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The fusion of two biological membranes is an important step in many pro-
cesses on the cellular and sub-cellular level. Understanding the involved in-

terplay of different lipid species, a specialized protein machinery and water on 
length scales of few nanometers poses a significant challenge to current structu-
ral biology. Among several complementary approaches, one strategy is to study 
the structural rearrangements of the lipid matrix. As the initial step, lipid bilayers 
must be forced into close contact to form a non-bilayer intermediate termed a 
stalk. This has been the subject of numerous theoretical studies and simulations, 
but experimental data on stalks are largely lacking. Currently, the only way to 
obtain structural information at the required sub-nanometer resolution is x-ray 
diffraction on the recently discovered “stalk phase” formed by certain lipids. We 
apply this method to elucidate the effect of lipid composition on stalk geometry 
and the repulsive forces between lipid bilayers prior to stalk formation. An ap-
proach based on differential geometry of electron density isosurfaces is introdu-
ced to analyze the curvatures and bending energies of the lipid monolayers. For 
the first time, this connects experiment-based structures of stalks and the as-
sociated bending and hydration energies. In addition, this thesis aims to provide 
a self-contained introduction to the required background in x-ray diffraction on 
lipid mesophases and electron density reconstruction.
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Introduction

Biological membranes can be considered nature’s most important interfaces. They
constitute the physical barrier that separates each cell from its environment. In ad-
dition, membranes subdivide cells into cell organelles with different tasks and specific
biochemical composition. This compartmentalization is a prerequisite for the devel-
opment of living organisms [1].
Phospholipid bilayers constitute the structural matrix of biological membranes. They
are formed by spontaneous self-assembly of lipids in aqueous solution, driven by the
hydrophobic effect [2], and possess a typical thickness of about 5nm. Their lateral
extent can exceed this value by orders of magnitude, placing them among the largest
structures in biology held together by noncovalent forces [3]. Membrane proteins are
permanently embedded in or temporarily associated to the lipid bilayer matrix and
fulfil tasks such as selective transport or cell signaling.

Membranes are flexible and soft and adapt to moderate mechanical deformations
without loosing their function as an impermeable barrier. Both lipids and proteins
are laterally mobile and can diffuse within the bilayer plane. Therefore, membranes
have been characterized as two-dimensional fluids [4]. More recently, the possibility
of lateral segregation and formation of transient microdomains called lipid rafts has
been considered [5, 6].
To assure compartmentalization and maintain concentration gradients, membranes
are required to be stable and impermeable. At the same time, however, membranes
must be able to merge. This process, membrane fusion, is ubiquitous in numerous
events on the cellular and subcellular level. Examples include neurotransmission by
synaptic vesicles, intracellular transport, exocytosis, fertilization, or entry of enveloped
viruses. In each case, membrane fusion involves a complex and tightly concerted inter-
play of lipid bilayers, specific membrane fusion proteins, water and ions such as Ca2+

[7, 8, 9, 10, 11, 12]. Membrane fusion takes place on length scales of few nanometers
and involves highly transient intermediates steps. This precludes the direct observa-
tion by existing methods [13]. Despite enormous interdisciplinary efforts, the exact
mechanisms of membrane fusion are currently only poorly understood.

Figure 1: Schematic representation of a cell membrane [14].
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fusion pore

content mixing→
hemifusion

lipid mixing→

stalk formation

complete fusion

"zipping"

close bilayer contact→

distinct compartments

Figure 2: Cartoon of SNARE-mediated membrane fusion. “Zipping” of the SNARE
complexes forces lipid bilayers into close contact and, in addition, may create bi-
layer stresses and lipid disorder. This initiates stalk formation. The stalk develops
into a hemifusion diaphragm, whose rupture leads to the opening of a fusion pore
and finally to full fusion. Adapted from [15].

By now, it is generally accepted that membrane fusion proceeds by formation of li-
pidic non-bilayer intermediates. Fig. 2 illustrates the so-called fusion-by-hemifusion
mechanism for the case of SNARE-mediated fusion of a small vesicle and a flat mem-
brane. Proteins mediate the initial recognition, bring membranes into close contact
and eventually create mechanical stresses and perturb the bilayer structure. This re-
sults in formation of a so-called stalk: The two proximal lipid monolayers merge into
one continuous, strongly curved monolayer, while the distal monolayers are still sep-
arated and intact. The stalk develops into a hemifusion diaphragm, which finally rup-
tures and leads to the opening of a fusion pore. The existence of a hemifused state,
defined as the mixing of lipids without the mixing of contents, has been confirmed by
electrophysiology and fluorescence assays [15, 16, 17, 18, 19, 20].

To tackle a problem as complex and inherently difficult to study as membrane fusion,
complementary approaches addressing different aspects are required. One approach
is to focus on properties of the lipid matrix and the putative non-bilayer intermediates
and study protein-free lipid bilayer fusion in simplified models. In the present thesis,
this strategy is pursued.

Formation of a lipid stalk as the first connection between two merging bilayers is a
central element in the current conception of membrane fusion [13, 20]. The first quan-
titative analysis of stalks based on a continuum theory treating fluid bilayers as thin
elastic sheets has been proposed almost 30 years ago [21]. This model has been revis-
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ited several times [22, 23, 24, 25]. In addition, with the emergence of computational
physics, the initial steps of membrane fusion have been studied by simulations (e.g.

[26, 27]), in which stalk formation is observed. The goal of these efforts is to clarify the
sequence of structural rearrangements which define the free energy barrier for mem-
brane fusion. This would help to understand the mechanisms by which fusion proteins
catalyze bilayer merger. However, experimental evidence for stalk formation failed to
appear for a long time.
In excess water, the lipid composition found in biological membranes leads to bilayer
formation. However, isolated lipid species display a large variety of lipid mesophases
under different experimental conditions [3, 28, 29]. These preserve the fluid state and
thermal disorder characteristic for biological membranes, but display a lattice order on
larger length scales of several nanometers. This allows studies by diffraction methods.
In contrast to conventional microscopy, these provide access to length scales relevant
to fusion intermediates. Starting with the pioneering work of LUZZATI in the 1960s,
lipid mesophases have been used as model systems for more complex biological mem-
branes.
As recently as 2002, the first direct experimental evidence for the feasibility of stalk for-
mation was given by the group of H. W. HUANG, who discovered a phospholipid me-
sophase consisting of an array of stalks in thermal equilibrium [30]. So far, this “stalk
phase” is the only model system which allows to study the structure of bilayer fusion
intermediates by experimental means. However, only little data exist. Open questions
are for example: How does stalk structure vary with lipid composition? Can experi-
mental data and existing continuum models be reconciled? Which lipid compositions
optimize the propensity to stalk formation? Which are the decisive energetic contribu-
tions? Answers to these questions can contribute to a more thorough understanding
of membrane fusion.
The aim of the present thesis is to further explore the use of stalk phases as a model sys-
tem for lipid bilayer fusion and address several of the above questions. In particular,
the goals are (i ) to study phospholipid phase behaviour and identify further lipids and
biologically relevant lipid mixtures which display the stalk phase, (ii ) study the repul-

4 nm

Figure 3: (left) 2d electron density maps of the rhombohedral phase reconstructed
from data recorded by laboratory diffractometers [31]. The lipid headgroups indi-
cated by high electron density (white) indicate strongly curved monolayers resem-
bling those of a stalk (right).
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sive forces opposing bilayer approach prior to stalk formation, (iii ) to obtain stalk
structures in different lipid systems with optimum resolution, (iv) to work towards a
quantitative analysis and comparison of stalks formed by different lipids.

After this introduction, chapter 1 discusses lipid mesophases as model systems and
summarizes physical concepts to describe bilayer interaction and deformation. In ad-
dition, different pathways of bilayer fusion and the energies involved in stalk formation
are presented.
The background in x-ray diffraction and electron density reconstruction required to
study lipid mesophases is provided in chapter 2. This includes the different scattering
geometries and corresponding correction factors used in this thesis.
Chapter 3 describes experiments on the hydration-dependent phase behaviour of a
number of lipids and lipid mixtures with the goal to identify parameter ranges in which
the stalk phase can be observed.
The knowledge of the phase boundaries is used in chapter 4 to obtain the structure of
lipid bilayers in close contact. This allows to quantify the repulsive interbilayer forces
that oppose close bilayer contact and therefore stalk formation.
Chapter 5 focuses on the determination of stalk structure. Synchrotron experiments
required for optimum data quality and additional in-house experiments as well as the
applied methods to solve the crystallographic phase problem are described.
Chapter 6 presents the further analysis of the obtained stalk structures. A method to
extract the curvatures of lipid monolayers from the experimental data is proposed. The
results are discussed in light of existing continuum models.
Finally, chapter 7 summarizes the main results obtained in this dissertation.



1 Elements of lipid bilayer fusion

This chapter introduces selected elements of membrane biophysics. The lipid com-
positions of biomembranes are highly complex, diverse and tightly regulated. Isolated
lipid species display a variety of mesophases. These can be used as model systems to
study lipid bilayers and their interactions, as well as structural transformations resem-
bling those in bilayer fusion. Different pathways of bilayer fusion exist, but all require
close bilayer contact and start by stalk formation. The involved bilayer interaction po-
tentials and energies due to monolayer deformation are discussed.

1.1 Lipids

Along with proteins, sugars and nucleic acids, lipids are one of the four major groups of
biomolecules [32]. The lipid composition of biological membranes is highly complex
and can vary considerably for different cells or cell organelles [1]. However, three major
groups can be distinguished [33]:

• Glycerophospholipids:

The most abundant group of lipids in most membranes consists of a glycerol
backbone, which is linked to two fatty acids and one phosphate group. The latter,
in turn, is esterified to one of the alcohols choline, ethanolamine, serine or inos-
itol. The unpolar acyl chains constitute the hydrophobic interior of lipid bilay-
ers, while the headgroup region is zwitterionic or charged and thus hydrophilic.
Type and charge of the headgroup and length and number of double bonds of
the hydrocarbon chains determine the physicochemical properties of each lipid,
e.g. their phase behaviour or degree of fluidity when used in purified form [34].
Several lipids of this class are shown in Fig. 1.1. Dioleoylphosphatidylcholine
(DOPC) and dioleoylphosphatidyletanolamine (DOPE) are widely used in stud-
ies involving model membranes. PIP2 (phosphatidylinositol(4,5)-bisphospha-
te) is a possibly essential component in SNARE-mediated membrane fusion of
synaptic vesicles. More details on this lipid can be found e.g. in [35] and refer-
ences therein.

• Sphingolipids:

These are structurally similar to glycerophospholipids, but consist of a sphingo-
sine molecule which is linked to one fatty acid. Since this lipid species is not used
in the following, it is referred to the literature for further information.

