(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed amplitude’); drawnow;

32 subplot(2,2,3); imagesc(angle(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed phase’); caxis
([1.3 1.8]); drawnow;

33 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
34 n = 0;
35 end
36 end

HIO_Fresnel.m
1 %% reconstruction of a simulated Siemens star object from the measured intensity in the Fresnel near-field using the ER-GS

algorithm
2
3 %% for parameters, create object and propagation tools see above
4
5 %% support
6 supp = zeros(size(im));
7 supp((Nim/2-Ns/2):(Nim/2+Ns/2-1),(Nim/2-Ns/2):(Nim/2+Ns/2-1)) = 1;
8
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9 %% HIO algorithm
10 close all
11 clear x; clear err in;
12 % first guess
13 psi_ampl = rand(size(I));
14 in = psi_ampl.*1i*rand(size(I));
15 % beta parameter
16 beta = 1;
17 figure;
18 n = 0;
19 for l = 1:2000
20 n=n+1;
21 In = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
22 % fourier-space constraint
23 In = sqrt(I).*(In./abs(In));
24 out = fftshift(ifft2(fft2(ifftshift(In)).*ifftshift(exp(-1i*kappa*z_eff))));
25 % real-space constraint
26 in = supp.*out + (1-supp).*(in-beta*out);
27 % reconstruction error
28 err(l) = sum(sum(abs(sqrt(I)-(abs(fftshift(ifft2(fft2(ifftshift(supp.*in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2)

./ sum(sum(I));
29 if (n==100)
30 subplot(2,2,1); imagesc(angle(im)); colormap gray; axis equal tight; colorbar; title(’original image: phase’); drawnow;

31 subplot(2,2,2); imagesc(abs(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed amplitude’); drawnow;

32 subplot(2,2,3); imagesc(angle(in)); colormap gray; axis equal tight; colorbar; title(’reconstructed phase’); drawnow;
33 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
34 n = 0;
35 end
36 end

Iterative reconstruction of the waveguide near-field

WG_ER.m
1 % Reconstruction of the waveguide near-field from the measured far-field using the ER algorithm
2 clear all;
3 close all;
4 % Parameter declaration
5 data_dir = ’/home/AG_Salditt/Messzeiten/2009/ID22_SC2732/Auswertung/SPK/linux/IC35nm_NTT_ff_zucker/’;
6 filename = ’ff_combined_clean.mat’;
7 load([data_dir filename]);
8 % cleaned far-field
9 I_exp = ccd_m(:,4:end);

10 % enlarge grid
11 m = 19;
12 Dummy = zeros(size(I_exp));
13 dummy = repmat(Dummy,m,m);
14 dummy((m-1)/2*size(I_exp,1)+1:(m+1)/2*size(I_exp,1),(m-1)/2*size(I_exp,2)+1:(m+1)/2*size(I_exp,2)) = I_exp;
15 I_exp = dummy;
16 % center far-field
17 cy = 6100;
18 cx = 7170;
19 % number of pixels
20 Nx = 4000;
21 Ny = 4000;
22 I_exp_cen = I_exp(cy-Ny/2:cy+Ny/2-1,cx-Nx/2:cx+Nx/2-1);
23
24 %% parameters and coordinate systems
25 % energy in [keV]
26 E = 17.5;
27 % wavelength in [m]
28 lambda = 12.398/E*1E-10;
29 k = 2*pi/lambda;
30 % propagation distance
31 z12 = 3.09;
32 % pixel size detection plane
33 d2x = 55*1E-6;
34 d2y = 55*1E-6;
35 [X_2,Y_2] = meshgrid(d2x*((1:Nx)-floor(Nx/2)-1),d2y*((1:Ny)-floor(Ny/2)-1));
36 % pixel width in WG plane
37 d1x = lambda*z12/(d2x*Nx);
38 d1y = lambda*z12/(d2y*Ny);
39 [X_1,Y_1] = meshgrid(d1x*((1:Nx)-floor(Nx/2)-1),d1y*((1:Ny)-floor(Ny/2)-1));
40 % coordinate system in Fourier space
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41 dq2x = 2*pi/(Nx*d1x);
42 P.dq2x = dq2x;
43 dq2y = 2*pi/(Ny*d1y);
44 P.dq2y = dq2y;
45 [Q2_x,Q2_y] = meshgrid(dq2x*((1:Nx)-floor(Nx/2)-1),dq2y*((1:Ny)-floor(Ny/2)-1));
46
47 %% autocorrelation
48 auto = fftshift(fft2(fftshift(I_exp_cen)))/sqrt(numel(I_exp_cen));
49
50 %% support
51 supp = max(rectang_erf(X_1,Y_1,0,0,150e-9,150e-9,0,10e-9),0);
52
53 %% initial guess: Gaussian
54 % initial guess FWHM values of WG beam at exit surface
55 FWHM_x = 35e-9;
56 sigma_x = FWHM_x/(2*sqrt(2*log(2)));
57 FWHM_y = 35e-9;
58 sigma_y = FWHM_y/(2*sqrt(2*log(2)));
59 psi_start = 1/sqrt(4*pi^2*(sigma_x^2*sigma_y^2))*exp(-X_1.^2/(2*sigma_x^2) - Y_1.^2/(2*sigma_y^2));
60
61 %% ER reconstruction
62 clear err in;
63 in = psi_start;
64 figure
65 for l=1:1:3
66 In = fft2(in);
67 % fourier-space constraint
68 In = sqrt(fftshift(I_exp_cen)).*In./abs(In + eps);
69 in = ifft2(In);
70 % real-space constraint
71 in = supp.*in;
72 % reconstruction error
73 err(l) = sum(sum(abs((I_exp_cen)-(abs(fftshift(fft2(in.*supp))).^2)))) ./ sum(sum(I_exp_cen));
74 subplot(2,2,2); plot(err);title(num2str(l)); drawnow;
75 subplot(2,2,1); imagesc(abs(in)); axis equal; colormap gray; axis tight;title(’reconstructed amplitude’);drawnow;
76 subplot(2,2,3), imagesc(angle(in)); axis equal; axis tight;title(’reconstructed phase’); drawnow;
77 subplot(2,2,4); imagesc(supp); axis equal; axis tight;title(’support’); drawnow;
78 end