• Cholesterol:

The structure of cholesterol (Chol) differs considerably from the two former
groups. Its hydrophobic part consists of a planar and rigid ring system and a
short hydrocarbon chain, while the hydrophilic region is made up of a single
hydroxyl group (Fig. 1.1). Cholesterol is insoluble in water and does not form bi-
layers alone. When incorporated into a lipid bilayer, it can rather easily undergo
a flip-flop movement from one monolayer leaflet to the other [36]. The effects
of cholesterol on membranes are diverse: When incorporated into fluid bilayers,
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cholesterol progressively increases chain order and leads to the so-called liquid-
ordered phase, which is accompanied by an increase in bilayer thickness. On
the contrary, when incorporated into gel-phase bilayers, it promotes membrane
fluidity. Therefore, cholesterol stabilizes the degree of fluidity over a substan-
tial temperature range. In ternary mixtures of unsaturated and saturated lipids
and cholesterol, formation of raft-like domains enriched in the two latter com-
pounds is observed [37, 38]. Cholesterol makes the spontaneous curvature of
lipid monolayers more negative [39] and can modify the elastic properties of
lipid bilayers [40, 41].

hydrophilic

hydrophobic

DOPC          DOPE          DPhPC           PIP Chol2

Figure 1.1: Sketch of the typical representation of a lipid molecule and structure for-
mulas of some lipids used in this thesis. A covalently bound hydrophilic headgroup
and hydrophobic acyl chains make phospholipids amphiphilic, causing lipid self-
assembly driven by the hydrophobic effect. Cholesterol is structurally different and
does not form bilayers on its own.

The lipid composition of biological membranes varies considerably. For example, cho-
lesterol and sphingomyelin are predominantly localized in plasma membranes, wher-
eas membranes surrounding most cell organelles are rather devoid of these species.
In addition, the lipid composition of two monolayers constituting a bilayer is usu-
ally highly asymmetric [1]. For glycerophospholipids and sphingolipids, the move-
ment from one monolayer to the other is associated with a considerable energy barrier.
These findings suggest a correlation of lipid composition and functional tasks of a cell
or cell organelle and a role of bilayers that goes beyond that of a passive barrier and
matrix for proteins.



1.2 Phospholipid mesophases 7

1.2 Phospholipid mesophases

In aqueous dispersions, lipids form a large variety of aggregates. This process, lipid
self-assembly, is driven by the hydrophobic effect [2, 34, 42]. In dilute conditions, the
lipid compositions found in biological membranes form vesicles. In the opposite case
of relatively low water content, liquid-crystalline mesophases with long-range transla-
tional symmetry can be observed. Their structure can be studied by x-ray or neutron
diffraction. Fig. 1.2 shows some of the most frequently encountered topologies. For a
given lipid composition, phase transitions between different mesophases can often be
observed if the degree of hydration or the temperature are changed. This phenomenon
is known as lipid polymorphism. Since the pioneering work of LUZZATI and coworkers
in the 1960s [43], lipid mesophases have been the subject of numerous studies [3, 28].
In the present thesis, structural changes and phase transitions induced by changes in
lipid hydration, lyotropic lipid polymorphism, is employed to address questions re-
lated to membrane fusion.

Figure 1.2: Sketch of a selection of lipid mesophases. Lamellar phases are used as
model systems to study lipid bilayer structure. Bicontinuous cubic phases consist
of two distinct interwoven water regions indicated in light and dark blue. Lipid me-
sophases are not static, but display considerable thermal disorder. This limits the
resolution obtainable by diffraction experiments. Parts of the figure are adapted
from [28, 42].

Fig. 1.2 shows some frequently observed lipid mesophases. Several lamellar phases
consisting of stacked bilayers exist, e.g. different gel phases or the ripple phase [42].
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Usually, only the liquid-crystalline Lα phase with fluid, disordered chains is consid-
ered biologically relevant. The lamellar repeat spacing d and the thickness dw of the
water layer separating adjacent bilayers are determined by the balance of several in-
terbilayer forces (cf. section 1.4). The inverted hexagonal phase HII consists of long
aqueous channels surrounded by cylindrically curved lipid monolayers. Bicontinuous
cubic phases consist of two distinct interwoven water regions. Their topology can be
described by infinitely periodic minimal surfaces [44]. The transition from a lamellar
to a bicontinuous cubic phase resembles the formation of an array of fusion pores [29].
In a simplifying, yet very popular model, ISRAELACHVILI et al. explained the propen-
sity of lipids to form certain geometries by a mean or effective molecular shape [45].
As sketched in Fig. 1.3, the mean cross-sectional area a0 of the polar headgroup in
the interfacial region and the length lc and volume V of the chains define a packing
parameter P = V /a0lc . If P is close to one, the effective molecular shape resembles
a cylinder and lipids tend to pack into lamellar aggregates. Lipids with P > 1 have a
propensity to form inverted phases in which the hydrocarbon region curls around the
lipid headgroup region. Introduction of additional double bonds, branched chains or
smaller headgroups increase P and hence is expected to increase the tendency to form
inverted phases. Although only a very coarse description, this model gives a first qual-
itative idea e.g. about the strong tendency of PE lipids or the lipid diphytanoyl-PC used
below to form inverted phases.
Lamellar phases are probably most widely used and constitute a model system to study
lipid bilayer structure and interactions [46, 47, 48]. Since lipid compositions found in

vivo readily form bilayers in the physiological condition of excess water1, the biological
relevance of nonlamellar mesophases is less obvious. Studying them can be motivated
as follows [3]:
Lipid which show no tendency to form nonbilayer topologies would be sufficient to
form fluid bilayers that assure compartmentalization and serve as the structural ma-
trix for proteins. However, in addition to these, biomembranes often contain a con-
siderable fraction of lipids that have a strong tendency to promote nonlamellar phase
formation or even, like cholesterol, do not from bilayers at all (cf. section 1.1). This

lll

a0a0a0

V

VV

Figure 1.3: Mean geometrical shape of different lipid species and corresponding pre-
ferred lipid aggregates. Lipids with a single chain (e.g. lysolipids) tend to form ag-
gregates of positive curvature, while lipids with two chains and small headgroup
(e.g. PE lipids) rather form inverted mesophases.

1 In some cases, several non-bilayer topologies have been identified in living organisms, indicating the pos-
sibility of direct biological relevance [28].
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indicates a very specific role of lipid composition and presence of lipids facilitating
nonlamellar phase formation. One function could be to assure bilayer properties that
facilitate membrane fusion [3, 29, 49, 50]. Investigating the polymorphism of isolated
lipid species or simple lipid mixtures is essential to understand their possible roles in
complex biological membranes. To this end, nonlamellar lipid mesophases are useful
model systems.
To learn more about the initial steps in membrane fusion, the most suitable phospho-
lipid mesophase is probably the rhombohedral phase of space group R3̄ discovered
by the group of H. W. HUANG. It consists of a dense array of thermodynamically stable
stalks and some residual water [30, 51]. Its observation was the first direct experimental
evidence of the feasibiliy of stalk formation, at least in certain lipids and under certain
conditions. However, only the stalk phases of the two lipids diphytanoylphosphatidyl-
choline (DPhPC) and dioleoylphosphatidylcholine (DOPC) have been characterized so
far [30, 31, 51, 52]. One goal of this thesis is to extend the use of the stalk phase as a
model system to a larger variety of lipid systems.

Figure 1.4: Different electron density isosurface representations of the stalk phase: (a)

Stalks are arranged in layers in ABC stacking, within each layer they form a 2d

hexagonal lattice. (b) Nonprimitive hexagonal unit cell containing three stalks and
(c) primitive rhombohedral unit cell containing a single stalk in its center. (DOPC/-
DOPE 1:1, RH = 70%, cf. chapter 5)

Stalk phase formation has been observed upon partial dehydration of lamellar lipid bi-
layer stacks. By some autors, only fully hydrated lipid assemblies in excess water condi-
tions are considered “biologically relevant” [49]. However, the initiation of membrane
fusion most likely requires close bilayer contact well below the equilibrium distance
found in excess water. This is equivalent to at least local partial dehydration of lipid
bilayers at the fusion site. Therefore, studying lyotropic lipid polymorphism in par-
tially dehydrated mesophases can yield insights into the physics relevant to biological
membrane fusion. Also in simulations of isolated stalks or stalk phase formation, lipid
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bilayer patches are “prepared” in partially dehydrated conditions [53, 54]. A quantita-
tive explanation for stalk phase formation has been given by the interplay of the ener-
gies due monolayer deformation on the one hand and a decrease of the energy due to
hydration repulsion on the other hand [55]. These factors are explained further below.

1.3 Bilayer fusion pathways

In the classical fusion-through-hemifusion pathway sketched in Fig. 1.5, a sequence
of structures with axial symmetry is assumed. After stalk formation, the stalk expands
radially and develops into a hemifusion diaphragm or trans monolayer contact, i.e. a
lipid bilayer composed of the two trans monolayers is formed. Rupture of this bilayer
leads to formation of a fusion pore and finally to complete fusion. In this pathway, no
leakage of content out of the compartments occurs [20].

dw

db

Figure 1.5: Cartoon of the classical hemifusion pathway. The structures possess axial
symmetry. Figure taken from AEFFNER et al. [31] and used with kind permission
from Springer.

More recently, in addition to the classical pathway, a different pathway involving non-
axially symmetric structures has been observed by simulations of bilayer fusion [56, 57,
58]. Recent reviews are given in [26, 27]. Importantly, simulations predict the sequence
of bilayer rearrangements without making prior assumptions [59]. After stalk forma-
tion, the stalk does not expand axially, but elongates in one dimension in a worm-like
fashion. Simultaneously, the bilayer structure in its proximity is destabilized, which
facilitates formation of holes. If holes form rather easily, the elongating stalk encircles
a hole formed in its vicinity in one bilayer, yielding a hemifusion diaphragm, or holes
in each bilayer, directly yielding a fusion pore. In another variant without hole forma-
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Figure 1.6: A simulation showing SNARE-mediated vesicle fusion by an alternative
pathway involving non-axial stalk expansion into an inverted micellar intermedi-
ate (I→II). The lower panel shows different stages of this step in more detail. Sub-
sequent rupture of the bilayers separating the IMI from the two vesicles result in a
hemifusion diaphragm (III) and finally a fusion pore (IV). Figure taken from RISSE-
LADA et al. [60] and used with kind permission from John Wiley and Sons.

tion, the elongating stalks wanders on a closed path until its two ends meet, yielding
a so-called inverted micellar intermediate (IMI) which contains some residual water.
Rupture of one bilayer of the IMI yields a hemifusion diaphragm consisting of the re-
maining bilayer.
Unlike the classical pathway, the lipids constituting the hemifusion diaphragm in the
alternative, non-axisymmetric pathway originate from both cis and trans leaflets. In
addition, it allows transient leakage due to hole formation, which is in agreement with
several experimental reports [58]. A very recent simulation of SNARE-mediated vesi-
cle fusion in molecular detail displayed fusion by this alternative pathway involving
IMI formation [60] (Fig. 1.6). Other recent simulations indicate that stalk formation at
close bilayer contact is initiated by so-called splay intermediates formed by acyl chains
extending into the separating aqueous layer [53, 61].
In the remainder of this chapter, energies involved in stalk formation are considered
more closely. This comprises interactions between bilayers which oppose initial bi-
layer contact, as well as the energies due to deformation of lipid monolayers in highly
curved structures.