Holographic reconstruction of measured holograms

holo_recon_scan.m
1 %% holographic reconstruction of the measured Siemens star holograms (mesh scan)
2 %% each hologram is reconstructed individually and the reconstructions are then stitched together
3 clear all;
4 close all
5 % import all cleaned ccd images of the mesh scan
6 load ’/home/AG_Salditt/Publikationen/in_preparation_submitted_2009/Krueger_etal_crossedWG/fig4_siemens/IC35nm_NTT_mesh2

/0912/data_div.mat’;
7
8 %% parameters
9 % energy in keV

10 E = 17.5;
11 % wavelength [m]
12 lambda = 12.4397/E*1E-10;
13 k = 2*pi/lambda;
14 % distance source-sample [m]
15 z1 = 4.48e-3;
16 % distance sample-detector [m]
17 z2 = 3.09;
18 % effective distance of detector
19 z_eff = z1*z2/(z1+z2);
20 % effective magnification factor
21 M = (z1+z2)/z1;
22 % pixel size in detection plane
23 dx_det = 55e-6;
24 dy_det = 55e-6;
25 % pixel size in sample plane
26 dx = dx_det/M;
27 dy = dx_det/M;
28 % step size in pixel of mesh scan
29 step1 = 25,25;
30 step2 = 24;
31 % regridding: interpolation factor
32 m = 2;
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33 % section of the reconstructed image
34 a1 = 115*m;
35 b1 = 141*m;
36 a2 = b1 + step1*m*15;
37 a3 = b1 + step2*m*15;
38 % number of pixels
39 Nxs = a2-a1;
40 Nys = a2-a1;
41 % grid parameters
42 step3 = step1*m;
43 step4 = step2*m
44 % create matrix (15 x 15 scan points)
45 A_psi = zeros(m*256+15*step3,m*256+15*step4);
46
47 %% reconstruction with gridding
48 for c = 1:16
49 for d = 1:16
50 I_exp = data{(c-1)*16+d};
51 I_exp = I_exp/mean(mean(I_exp));
52 % total number of elements
53 N = numel(I_exp);
54 %number of pixels
55 [Ny,Nx] = size(I_exp);
56 % magnified coordinate system in detector plane
57 [X_det,Y_det] = meshgrid(dx_det*((1:1:Nx)-floor(Nx/2)-1),dy_det*((1:1:Ny)-floor(Ny/2)-1));
58 % coordinate system in sample plane
59 [X,Y] = meshgrid(dx*((1:1:Nx)-floor(Nx/2)-1),dy*((1:1:Ny)-floor(Ny/2)-1));
60 % regridding
61 [XI,YI] = meshgrid(dx/m*((1:Nx)-floor(Nx/2)-1),dy/m*((1:Ny)-floor(Ny/2)-1));
62 I_exp = interp2(X,Y,I_exp,XI,YI,’spline’);
63 %number of pixels after regridding
64 [Ny,Nx] = size(I_exp);
65 % demagnified pixel size in sample plane
66 dx = dx_det/M/m;
67 dy = dy_det/M/m;
68 % grid conversion in q-space
69 dqx = 2*pi/(Nx*dx);
70 dqy = 2*pi/(Ny*dy);
71 % coordinate system in q-space
72 [Qx,Qy] = meshgrid(dqx*((1:1:Nx)-floor(Nx/2)-1),dqy*((1:1:Ny)-floor(Ny/2)-1));
73 % estimation of Poissonian error
74 sigma = sqrt(I_exp);
75 % reconstruction
76 kappa = sqrt(k^2-(Qx.^2+Qy.^2));
77 psi_recon = fft2(ifft22(I_exp).*fftshift(exp(-1i*kappa*z_eff)));
78 % smoothing by use of a Gaussian
79 gaussenveloppe = zeros(256*m,256*m);
80 for ii = 1:256*m
81 for jj = 1:256*m
82 gaussenveloppe(ii,jj)=gaussenveloppe(ii,jj)+exp(-(ii-128*m)^2/(100*m)^2-(jj-128*m)^2/(100*m)^2);
83 end
84 end
85
86 for ii = 1:256*m
87 for jj = 1:256*m
88 gaussenveloppe(ii,jj)=gaussenveloppe(ii,jj)+exp(-(ii-128)^2/100-(jj-128)^2/100);
89 end
90 end
91 % filling of the matrix with reconstructed images (stitching)
92 A_psi(a1+step3*(c-1):b1+step3*(c-1),a1+step4*(d-1):b1+step4*(d-1)) = A_psi(a1+step3*(c-1):b1+step3*(c-1),a1+