1.4 Interaction potentials between lipid bilayers

In excess water conditions and absence of osmotic stressors, uncharged lipid bilay-
ers interact by van der Waals attraction and several repulsive forces. Equilibrium of
these forces leads to well-defined interbilayer distances. The corresponding water
layer thickness between adjacent bilayers is typically between 10 and 30Å, depending
on the exact lipid composition.
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ǫH2O(ω) ǫCH2 (ω)ǫCH2 (ω)

dCH2dCH2 dh

dwdHG dHG

Figure 1.7: Sketch for derivation of the van der Waals interaction between two lipid bi-
layers. Lipid headgroup and water regions are grouped into one hydrophilic region,
i.e. the interaction of two parallel hydrocarbon layers of thickness dCH2 embedded
in water and separated by a hydrophilic layer with a thickness dh = dw +2dHG is
considered.

Van der Waals attraction results from different polarizabilities of lipid and water mo-
lecules and can be calculated in the framework of Lifshitz theory [62, 63, 64]. To this
end, two lipid bilayers are modeled as sketched in Fig. 1.7. The hydrophilic headgroup
regions and the bulk water layer are modeled as one homogeneous layer of thickness
dh [65, 66]. Then, the van der Waals interaction potential between two parallel hydro-
carbon layers of thickness dCH2 embedded in an aqueous medium and separated by a
water layer dh is considered [63, 67]:

VvdW(dh) =− kBT

8πd 2
h

∞∑

n=0

′
∫∞

rn

d x x ln

[

1−
(
∆n(1−exp(−(dCH2 /dh) ·x))

1−∆
2
n exp(−(dCH2 /dh) ·x)

)2

e−x

]

(1.1)

The summation is carried out for frequency-dependent contributions where the ex-
pression ∆n =

(

ǫH2O(iωn)−ǫCH2 (iωn)
)

/
(

ǫH2O(iωn)+ǫCH2 (iωn)
)

contains the dielectric
permittivities of water and hydrocarbon at angular frequencies ωn = 2πnkBT /ħ. The
lower integration limit is denoted by rn = 2dh

p
ǫH2Oωn/c. The prime indicates that the

term for n = 0 has to be multiplied by a factor 1
2 . A widely used approximation for the

corresponding pressure has the form

PvdW(dh) =−∂VvdW

∂dh
= H

6π

[

1

d 3
h

− 2

(dh +dCH2 )3
+ 1

(dh +2dCH2 )3

]

, (1.2)

where H = 3
2 kBT

∑∞
n=0

′
∆

2
n denotes the Hamaker coefficient. FENZL argues that this

approximation might lead to incorrect results for larger values of dh [67]. However,
for small dh up to the equilibrium value in excess water as required throughout this
thesis, Eq. (1.2) should suffice. In Fig. 1.8, ǫH2O(iω) and ǫCH2 (iω) are parameterized by
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Figure 1.8: Interaction potentials of two DOPC bilayers in excess water for P0 = 0.55 ·
108 Jm−3, λh = 2.2Å, κ= 8.0kBT , dCH2 = 26.8Å, dHG = 9.0Å [68].

an oscillator model following [67] and references therein. A very thorough introduction
into van der Waals forces is given e.g. in [63].
The precise physical mechanism causing strong repulsive forces between lipid bilay-
ers at small separation is still a matter of debate [61, 69, 70]. Application of an order-
parameter formalism and Landau free energy expansion to the water layer between
two parallel and smooth surfaces predicts a repulsive pressure

Phyd(dw) = Ph

4sinh2
(

dw
2λh

) (1.3)

resulting from the orientation of water molecules close to surfaces [71]. Due to this
apparent relation to water structure, the interaction has been termed hydration repul-

sion [72]. P0 has been related to the dipole density in the headgroup region [73]. The
hydration force decay length is typically in the range of 1 to 3Å. For dw ≫λh, Phyd can
be approximated by

Phyd(dw) = Ph exp

(

−dw

λh

)

. (1.4)

An additional pressure term is used to account for enhanced bilayer repulsion due to
undulatory modes. In the so-called soft confinement regime for multilamellar bilayer
stacks,

Pund(dw) = πkBT

32λh

√

P0

2κλh
exp

(

− dw

2λh

)

(1.5)
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with twice the decay length of Phyd is used. In our notation, κ is the bending rigidity of
one lipid monolayer, i .e. half the bending rigidity of the lipid bilayer. In our example
in Fig. 1.8, Pund is the dominant repulsive interaction in excess water. In dehydrated
conditions (cf. Fig. 4.2), it gives only a minor correction to the equilibrium value for
partially dehydrated conditions d∗

w [74, 75].

In an alternative approach, it has been proposed that bilayer repulsion rather results
from the rough, non-smooth structure and molecular protrusions in the lipid head-
group region than from water structure [72, 76]. However, this view has been chal-
lenged [77].

If the partial volume vw of a water molecule is modeled as a sphere, one obtains a
diameter of about 3.8Å. Typical bilayer separations dw below 20Å thus correspond to
only very few molecular layers. Any description in terms of smooth interfaces and well-
defined distances such as in Fig. 1.7 is to some extent arbitrary and limited in accuracy,
since it neglects the molecular structure and thermal motions of lipid headgroups and
water [74, 75]. Moreover, as will be seen below, bilayer structure changes upon dehy-
dration. Therefore, the assumption of constant bilayer properties and a simple super-
position of interaction potentials such as in Fig. 1.8 is only an approximation.

1.5 Continuum theory and simulations of stalks

While different pathways of bilayer fusion may exist, the formation of stalks at an early
stage is generally accepted. Almost all simulations on membrane fusion include the
formation of axially symmetric stalks between apposed bilayers [20, 59]. In addition,
stalks or hemifusion intermediates have been observed between synaptic vesicles and
the presynaptic membrane by conical electron microscopy with ≥ 3nm resolution [78],
as well as in the rhombohedral phospholipid phase [30]. These findings support the
role of stalks as a conserved motif in membrane fusion.

Continuum theory

For almost 30 years, attempts have been made to determine the free energy of a stalk
with respect to the initial state of two planar bilayers. The first quantitative analysis of
stalks by KOZLOV et al. [21] was conducted by a continuum theory developed by HEL-
FRICH and others for lipid bilayers [79, 80, 81]. The model has been revisited several
times (e.g. [22, 23, 24, 25, 82]) and contributed considerably to the development of the
current conception of membrane fusion [13]. Therefore, despite possible limitations
addressed further below, its basic principles are sketched here.

Each monolayer of the stalk is described as a homogeneous elastic sheet, whose re-
sistance to deformations is characterized by few elastic constants which effectively
summarize the underlying molecular interactions. Deformations are described with
respect to a neutral surface were the cross-sectional area of lipid molecules remains
constant upon bending [83]. Its position is assumed close to the headgroup/hydrocar-
bon interface ([84] and references therein).
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a) b)

~n~N

v

v

r
a

Figure 1.9: Different realizations of a stalk proposed and analyzed by continuum the-
ory: (a) Original stalk model describing the bent monolayer as the figure of revo-
lution of a semicircle and including void regions (v) [21, 22, 24]. (b) Stalk including
lipid tilt, i.e. the unit vectors denoting the mean chain direction ~N and the unit
normal of the neutral plane ~n are not collinear [25]. In both cases, solid black lines
indicate the approximate location of the neutral surface.

As a 2d surface embedded in 3d space, the neutral surface can be described by diffe-
rential geometry. Here, each point of a smooth and continuous surface is characterized
by two principal curvatures c1 and c2 or, equivalently, the mean curvature H and the
Gaussian curvature K :

H = c1 +c2

2
and K = c1 · c2. (1.6)

In case of lipid monolayers, c1 and c2 are conventionally defined as positive if the polar
lipid headgroups curve around the hydrocarbon chain region, and vice versa. Using
this description, the elastic energy due to bending is expanded up to quadratic terms
in c1 and c2, which yields the widely used Hamiltonian [79]

Fbend = κ

2

∫

A
(2H −c0)2 d A+κG

∫

A
K d A. (1.7)

Extensions of the model incorporate lipid tilt as an additional degree of freedom [25,
55] or terms up to fourth order in c1 and c2 [85]. However, the leading terms are still
those of Eq. (1.7). The integration is carried out over the neutral surface of each mono-
layer of the stalk. c0 denotes the spontaneous curvature, κ the bending rigidity and κG

the Gaussian curvature modulus of a lipid monolayer. These are related to its lateral
pressure profile [84, 86] and are assumed to be constant. The bending modulus κ can
be determined e.g. by Fourier spectroscopy of vesicle fluctuations, micropipet aspira-
tion or diffuse x-ray scattering [34, 41], the spontaneous curvature c0 by lattice swelling
experiments using HII phases [39]. In general, a typical value for the bending modulus
of a lipid monolayer is κ ≃ 10kBT and a quadratic dependence on the hydrocarbon
chain length is assumed [86, 87].
The Gaussian curvature has been neglected in many earlier studies [24, 88]. As a result
of the Gauss-Bonnet theorem, the integral over a surface of fixed topology is constant.
The value

∫

A K d A =−4π is expected for a smooth cis monolayer of a single stalk con-
necting two planar bilayers, independent of the exact stalk shape [42]. In appendix A.3,
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this is explicitly demonstrated for two surfaces that have been used to describe stalks
or fusion pores [89]. The Gaussian curvature modulus is assumed to be negative and
in the range −κ≤ κG ≤−κ/2 and can be determined by experiments on bicontinuous
cubic phases [88, 89].
The first versions of this model assumed a fixed semitoroidal stalk shape shown in
Fig. 1.9(a) [21]. Depending on c0 and the parameters r and a, bending energies of
≈ 40kBT were found, neglecting the Gaussian curvature term. Later, as summarized
in [25], it was realized that an additional contribution due to the “hydrophobic void”
regions (v) in Fig. 1.9(a) lead to an additional energy penalty, resulting in values Fbend

of up to several hundreds of kBT . In the latest versions, the unjustified assumption of a
fixed toroidal shape was dropped, leading to models of stress-free stalks [24] or a stalk
with lipid tilt as an additional deformation (Fig. 1.9b) leading to values of about 40kBT

[25, 82]. Lipid tilt is also observed in simulations of the stalk phase [54]. However, with
the inclusion of Gaussian curvature, the condition −κ≤ κG ≤−κ/2 and κ≃ 10kBT , the
Gaussian curvature term −4πκG yields an additional contribution of at least 60kBT ,
resulting in a minimum bending energy of about 100kBT in total [88].

Simulations

In contrast, stalk free energies predicted by recent simulations which take into account
the microscopic structure of lipids, e.g. by coarse-grained molecular dynamics [53, 59]
or self-consistent field theory [90], are typically below 15kBT . This discrepancy be-
tween continuum models and simulations has not yet been resolved and is likely to
result from the simplifying assumptions of continuum theory. The description by few
elastic coefficients and expansion of bending energy up to quadratic terms have been
developed e.g. to determine the shape of vesicles at a given ratio of area and contained
volume [34, 42]. However, on length scales of fusion intermediates, the validity has
been questioned repeatedly. This is discussed in more detail in section 6.3.

Stalks and lipid composition

The sensitivity of membrane fusion to lipid composition has been shown in a number
of studies [16]. For example, certain viral fusion reactions can be inhibited if the tar-
get membrane are depleted of cholesterol [91, 92]. Phosphatidylethanolamines (PE)
have been found to promote several fusion reactions [93]. Lysolipids affect fusion rates
depending on their location either in the inner or the outer membrane leaflet [94].
A reason for the success of continuum theory is that it rationalizes these observations
[93, 95]. In the packing parameter model described in section 1.2, these lipids would
change the spontaneous curvature, thus changing the stalk bending energy. It has been
hypothesized that the lipid composition of biomembranes is adjusted in a way that
the spontaneous curvature of its monolayer is optimized for fusion [96]. Therefore,
one of the goals of this thesis is to investigate if the shape of stalks changes with lipid
composition in way that correlates with lipid geometry.
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Diffraction on lipid mesophases is currently the only experimental method which can
provide structural information on model membrane systems down to sub-nanometer
lengthscales and hence allows to study stalk structures. This chapter provides the re-
quired background in crystallography and electron density reconstruction and intro-
duces the methods used in this thesis: Grazing-incidence x-ray diffraction, x-ray re-
flectivity and powder diffraction. For all three cases, the intensity correction factors
required for data analyis in subsequent chapters are presented. The chapter closes
with a brief discussion of the phase problem and the obtainable resolution.

2.1 Fundamentals of X-ray diffraction

This section is based on the textbooks [97, 98, 99]. X-rays are scattered by electrons
and can thus be used to study the spatial distribution of electrons inside the scattering
entities of a sample. In structural biology, x-ray diffraction is usually formulated within
the kinematical or first-order Born approximation. This description neglects multiple-
scattering effects, which is valid for weakly scattering imperfect crystals. For diffrac-
tion from macroscopically perfect crystals, the more general formalism of dynamical
diffraction theory has to be applied. The distorted-wave Born approximation com-
bines elements of both approaches. For the particular case of solid-supported samples,
dynamical effects may occur due to reflection from the substrate if incidence and exit
angles are close to the angle of total external reflection [98]. Diffraction from the lipid
mesophases covering the substrate as a thin film is treated within kinematical theory.

A scattering event is described by the wavevector transfer or scattering vector

~q =~k f −~ki (2.1)

defined as the difference between the final and initial wavevectors~k f and~ki of a pho-
ton. In case of elastic scattering,

|~k f | = |~ki | =
2π

λ
(2.2)

holds, where λ denotes the wavelength of the incident x-ray beam. As the main result
of kinematical theory, the scattering amplitude A(~q ) of a sample corresponds to the
Fourier transform of its electron density distribution ρ(~r ):

A(~q ) =
∫

ρ(~r )exp(i~q ·~r )d 3r (2.3)

The scattering vector ~q is used as the transform variable and the integration extends
over the entire sample. X-ray diffraction relies on the periodic arrangement of identical
scattering entities in space. In case of a crystal, ρ(~r ) can be written as the convolution
of a point lattice spanned by vectors

~Ruv w = u ·~a + v ·~b +w ·~c, u, v, w ∈Z (2.4)
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and the electron density ρu.c.(~r ) inside the parallelepiped spanned by ~a,~b and ~c, the
unit cell:

ρ(~r ) =
∑

~Ruv w

δ(~r −~Ruv w )∗ρu.c.(~r ). (2.5)

Importantly, there is no unique way to choose~a,~b,~c. For a choice which minimizes the
unit cell volume Vu.c. =~a · (~b×~c), one obtains a so-called primitive unit cell, which can
be regarded as the smallest repeating unit required to rebuilt the crystal only by trans-
lations. As demonstrated in crystallography, each lattice can be classified according
to its symmetries into seven crystal systems and fourteen Bravais lattices. The lengths
a,b,c of the vectors ~a,~b,~c and the angles α,β,γ between them are the lattice parame-
ters. Combined with 32 crystallographic point symmetries of the unit cell, there are 230
space groups describing any possible symmetry of a 3d crystal. Using the properties of
the δ distribution and the convolution theorem, the scattering amplitude becomes

A(~q ) =
∑

~Ruv w

exp(i~q ·~Ruv w )

︸ ︷︷ ︸

S(~q )

·
∫

Vu.c.

ρu.c.(~r )exp(i~q ·~r )d 3r

︸ ︷︷ ︸

F (~q )

. (2.6)

S(~q ) is called the lattice sum or structure factor, and F (~q ) the unit cell form factor. For
a perfect crystal with fixed atomic positions, it is possible to write F (~q ) as a sum over
the scattering amplitudes of the single atoms inside the unit cell using the so-called
atomic form factors. As discussed in detail in section 2.6, phospholipid mesophases
are characterized by long-range lattice symmetry, but highly disordered unit cells [100].
Therefore, a continuous unit cell electron density distribution ρu.c.(~r ) provides an ap-
propriate description. In the following, the subscripts u.c. for unit cell electron density
and volume are omitted. The observable intensity is the modulus square of the scat-
tering amplitude,

I (~q ) ∝|S(~q )|2 · |F (~q )|2. (2.7)

Proportionality is used to indicate that I (~q ) depends on additional factors determined
by the actual experimental conditions. These are considered in detail in section 2.4. All
terms in S(~q ) can be represented as unit vectors in the complex plane. |S(~q )|2 adopts
maxima if these point all into the same direction. Since a global phase factor does not
affect I (~q ), this is fulfilled if

exp(i~q ·~Ruv w ) = 1 or mod
(
~q ·~Ruv w ,2π

)

= 0 ∀u, v, w. (2.8)

To this end, the reciprocal lattice spanned by vectors

~a∗ = 2π

V

(

~b ×~c
)

, ~b∗ = 2π

V
(~c ×~a) , ~c∗ = 2π

V

(

~a ×~b
)

(2.9)

is introduced. By definition, each linear combination ~Ghkℓ = h ·~a∗+k ·~b∗+ℓ ·~c∗ with
Miller indices h,k,ℓ ∈ Z is perpendicular to a set of lattice planes (hkl ) of the corre-
sponding direct lattice defined by Eq. (2.4) and fulfils condition (2.8), since
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~Ghkl ·~Ruv w = 2π (hu +kv +ℓw) = 2π ·n, n ∈Z. (2.10)

For a large number N of unit cells, it can be shown that

lim
N→∞

|S(~q )|2 = NV ∗ ∑

h,k,ℓ

δ(~q −~qhkℓ) (2.11)

where V ∗ =~a∗ · (~b∗×~c∗), independent of the actual crystal shape [97]. Hence, diffrac-
tion peaks only occur for scattering vectors which coincide with a vector of the reci-
procal lattice,

~qhkℓ = h ·~a∗+k ·~b∗+ℓ ·~c∗, h,k,ℓ ∈Z. (2.12)

This is known as the Laue condition. Due to finite crystallite size as well as divergence
and wavelength spread of the x-ray beam in a real experiment, the description using
delta functions should be regarded as an approximation. The equivalent condition for
constructive interference in direct space is Bragg’s law

2dhkℓ sinθ = n ·λ, n ∈Z. (2.13)

Here, dhkℓ = 2π/|~qhkℓ| denotes the spacing of a family of crystallographic planes and θ

the glancing angle between these planes and the incident x-ray beam. Collecting these
results together, the diffracted intensity from a crystallite in a lipid mesophase is

I (~q ) ∝
∑

hkℓ

δ(~q −~qhkℓ) ·
∣
∣
∣
∣

∫

V
ρ(~r )exp(i~q ·~r )d 3r

∣
∣
∣
∣

2

(2.14)

and thus proportional to the modulus square of the Fourier transform of the unit cell
electron density ρ(~r ) sampled at discrete values~qhkℓ fulfilling the Laue condition. This
provides an elegant connection between crystal structure and measured x-ray diffrac-
tion patterns. Vice versa, the form factors Fhkℓ = F (~qhkℓ) are the coefficients of the
Fourier series of ρ(~r ),

ρ(~r ) = 1

V

∑

h,k,ℓ

Fhkℓ exp(−i~qhkℓ ·~r ). (2.15)

In general, the form factors are complex-valued quantities:

Fhkℓ = |Fhkℓ|exp(iφhkℓ) ∈C where φhkℓ ∈ [0,2π]. (2.16)

From the measureable intensities Ihkℓ = I (~qhkℓ), only the form factor amplitudes
|Fhkℓ|∝

√

Ihkℓ are obtained on a relative scale. The phase angles φhkℓ are not directly
accessible. This is the well-known phase problem of crystallography, which needs to be
solved in order to obtain the structure ρ(~r ). In the following, the experimental meth-
ods used to obtain the lattice constants and form factor amplitudes |Fhkℓ| from solid-
supported lipid bilayer stacks and nonlamellar phases are introduced. Subsequently,
we will return to the phase problem for this particular case in section 2.5.
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2.2 Oriented samples

The vast majority of experiments in this thesis is carried out using oriented lipid bilayer
stacks. These are routinely prepared by deposition of lipids in organic solution on a
substrate, from which highly aligned, hydrated bilayer stacks are obtained by pure self-
assembly. This process is sketched in Fig. 2.1(a), a detailed protocol is provided in
section 3.2.1. The number of bilayers in a stack is typically on the order of 103, yielding
a thin film of few µm thickness. The high degree of alignment is quantified by low
mosaic distribution, i.e. narrow distribution of bilayer normal vectors as measured by
a rocking scan shown in Fig. 2.1(c).
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Figure 2.1: (a) Cartoon illustrating the preparation of oriented, solid-supported bi-
layer stacks. (b) Sketch of the 2d powder character of aligned samples and defini-
tion of coordinate axes. (c) Rocking curve of the 1. Bragg peak along qz (di14:1PC,
RH = 80%): The full width at half maximum (FWHM) is below 0.03◦ and thus con-
siderably smaller than the primary beam width of 0.11◦. Experimental parameters
are given in section 4.4.1.