step4*(d-1):b1+step4*(d-1)) + psi_recon(a1:b1,a1:b1);
93 end
94 end
95
96 %% plot reconstruction
97 figure;
98 imagesc(Nxs*dx/m*linspace(0,1,Nys)*1E6, Nys*dx/m*linspace(0,1,Nxs)*1E6,mod(angle(A_psi(a1:a2,a1:a3)),2*pi)’);
99 colormap gray;

100 axis equal ;
101 colorbar
102 caxis([2.3 3.2]);
103 axis off;
104 % scale bar
105 line(linspace(13,15,10),linspace(14,14,10),’LineWidth’,8,’Color’,’w’);
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Iterative reconstruction of measured holograms

GS-Gaussian_GS.m
1 %% reconstruction of a hologram using the GS-Gaussian GS algorithm
2
3 %% I_exp is the normalized hologram
4
5 %% initial guess: holographic reconstruction
6 psi_recon_holo = ifft2(fft2(sqrt(I_exp)).*ifftshift(exp(-i*kappa*z_eff)));
7
8 %% stop criterion: algoritm stopps when err < sigma
9 % WG is the waveguide far-field

10 sigma = sqrt(mean2(2./WG))
11
12 %% create Gaussian with a 1 pixel variance
13 gaussenveloppe = zeros(size(I_exp));
14 sigmagauss = 1;
15 for ii = 1:sqrt(numel(I_exp))
16 for jj = 1:sqrt(numel(I_exp))
17 gaussenveloppe(ii,jj)=gaussenveloppe(ii,jj)+exp(-(ii-sqrt(numel(I_exp))/2)^2/(sigmagauss)^2-(jj-sqrt(numel(I_exp))/2)

^2/(sigmagauss)^2);
18 end;
19 end;
20 gaussenveloppe = gaussenveloppe(sqrt(numel(I_exp))/2-10:sqrt(numel(I_exp))/2+10,sqrt(numel(I_exp))/2-10:sqrt(numel(I_exp))

/2+10);
21
22 %% GS-Gaussian reconstruction
23 clear err in
24 % initial guess
25 in = psi_recon_holo;
26 % number of iterations
27 N = 100;
28 scrsz = get(0,’ScreenSize’);
29 figure(’Position’,[scrsz(3)/24 scrsz(4)/4.2 scrsz(3)/1.1 scrsz(4)/1.5]);
30 for l = 1:N
31 Psi_recon = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
32 % fourier-space constraint
33 Psi_recon = sqrt(I_exp).*(Psi_recon./abs(Psi_recon));
34 in = fft2(ifft2(Psi_recon).*ifftshift(exp(-1i*kappa*z_eff)));
35 % convolution of the iterate with 1 pixel variance Gaussian function
36 in = conv2(in,gaussenveloppe,’same’);
37 % real-space constraint
38 psi_ampl = ones(size(in));
39 in = psi_ampl.*(in./abs(in));
40 % error metric
41 err(l) = sum(sum(abs(sqrt(I_exp)-(abs(fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2) ./