Compared to powder samples or multilamellar liposomes, oriented samples provide
several advantages: Most obviously, components of the scattering vector ~q correspon-
ding to structural information in and perpendicular to the bilayer plane can be pre-
cisely distinguished. In addition, the scattering signal is amplified: In case of unori-
ented samples, only a small fraction of crystallites with suitable orientation give rise to
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Figure 2.2: Diffraction on a solid-supported 2d powder sample described by the Ewald
sphere. (a) For in-plane reflections (IPR), the Laue condition is fulfilled only for
certain αi . (b) Out-of-plane reflections (OPR) can be observed for all αi (provided
λ is small enough), since their reciprocal lattice points are distributed on rings cen-
tered about~ez . Adapted from [52].

constructive interference and contribute to Bragg peak intensity. If oriented samples
are used, all domains placed in the x-ray beam contribute simultaneously to construc-
tive interference in case of reflections where ~qhkℓ is perpendicular to the substrate.
Finally, when used in conjunction with the osmotic stress method (section 4.2), the
small lipid film thickness of few µm enables a quick response of the entire sample to
changes of water vapour pressure in the surrounding air.

In case of the lipids used in this thesis, the bilayer stacks transform into nonlamellar
phospholipid phases upon dehydration. A lipid film with an area of the order of few
cm2 consists of a large number of crystallites which are randomly oriented parallel to
the substrate, but still retain the alignment perpendicular to the substrate (Fig. 2.1b).
This can be characterized as a 2d powder. It turns out that different geometries are re-
quired to measure all integrated Bragg peak intensities and lattice parameters of these
samples correctly [51, 101].

In Fig. 2.2, diffraction from a 2d powder is explained by aid of the Ewald sphere con-
struction [97]. The plane of incidence is defined by the initial wave vector ~ki and the
surface normal of the substrate. ~ki points at the coordinate origin and center of ro-
tation of the sample. In case of elastic scattering, the Laue condition for a reflection
is fulfilled only if the corresponding reciprocal lattice point coincides with a sphere of
radius 2π

λ drawn around the starting point of~ki .

Fig. 2.2 (left) shows this situation for ~q perpendicular to the substrate, i.e. ~k f is also
located in the plane of incidence. The Laue condition for these in-plane reflections
is only fulfilled if the corresponding reciprocal lattice point coincides with the Ewald
circle. This condition can only be fulfilled for a single reflection at a time. Therefore,
at fixed αi , only diffuse Bragg sheets due to fluctuations or orientational defects in the
bilayer stack [102] are observed if an area detector is placed behind the sample. The
sample must be rotated about the axis~ki ×~n to successively excite all in-plane reflec-
tions. To this end, we use x-ray reflectivity scans as described in section 2.3.1.
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Due to the 2d powder character, the reciprocal lattice sites corresponding to out-of-
plane2 reflections are distributed on concentric rings around the ~qz axis (Fig. 2.2,
right). Provided λ is small and hence the radius of the Ewald sphere large enough,
each ring intersects the Ewald sphere twice [51]. All out-of-plane reflections can be
recorded using a single sample orientation and fixed area detector position. Since only
a small fraction of crystallites with suitable orientation contributes to the diffracted in-
tensity, out-of-plane reflections are in general much weaker than in-plane reflections.
If αi is varied, out-of-plane reflections are always excited as long as the intersection
occurs. However, the corresponding directions of~k f and thus locations of diffraction
peaks on the detector change with αi , and reflections corresponding to α f < 0 disap-
pear below the sample horizon. Therefore, out-of-plane reflections are measured at
fixed and sufficiently small αi by grazing-incidence diffraction as described in section
2.3.2.

2.3 Experimental techniques

2.3.1 X-ray reflectivity

Reflections corresponding to momentum transfer perpendicular to the substrate can
be recorded by x-ray reflectivity. The sample is aligned with the lipid film in the center
of the beam and the substrate surface parallel to the incident beam (Fig. 2.3a). Then,
αi is successively increased. For each step, the point detector is moved to position 2αi

with respect to the incident beam in order to measure the intensity corresponding to
the momentum transfer perpendicular to the substrate,

~q =





0
0

4π
λ sinαi



 . (2.17)

The resulting reflectivity curve I (αi ) is the superposition of the Fresnel reflectivity

IF = I0 ·
∣
∣
∣
∣
∣

sinαi −
√

sin2αi − sin2αc

sinαi +
√

sin2αi − sin2αc

∣
∣
∣
∣
∣

2

(2.18)

from the silicon substrate3 [97] and the intensity diffracted from the lipid bilayer stack,
which leads to Bragg peaks with a spacing defined by the periodicity d along the bilayer
normal. The critical angle for total external reflection is

αc =

√

λ2

π
r0ρS, (2.19)

2 To avoid confusion, the following should be noted: In this thesis, in- and out-of-plane refer to the plane of
incidence defined by~ki and the surface normal ~n =~ez of the substrate. In the literature, in-plane is also
used in conjunction with lateral correlations in the sample, i.e. in the x y plane. Out-of-plane reflections
arise from in-plane structures, while pure out-of-plane correlations (i.e. in z direction) give rise to in-
plane reflections only.

3 Eq. (2.18) applies to the ideal case of vanishing absorption and surface roughness.
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where r0 = 2.82 · 10−5 Å denotes the Thomson scattering length and ρS the electron
density of the substrate. The values αc for x-ray energies used in this thesis are given
in Tab. 2.1.
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Figure 2.3: (a) Geometry of a reflectivity measurement. αi is increased in steps of e.g.

0.005◦. At each position, the reflected and diffracted intensity with ~q perpendicu-
lar to the substrate is measured by rotating the point detector to 2αi . (b) Typical
reflectivity curve displaying 8 well-defined Bragg peaks (DOPC, RH = 80%, experi-
mental details are given in section 4.4.1.)

photon energy E [keV] wavelength λ [Å] critical angle αc [deg]

8.048 1.5406 0.223
17.000 0.7293 0.105
19.500 0.6358 0.091

Table 2.1: X-ray energies used in this thesis, corresponding wavelengths λ = 2πħc/E

and critical angles of total external reflection αc from the silicon substrate.

2.3.2 Grazing-incidence x-ray diffraction

Fig. 2.4 shows the grazing-incidence x-ray diffraction (GIXD) geometry. The incident
angle αi is fixed at a value close to zero, i.e. the x-ray beam is almost parallel to the
substrate surface.4 An area detector is placed at a distance D behind the sample. Each
pixel of the detector corresponds to a unique pair of angles (α f ,ψ) describing the cor-
responding scattering vector. With the conventions made in Fig. 2.4, the initial and
final wavevectors are

~ki =
2π

λ





cosαi

0
−sinαi



 and ~k f =
2π

λ





cosα f cosψ
cosα f sinψ

sinα f



 , (2.20)

4 The term grazing is often understood as an angle below the critical angle of total external reflection αc

from the substrate. We also use it for angles slightly above αc .
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Figure 2.4: Scattering geometry for grazing-incidence diffraction. The positions of pri-
mary beam (PB) and specular beam (SB) on the detector are indicated by red cir-
cles. Scattered photons with α f < 0, i.e. below the sample horizon, are absorbed
by the substrate. In the plane of incidence, five orders of diffuse Bragg sheets can
be recognized. At ψ 6= 0, the characteristic out-of-plane diffraction peaks of the
rhombohedral phase are visible (DOPC/Chol 70:30, RH=60%, ID01 measurement,
cf. section 5.1.1).

yielding scattering vector components

qx = 2π

λ

(

cosα f cosψ−cosαi

)

, (2.21)

qy =
2π

λ

(

cosα f sinψ
)

, (2.22)

qz =
2π

λ

(

sinαi + sinα f

)

. (2.23)

Due to random orientation of crystallites in the x y plane, the scattering vector compo-
nents parallel and perpendicular to the substrate are of interest:

q|| =
√

q2
x +q2

y =
2π

λ

√

cos2αi +cos2α f −2cosαi cosα f cosψ (2.24)

qz =
2π

λ

(

sinαi + sinα f

)

. (2.25)

For the total scattering angle 2θ between~ki and~k f , one obtains
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cos2θ = cosαi cosα f cosψ− sinαi sinα f . (2.26)

The angle αi has to be chosen small enough to ensure that no detectable diffraction
peaks disappear below the sample horizon. On the other hand, αi should not be too
small, since this reduces the number of photons impinging onto the lipid film (cf. sec-
tion 2.4). As an additional effect for αi < αc , a second set of diffraction peaks may
appear due to diffraction of the beam reflected from the substrate [103]. Due to the 2d

powder character, the images recorded in GIXD possess mirror symmetry with respect
to the plane of incidence.

2.3.3 Powder diffraction

Additional powder measurements are required to put the form factor amplitudes
{Fhkℓ} of in-plane reflections obtained from reflectivity scans and those of out-of-plane
reflections measured in GIXD experiments on a common scale. As explained in detail
in section 5.1.3, this is a highly nontrivial and important step for correct electron den-
sity reconstruction. The basic setup for powder diffraction is shown in Fig. 2.5. The
scattering vector corresponding to a total scattering angle 2θ is

q = 4π

λ
sinθ. (2.27)

powder
sample

~ki

~k f

D

2θ

φ

∆y

∆z

Figure 2.5: Powder diffraction geometry and typical powder pattern consisting of con-
centric rings (silver behenate calibration standard, SAXS instrument, Institute for
X-ray Physics, cf. section 3.2.3).
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2.4 Intensity correction factors

In addition to the proportionality Ihkℓ ∝ |Fhkℓ|2, the integrated Bragg peak intensities
obtained from an experiment depend on further effects determined by the exact expe-
rimental conditions [99]. It is crucial to take these into accout in order to obtain correct
form factor amplitudes |Fhkℓ|. Considering absorption, polarization, and illumination
effects as well as the Lorentz factor and peak multiplicities, the integrated intensity
Ihkℓ and the corresponding unit cell form factor Fhkℓ are related by [51, 101]

Ihkℓ = K ·CabsCpolCLCillCm|Fhkℓ|2. (2.28)

The constant K summarizes all global experimental parameters such as primary beam
intensity, scattering volume, detector efficiency and duration of the exposure and can
usually be neglected, since it does not affect the ratio of intensities of different reflec-
tions. However, as discussed in detail in section 5.1.3, the special case of a 2d powder
requires some effort to obtain the form factor amplitudes measured in two different ge-
ometries on a common scale. The origin and different functional forms of the remain-
ing correction factors for grazing-incidence, reflectivity and powder measurements are
explained in the following.

Absorption

In our experiments, scattered x-ray photons can be absorbed either in the lipid film or
by the sample chamber and flight tube windows and by the remaining air between
sample and detector. In the reflectivity measurements, the second contribution is
identical for all angles αi . Also in a grazing-incidence experiment where α f and ψ

are both small, it is very similar for all angles. Therefore, only absorption by the lipid
film is taken into account.
Consider a photon which is scattered in a depth z inside the lipid film of total thickness
df (Fig. 2.6a). The path length of the photon through the sample is

l (z) =
[

1

sinαi
+ 1

sinα f

]

z, (2.29)

the corresponding transmission probability is exp(−µ(λ)l ), where µ(λ) denotes the
wavelength-dependent linear absorption coefficient of the lipid film. The absorption
factor for a given pair of angles (αi ,α f ) is equivalent to the transmission probability
averaged over all penetration depths,

Cabs =
1

df

∫df

0
exp

(

−µl (z)
)

d z =
1−exp

(

−µdf

[
1

sinαi
+ 1

sinα f

])

µdf

[
1

sinαi
+ 1

sinα f

] . (2.30)

This result is the same as in [101]. The linear absorption coefficient µ(λ) depends
on the x-ray wavelength approximately via µ∝ λ3 [97], used values are listed in Tab.
2.2. For a stack of N ≈ 1400 lipid bilayers as estimated below and a lattice constant of
d ≈ 50Å, the resulting film thickness is df ≈ 7µm. For simplicity, this value is used for
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all samples. In Fig. 2.6(b), the absorption factors for typical reflectivity and grazing-
incidence measurements are shown as a function of qz . In the latter case, Cabs is con-
siderably more uniform in the required qz range. Therefore, we apply absorption cor-
rection only to the reflectivity data, where it slightly increases the form factor ampli-
tudes of the lower-order reflections. For the first Bragg peak, this effect is on the order
of about 10%.
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1.0a)                                                                  b)

XR,       8.048 keV
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z
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Figure 2.6: Absorption correction: (a) Sketch for derivation of the absorption correc-
tion factor Cabs. A photon is scattered in a depth of z inside the lipid film. The cor-
responding path through the sample is indicated by the solid black line. (b) Cabs
as a function of qz for an x-ray reflectivity (XR) and a GIXD (αi = 0.15◦) experiment
(df = 7µm, values of µ are given in Tab. 2.2).

E [keV] µ [m−1]

8.048 783
17.000 91
19.500 66

Table 2.2: Linear absorption coefficients µ for the three photon energies used in this
thesis. Calculations were carried out by a tool on the CXRO web page [104] using
the sum formula of DOPC, C44H84NO8P, and a molecular volume of 1296Å3 [105]
yielding a mass density of 1.007gcm−3. The value obtained for Cu-Kα radiation
(8.048keV) is very close to the one in [106].

Polarization

The scattered intensity also depends on the angle between the final wavevector~k f and
the polarization of the x-ray beam, i.e. the direction of the electric field vector. In a
synchrotron storage ring, electrons circulate in the horizontal plane and wigglers or
undulators cause oscillations in horizontal direction. A synchrotron beam is thus lin-
early polarized. In contrast, a sealed tube provides an unpolarized x-ray beam. The
polarization factors correcting for this effect are [97, 107, 108]
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Cpol =
{

cos2α f cos2ψ+ sin2α f synchrotron (horiz. scattering geometry)
1
2

[

1+cos2(2θ)
]

sealed tube.
(2.31)

For a total scattering angle 2θ = 10◦, this leads to a correction of |Fhkℓ| by less than 1%.

Lorentz factor

The number of crystallites which contribute to a certain reflection depends on the
structure of the sample (2d vs. 3d powder) and the experimental geometry. The Lo-
rentz factor corrects for this effect. In contrast to the rather weak polarization and ab-
sorption corrections, it strongly affects the obtained |Fhkℓ| [97, 101, 107, 108, 109, 110]:

CL =







[

cosαi cosα f sinψ
]−1 ∝ q−1

|| grazing-incidence diffraction

[sin2αi ]−1 ∝ q−1
z reflectivity

cosθ/sin2 2θ ∝ q−2 powder diffraction

(2.32)

The proportionality symbols are valid in the small-angle region, which is assumed
throughout this thesis. It has been demonstrated that corrections by q−1

z for oriented
stacks and q−2 for unoriented multilamellar liposomes lead to the same results [87].

Illumination

In a reflectivity scan, the number of photons of the primary beam which reach the sam-
ple depends on the angle of incidence (Fig. 2.7). If αi is small, a certain fraction misses
the sample. Assuming a rectangular primary beam profile, the following illumination
factor is used:

Cill =
{

h
l sinαi

αi < arcsin
(

h
l

)

,

1 else.
(2.33)
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Figure 2.7: Illustration of the illumination correction. For small angles αi , a part of the
beam does not impinge on the sample.

Multiplicity factor

In case of nonlamellar lipid mesophases, symmetry-equivalent reflections occur. In
the rhombohedral phase, e.g. the reflections denoted by Miller indices (102), (012) and
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(112) 5 are symmetry-equivalent and coincide on the detector. The integrated inten-
sity Ihkℓ of a Bragg peak then corresponds to a family of reflections denoted by curly
brackets {hkℓ}, where any of the contained index triples can be used for hkℓ. The mul-
tiplicity mhkℓ of a family of reflections {hkℓ} denotes the number of its members. The
multiplicity correction factor in Eq. (2.28) is

Cm = mhkℓ. (2.34)

For the rhombohedral phase, the families of reflections and their members are listed
in Tab. A.1 in appendix A.2.

2.5 The phase problem

Now we return to the phase problem of crystallography and consider the special case
of phospholipid mesophases.6 As introduced above, the unit cell form factors

Fhkℓ =
∫

V
ρ(~r )exp(i~qhkℓ ·~r )d 3r = |Fhkℓ| ·exp(iφhkℓ) (2.35)

obtained by Fourier transform of the unit cell electron density ρ(~r ) are, in general,
complex-valued quantities. A priori, the crystallographic phase φhkℓ can assume any
value between 0 and 2π. Without additional information, the number of possibilites to
assign φhkℓ to a set of measured form factor amplitudes is infinite.
For lamellar phospholipid phases, it is sufficient to consider the one-dimensional elec-
tron density profile (EDP) ρ(z) perpendicular to the bilayer plane. In bilayer stacks ob-
tained by self-assembly from lipids in solution, the lipid composition of both monolay-
ers composing each bilayer must be, at least on average, the same.7 In addition, ρ(z) is
the spatial and temporal average over all bilayers in the stack. Therefore, ρ(z) must be
symmetric with respect to the bilayer midplane. If the bilayer center is chosen as the
origin z = 0, the electron density profile is centrosymmetric, ρ(z) = ρ(−z) (Fig. 2.8).
Also in case of all studies of nonlamellar phospholipid mesophases we are aware of,
be it inverted hexagonal, ripple, cubic (e.g. [111, 112, 113]) or the rhombohedral phase,
the assumption of centrosymmetry has been made and yielded reasonable structural
results. It has been attempted to motivate this by the fact that nonlamellar mesophases
are obtained by phase transitions from symmetric lipid bilayers, and centrosymmetry
should somehow be conserved [114]. However, there is no rigorous proof at hand to
make this an universal rule.
In case of centrosymmetry, without loss of generality, the center of inversion can be
chosen as the coordinate origin. Use of the Euler identity

exp(ix) = cos x + i · sin(x) ∀x ∈R (2.36)

5 In crystallography, a minus sign is often indicated as a bar above a Miller index.
6 Unfortunately, the word phase has to be used to characterize the sample state as well as for the property

of a complex number. In this section, lipid mesophase and crystallographic phase are used for clarity.
7 Note that this does not apply to biological membranes in vivo, which are usually characterized by asym-

metric lipid composition of the inner and outer leaflets [1].
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yields

Fhkℓ =
∫

V
ρ(~r )cos(~qhkℓ ·~r )d 3r = (±1) · |Fhkℓ| ∈R, (2.37)

since the integral of an odd function evaluated over a symmetric interval is zero. The
Fourier series Eq. (2.15) for reconstruction of ρ(~r ) turns into

ρ(~r ) = 1

V

∑

h,k,ℓ

νhkℓ|Fhkℓ|cos(~qhkℓ ·~r ) where νh,k,ℓ =±1. (2.38)

The crystallographic phase problem φhkℓ ∈ [0,2π] is reduced to φhkℓ = 0 or π, i.e. turns
into a “sign problem” νhkℓ =±1. For N independent, not symmetry-related reflections,
the number of possible sign combinations {νhkℓ} is 2N . In case of a liquid-crystalline
Lα phase, we typically observe N = 8 Bragg reflections, yielding 28 = 256. For the rhom-
bohedral phase, this increases to up to about 230. In comparison to the general non-
centrosymmetric case, this already poses a considerable simplification. However, still
some effort is required to solve the residual sign problem.

The structures ρ(~r ) obtained after reconstruction must be compatible with so-me gen-
eral features due to the physico-chemical properties of lipid mesophases [113]: As a
result of the powerful hydrophobic effect, water and hydrocarbon do not mix. The ob-
tained structures must be composed of continuous lipid monolayers [115], i.e. a lipid
headgroup region indicated by elevated electron density (due to the phosphate groups,
cf. chapter 4) must separate aqueous regions and the hydrophobic hydrocarbon re-
gion. The dimensions of features in the obtained electron density maps, e.g. the width
of the polar headgroup region indicated by elevated electon density, must be consis-
tent with the known molecular dimensions of the used lipids. In addition, as addressed
more closely in the following section, the density maps must be rather smooth and dis-
play no sharp edges or features with sizes below few Å.

After these general considerations, a brief summary of several existing methods to
solve the crystallographic phase problem for the case of diffraction from lipid meso-
phases is given:

• Plausibility: If the number of reflections is small, e.g. 4 in case of a lipid bilayer
stack at full hydration, it is an accepted practice to select one of 24 = 8 phase
combinations as the correct one, since the others can be excluded based on ar-
guments given above [116].