sum(sum(I_exp));
42 subplot(2,2,1); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(psi_recon_holo)); colormap gray;

axis equal tight; colorbar; title(’holo reconstructed phase’);caxis([-0.9 -0.4]);drawnow;
43 subplot(2,2,2); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(in)); colormap gray; axis equal

tight; colorbar; title(’reconstructed phase’); caxis([-0.9 -0.4]); drawnow; %caxis([4.85,5.35]);
44 subplot(2,2,3); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,abs(in)); colormap gray; axis equal

tight; colorbar; title(’reconstructed amplitude’); drawnow;
45 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
46 % algorithm stop-criterion
47 if err(l) <= sigma
48 break;
49 end
50 end
51
52 %% GS reconstruction
53 clear err
54 % number of iterations
55 N = 100;
56 scrsz = get(0,’ScreenSize’);
57 figure(’Position’,[scrsz(3)/24 scrsz(4)/4.2 scrsz(3)/1.1 scrsz(4)/1.5]);
58 for l = 1:N
59 Psi_recon = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
60 % fourier-space constraint
61 Psi_recon = sqrt(I_exp).*(Psi_recon./abs(Psi_recon));
62 in = fft2(ifft2(Psi_recon).*ifftshift(exp(-1i*kappa*z_eff)));
63 % real-space constraint
64 psi_ampl = ones(size(in));
65 in = psi_ampl.*(in./abs(in));
66 % error metric
67 err(l) = sum(sum(abs(sqrt(I_exp)-(abs(fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2) ./

sum(sum(I_exp));
68 subplot(2,2,1); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(psi_recon_holo)); colormap gray;

axis equal tight; colorbar; title(’holo reconstructed phase’);drawnow;
69 subplot(2,2,2); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(in)); colormap gray; axis equal

tight; colorbar; title(’reconstructed phase’); drawnow;
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70 subplot(2,2,3); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,abs(in)); colormap gray; axis equal
tight; colorbar; title(’reconstructed amplitude’); drawnow;

71 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
72 % algorithm stop-criterion
73 if err(l) <= sigma
74 break;
75 end
76 end

ER_min-max.m
1 %% reconstruction of a hologram using the GS-Gaussian GS algorithm
2
3 %% I_exp is the normalized hologram
4
5 %% initial guess: holographic reconstruction
6 psi_recon_holo = ifft2(fft2(sqrt(I_exp)).*ifftshift(exp(-i*kappa*z_eff)));
7
8 %% stop criterion: algoritm stopps when err < sigma
9 % WG is the waveguide far-field

10 sigma = sqrt(mean2(2./WG))
11
12 %% ER_min-max algorithm
13 clear err in
14 % initial guess
15 in = psi_recon_holo;
16 % number of iterations
17 N = 100;
18 scrsz = get(0,’ScreenSize’);
19 figure(’Position’,[scrsz(3)/24 scrsz(4)/4.2 scrsz(3)/1.1 scrsz(4)/1.5]);
20 for l = 1:N
21 Psi_recon = fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff))));
22 % fourier-space constraint
23 Psi_recon = sqrt(I_exp).*(Psi_recon./abs(Psi_recon));
24 in = fft2(ifft2(Psi_recon).*ifftshift(exp(-1i*kappa*z_eff)));
25 % real-space constraint
26 psi_ampl = abs(in);
27 I_max = 1.0; % maximum transmission value of the object
28 I_min = 0.9644; % minimal transmission value of the object
29 psi_ampl = min(I_max,psi_ampl);
30 psi_ampl = max(I_min,psi_ampl);
31 in = psi_ampl.*(in./abs(in));
32 % error metric
33 err(l) = sum(sum(abs(sqrt(I_exp)-(abs(fftshift(ifft2(fft2(ifftshift(in)).*ifftshift(exp(1i*kappa*z_eff)))))))).^2) ./

sum(sum(I_exp));
34 subplot(2,2,1); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(psi_recon_holo)); colormap gray;

axis equal tight; colorbar; title(’holo reconstructed phase’);drawnow;
35 subplot(2,2,2); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,angle(in)); colormap gray; axis equal

tight; colorbar; title(’reconstructed phase’); drawnow;
36 subplot(2,2,3); imagesc(Nx*dx*linspace(0,1,Ny)*1E6,Nx*dx*linspace(0,1,Nx)*1E6,abs(in)); colormap gray; axis equal

tight; colorbar; title(’reconstructed amplitude’); drawnow;
37 subplot(2,2,4); plot(err); title([’iteration’ num2str(l)]); drawnow;
38 % algorithm stop-criterion
39 if err(l) <= sigma
40 break;
41 end
42 end
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