• Model building: A structural model is built and corresponding intensities are
calculated. By comparison to the observed intensities, the model is then succes-
sively refined until convergence of model and observed intensities is achieved.
However, this does not necessarily prove correctness of the model [112, 117].

• Pattern recognition method: Mesophases with a common phase boundary are
often very similar in chemical composition. Therefore, both mesophases should
possess very similar electron density histograms, since these do not depend on
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the actual spatial distribution of lipid and water in the unit cell. If the structure of
one mesophase has been solved, the crystallographic phases for reconstruction
of the other mesophase can be chosen using close agreement of both electron
density histograms as a criterion [113, 118].

• Multiwavelength anomalous diffraction: In the field of protein crystallography,
this method is well-established and routinely applied. It has been demonstrated
that it can be transferred to lipid mesophases using bromine-labeled lipids, whe-
re it allows to single out the distribution of the label atoms and determine the
corresponding crystallographic phases [114, 119, 120]. However, the number of
independent reflections sufficiently strong for further analysis in these studies
was substantially lower than in our rhombohedral phase data. This could also be
due to disorder caused by peptides. In addition, presence of heavy-atom labels
in every lipid is highly unphysiological.8. In addition, for application of the MAD
method, the use of synchrotron radiation for all measurements is mandatory,
since the x-ray wavelength must be tunable.

• Methyl trough search: This method has been introduced for cubic phases con-
taining infinite periodic minimal surfaces (IPMS) [44].

• Swelling method: The swelling method for lamellar phases as introduced al-
ready about 40 years ago is probably the most widely used phase retrieval me-
thod in membrane diffraction. As shown in [30, 51], it can be extended to the
rhombohedral phase.

The swelling method is the method of choice used in this thesis. The underlying princi-
ples and its implementation are explained in detail both for the lamellar and the rhom-
bohedral phase in sections 4.4.5 and 5.2. In case of the rhombohedral phase, we will
use an additional criterion derived from direct methods of crystallography.

2.6 Resolution

After introduction of the basic principles required for reconstruction of the unit cell
electron density of lipid mesophases, we briefly address the question for the obtainable
resolution. In later chapters, the positions of electron density maxima indicative of
lipid headgroup peaks will be used to define lipid bilayer and water layer thickness as
well as stalk neck radii. Therefore, it is important to consider if observed small changes
correctly reflect reality, or possibly are artifacts due to poor resolution. This section
summarizes some considerations made by WHITE et al. [100, 121] and NAGLE et al.

[47] for the case of bilayer stacks. They should apply to the stalk phase as well.
In crystallography, resolution is usually defined as the lattice spacing corresponding to
the largest measured wavevector transfer,

8 We briefly explored the possibility to use bromine-labeled cholesterol (synthesized and provided by P.
SCHNEGGENBURGER), which strongly changed the phase behaviour when added to DOPC in a molar ratio
of XChol-Br = 0.3
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dmin = 2π

qmax
. (2.39)

In case of diffraction on a lipid bilayer stack, where nmax denotes the highest observed
Bragg peak order corresponding to q = nmax · 2π/d , this canonical resolution [100]
yields

dmin = d

nmax
. (2.40)

For the results presented in this thesis, d ≈ 40 − 55Å and typically nmax = 8 yield a
canonical resolution of 5 to 7Å. This is considerably lower than in e.g. protein crystal-
lography, where structures are currently often obtained with a resolution better than
1Å.
The reasons for this rather low resolution from lipid mesophases should be clarified.
In a lipid mesophase, each unit cell contains a large number of noncovalently bound
lipid and water molecules. These can diffuse at least along certain directions and dis-
play considerable disorder and thermal fluctuations. This makes lipid mesophases
very different from what is usually understood as the crystalline state. Nevertheless,
sharp Bragg peaks are observed in diffraction experiments. Therefore, it has been con-
cluded that lipid mesophases are best described by “convolution of a nearly perfect
lattice with a highly disordered unit cell ” [100]. EDPs of lamellar phases have therefore
been described by superposition of Gaussians representing several submolecular frag-
ments such as lipid headgroups, water and terminal methyl groups, and the widths of
these Gaussians characterize the degree of disorder.
As a general property of the Fourier transform, larger widths of Gaussian electron den-
sity distributions reduce the higher-order form factor amplitudes. Considering the fol-
lowing example given in [47], this becomes immediately apparent: For a hypothetic
EDP composed of one pair of Gaussians placed symmetrically with respect to the ori-
gin,

ρmodel(z) = 1

2
[δ(z − z0)+δ(z + z0)]∗exp

(

−z2/σ2) , (2.41)

the form factor

F model(qz ) = cos(qz z0) ·exp

(

−
[qzσ

2

]2
)

, (2.42)

decays more rapidly with qz for broader distribtions, i.e. larger σ. The rather low num-
ber of detectable reflections is a consequence of the inherent properties of lipid bilay-
ers and not due to experimental shortcomings. In addition to disorder in the unit cell,
long-range bilayer undulations can further reduce the number of observable reflec-
tions at or close to full hydration and change their lineshape [47]. However, in partially
dehydrated conditions, this is a negligible effect [121]. Electron density reconstruction
using all observable form factors therefore yields a correct and fully resolved represen-
tation of the true bilayer structure.
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Fig. 2.8 serves to illustrate this by comparison of the gel and fluid Lα phases of two
lipids. Samples were prepared and data measured under the same conditions. In case
of the gel phase, the highest discernible order of diffraction in the measured interval
is nmax = 14 for gel-phase DPPC, but only nmax = 8 for Lα-Phase DOPC. In the EDPs,
which were reconstructed as described in chapter 4, the gel phase is indicated by a
characteristic double peak in the lipid headgroup region [122, 123]. The widths of the
headgroup peak and the methyl trough region around z = 0 are wider in case of the
fluid phase, reflecting its more disordered structure.
From model calculations using Fourier synthesis of Gaussian distributions, WHITE and
coworkers concluded that d

nmax
is a measure for the 1/e half widthσ of the Gaussian dis-

tributions of submolecular groups. According to their analysis, the positions of these
groups can be determined with a “resolution precision” of up to 0.1Å in the fluid phase,
which is substantially smaller than dmin = d

nmax
([100, 121] and references therein).
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Figure 2.8: (left) X-ray reflectivity scans of a fluid phase (DOPC) and a gel phase (DPPC)
sample displaying 8 or 14 Bragg peaks, respectively, reflecting the different degree
of disorder in both phases. Experimental parameters are given in section 4.4.1.
Curves are shifted vertically for clarity. (right) Corresponding EDPs ρ(z) on arbi-
trary scale.
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As the first step towards structural analysis of stalks in model membrane systems, pho-
spholipids and lipid mixtures which display the stalk phase must be identified. To this
end, phase diagrams must be determined. Bringing lipid bilayers into close proximity
is equivalent to removal of water from the interbilayer space. Therefore, a suitable
experimental scheme for controlled dehydration is required. In membrane biophysics,
this is achieved by the well-established osmotic stress method. After description of the
basic concepts and the used experimental setup, the results of systematic studies on
the phase behaviour of a series of lipids and lipid mixtures displaying the stalk phase
are presented. In addition, as the first step towards electron density reconstruction,
indexing of the observed diffraction patterns is described.

3.1 Hydration control by water vapour

In order to study phenomena which occur when two lipid bilayers are brought into
close contact, the water layer separating them must be reduced in a controlled fashion.
This is achieved by the osmotic stress method [124], which can be applied in different
ways:
For rather mild dehydration of multilamellar liposomes or solid-supported membrane
stacks in aqueous solution, polymers such as polyethylene glycol which are too bulky
to enter the volume between adjacent bilayers are added [18, 125]. The gradient in
polymer concentration leads to a removal of water from the interbilayer space and thus
effectively reduces the water layer thickness dw.
For considerably stronger dehydration as required in this thesis, solid-supported sam-
ples are placed in an atmosphere of controlled concentration of water molecules in the
gas phase, i.e. partial pressure of water [124]. This has the great advantage that attenu-
ation of the x-ray beam by bulk water is circumvented. Consider the situation sketched
in Fig. 3.1(left): A phospholipid bilayer stack is placed inside a closed cell. Saturation of
the air with water vapour is assured by a reservoir of pure water. The vapour pressure
p1 inside the cell is the saturation vapour pressure p∗, whose variation with tempera-
ture is given by the Clausius-Clapeyron equation. The phospholipid system will take
up as much water from the gas phase as required to minimize the repulsion between
adjacent bilayers and swell up to the equilibrium distance d∗

w corresponding to excess
water conditions (cf. Fig. 1.8).
By several methods, e.g. replacing the water reservoir by a saturated salt solution [126]
or creation of temperature gradients, the amount of water molecules in the gas phase
can be reduced, corresponding to a vapour pressure p2 < p∗ (Fig. 3.1, right). The ratio
p/p∗ defines the relative humidity

RH = p

p∗ ·100%, (3.1)

which is used as the control parameter in our experiments. At RH < 100%, one ob-
serves that the bilayer stack does not swell to d∗

w any longer. dw typically decreases
monotonously if RH is systematically reduced. This can be interpreted as an additional
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Figure 3.1: Sketch for derivation of the osmotic pressure Π corresponding to relative
humidity RH = p/p∗. On the left, the vapour pressure p is the equilibrium vapour
pressure p∗. The air is fully saturated with water, and the lipid bilayer stack can
imbibe as much water as is required to minimize the interbilayer potential. On the
right, the vapour pressure is reduced to p < p∗, the bilayer stack cannot swell to
d∗

w anymore. This is interpreted as the osmotic pressure Π pushing lipid bilayers
together.

attractive pressure, called the osmotic pressure Π, which pushes adjacent bilayers to-
gether. To quantify Π as a function of RH , one uses the condition that the chemical
potential of water in both phases must be identical in thermal equilibrium, µv = µw

[127]. For the situation sketched in Fig. 3.1, this implies

µ2
v −µ1

v =µ2
w −µ1

w. (3.2)

From the Maxwell relations of thermodynamics, it follows that

(
∂µ

∂p

)

T

= v(p,T ), (3.3)

where v denotes the partial volume of water. If the vapour phase is treated as an ideal
gas, one obtains

µ2
v −µ1

v = kBT

∫p

p∗

1

p
d p = kBT ln

(
p

p∗

)

. (3.4)

In the aqueous phase, the partial volume of water is assumed to be constant. A mass
density of 1g · cm−3 yields vw = 29.97Å3. The corresponding pressure difference ob-
tained by integration

∫

vw dp is defined as the osmotic pressure Π:

µ2
v −µ1

v =Π · vw. (3.5)

Combining the above equations, the osmotic pressure Π at relative humidity RH is

Π=−kB T

vw
ln

(
RH

100%

)

. (3.6)
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Following the conventions used in section 1.4, the minus sign indicates that Π reduces
the interbilayer distance. For RH = 100%, Π= 0. This situation is equivalent to a sam-
ple fully immersed in water, since, by definition, the chemical potential in the vapour
phase at p∗ is the same as in bulk water. Importantly, it should be pointed out that
full hydration by water vapour is experimentally difficult to achieve due to long equi-
libration times and presence of temperature gradients [124], but can be achieved with
specifically designed environmental chambers [128]. In addition, commercial RH sen-
sors often fail to give reliable results at RH very close to 100%.
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Figure 3.2: (a) Osmotic pressure Π calculated by Eq. (3.6) in different units. (b) Lattice
constant d of a DOPC bilayer stack as a function of the number of water molecules
per lipid molecule. Redrawn from data given by HRISTOVA et al. [121]. Solid black
lines are shown as guides to the eye. The break in the curve at about 12 waters per
lipid has been attributed to completion of the hydration shell of the PC headgroups
([121] and references therein).

The experiments in this work were carried out at RH ≤ 95%, which already corresponds
to quite strong dehydration. Fig. 3.2(b) shows some literature data for dehydration of
DOPC, the standard lipid used in this thesis. Importantly, the relation of RH and water
molecules per lipid is highly nonlinear. As noted in [124], RH = 99% already leads to
removal of almost half the water from a fully hydrated bilayer stack.

3.2 Experimental

3.2.1 Sample preparation

Solid-supported, oriented lipid bilayer stacks were prepared by deposition from or-
ganic solution based on the protocol introduced by Seul and Sammon [129] and used
in all experiments described in this thesis. Polished silicon wafers cut to substrates
of 15× 10mm2 and 25× 15mm2 were purchased from Silchem (Freiberg, Germany).
The lipids in Tab. 3.1 were purchased as lyophilized powders from Avanti Polar Lipids
(Alabaster, AL, USA) and used as delivered. The substrates were thoroughly cleaned
by repeated washing cycles with methanol and deionized water in an ultrasonic bath,
dried in a nitrogen stream, rendered hydrophilic in a plasma cleaner (Harrick PDC-
002) and placed on a horizontally aligned table. Lipid stock solutions were prepared
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in chloroform/(2,2,2)-trifluoroethanol (1:1 vol:vol) with a concentration of 10mg/ml.
DOPC/PIP2 samples were prepared by S. K. GHOSH and a mixture of chloroform, me-
thanol and water (20:9:1 vol:vol:vol) was used. For lipid mixtures with a molar fraction
X of DOPE, Chol or PIP2, a volume V was obtained by combination of two volumes

V2 =V

[

1+ 1−X

X
· c2

c1

]−1

and V1 =V −V2, (3.7)

where c1,2 denote the molar concentrations of the stock solutions. The index 1 is used
for DOPC and 2 for the other component, respectively. These two volumes were pipet-
ted into one glass vial and thoroughly vortexed. 200µl solution per sample were pipet-
ted uniformly onto the 25×15mm2 substrates used for phase diagram determination
and reflectivity scans. For synchrotron measurements and DOPC/PIP2 phase diagram
determination, 15×10mm2 substrates and 80µl lipid solution per sample were used.
After few hours, the bulk solvent had evaporated and the lipids formed a stable thin
film. Residual solvent was extracted by storage in vacuum (< 1mbar) for at least 12h.
For an area per lipid headgroup of about 70Å2 [68], the number of bilayers in a stack is
estimated to be about 1400 for both substrate sizes. Between sample preparation and
experiments, samples were stored at 7◦C.

lipid abbreviation M [g ·mol−1] Tm [◦C]

di-14:1(∆9-cis)-phosphatidylcholine − 673.5 −
di-16:1(∆9-cis)-phosphatidylcholine − 729.5 −
di-18:1(∆9-cis)-phosphatidylcholine DOPC 785.6 −18.3±3.6
di-20:1(∆11-cis)-phosphatidylcholine − 841.7 −4.3
di-22:1(∆13-cis)-phosphatidylcholine − 897.7 +12.1±1.6
di-24:1(∆15-cis)-phosphatidylcholine − 953.8 +25.9±2.5
di-16:0[CH3]4-phosphatidylcholine DPhPC 845.7 −
di-18:1(∆9-cis)-phosphatidylethanolamine DOPE 743.5 −6.0
Phosphatidylinositol-4,5-bisphosphate PIP2 1098.2 −
cholesterol Chol 386.5 no bilayers

Table 3.1: Used lipids, common abbreviations and main transition temperatures Tm

at full hydration available from the literature [130, 131].

3.2.2 Sample environment

Fig. 3.3(a) shows a schematic of the setup used for relative humidity control in all
measurements reported in this thesis. The setup was constructed by T. REUSCH, a
detailed description is given in his diploma thesis [132]. In addition, it has been de-
scribed previously in [31]. In brief, a constant stream of dry nitrogen is divided into
two fractions, whose flow rates are determined by two mass flow controllers (MKS In-
struments, Munich, Germany). One fraction is hydrated with water vapour, while the
other one remains dry. Recombining both fractions yields a stream of nitrogen with
RH between ∼ 10 and typically up to ∼ 98%. RH and T inside the sample chamber are
measured by a combined relative humidity/temperature sensor (Driesen+Kern, Bad
Bramstedt, Germany) in the vicinity (≃ 1cm) of the sample. This sensor and the mass
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flow controllers are interfaced via serial ports with the diffractometer control software
SPEC. By PID (proportional-integral-derivative) control, RH setpoints in the interval of
∼ 10−98% can be reached and remain stable to within ±0.1% (Fig. 3.3b). This enables
to run long, fully automated scan macros with RH as a parameter.
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Figure 3.3: (a) Sketch of the setup used for relative humidity (RH) control. Figure taken
from AEFFNER et al. [31] and used with kind permission from Springer. (b) Plot of
the RH logfile of a swelling experiment. Each requested setpoint in RH is reached
after approximately 10 minutes and subsequently maintained constant to within
≃ 0.1% for one hour. This stability was essential during all experiments.

Sample chamber and water reservoir for hydration of the nitrogen can be heated or
cooled by flows of water/glycol mixtures from temperature-controlled reservoirs (Ju-
labo, not shown in Fig. 3.3). All experiments presented in this thesis were performed at
room temperature, T ≃ (22.5±1)◦C. At fixed RH , a temperature change of 2◦C results
in a relative change ∆Π/Π below 1%. This is considerably smaller than a change result-
ing from varying RH about 1%. Based on this estimation, effects of small temperature
changes were neglected [31]. Reaching high RH setpoints was sometimes facilitated
by heating the water reservoir, heating the pipings conducting the water vapour to the
sample chamber through a heating wire wrapped around them, and by gently cooling
the sample chamber. The used humidity sensors were calibrated and controlled on a
regular basis by saturated salt solutions using tabulated values [133, 134, 135] (Fig. 3.4).

3.2.3 In-house small-angle x-ray scattering setup

2d diffraction patterns in GIXD geometry were recorded by a home-built diffractome-
ter described previously in [126, 132]. Cu-Kα radiation (E = 8.048keV, λ= 1.54055Å) is
generated by a sealed tube (Seifert FK61, P = 35kV×50mA) and parallelized and mo-
nochromatized by a Goebel mirror (Xenocs Fox 2D Cu 12INF). Two pinholes of 1mm
in diameter determine the primary beam profile. For different alignments, the ob-
tained primary intensity was between 0.6−1.8 ·108 photons/s measured at the sample
position by a PIN diode (Forvis Technologies). The sample can be translated and ro-
tated by Huber stages. Diffraction patterns were recorded by a xenon-filled multiwire
proportional counter (HiStar, Bruker) with an active area of 11.5 cm in diameter and
an effective pixel size of 105×105µm2. The distance D between sample and detector
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salt RH [%]
LiCl 11.3
MgCl2 32.9
NaBr 57.7
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Figure 3.4: Literature values used for calibration of the RH sensors [133, 134, 135] (left)
and example of a calibration curve (right). Errorbars of ±1.8% indicate the uncer-
tainty in RH given by the manufacturer.

was determined using silver behenate powder as a calibration standard, which yielded
D between 30 and 35cm for different series of measurements. The primary beam is
blocked by a beam stop mounted directly in front of the detector. The detector region
around the first in-plane reflection and the primary beam was additionally covered
by a strip of Al or Pb. Prior to each series of measurements, the detector bias voltage
was checked and correction tables for detector sensitivity and spatial distortion were
recorded as described in the detector manual. To this end, a weakly radioactive 55Fe
sample mimicking a point source was placed at the sample position. A cylinder with
Kapton windows was mounted in front of the detector and evacuated to minimize scat-
tering and absorption effects by air. Automatic attenuators were used to avoid damage
to the detector. The instrument is controlled by the software SPEC (Certified Sciencific
Software). The beam of a weak He-Ne laser (λ = 632.8nm) can be deflected into the
path of the x-ray beam by a mirror such that both beams are collinear. This facilitates
alignment of beamstop, pinholes and samples.
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Figure 3.5: Sketch of the instrument used for phase diagram determination by grazing-
incidence x-ray diffraction. The sample chamber and a vacuum cylinder placed
between sample and detector are not shown for clarity.
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3.2.4 Phase diagram determination

Samples were placed inside the sample chamber mounted on the goniometer. The
sample chamber was connected to the setup for relative humidity control. The angle
of incidence αi was aligned by motor rs. During this step, careful use of attenuators is
essential to avoid damage to the detector, which may occur if αi accidentally fulfills the
Bragg condition for the first Bragg peak. αi was chosen such that the specular beam
reflected from the substrate was located in between primary beam position and first
Bragg sheet. If αi is too large, reflections with small qz component are absorbed by the
substrate and phase identification is impeded. The counting time for images allowing
proper phase identification was typically 10 to 20 minutes. Improving the signal-to-
noise ratio by a factor of 2 requires a four-fold increase in counting time due to Pois-
sonian statistics. After sample alignment, diffraction patterns in a chosen RH interval
were recorded in a fully automatic fashion using the SPEC command humidity_scan

developed by T. REUSCH [132].
In regard to possible effects of thermal history of the samples, two different proto-
cols used for phase diagram determination must be distinguished: In the earliest ex-
periments using DOPC/Chol and DPhPC/Chol mixtures published in [31], samples
from the fridge were heated several times to 50◦C for few hours in a saturated water
vapour atmosphere and cooled down to room temperature again prior to the mea-
surements. During phase diagram determination, RH was increased from low to high
values (protocol 1). In later experiments, samples from the frigde were equilibrated
in saturated water vapour at room temperature for few hours and subsequently in the
sample chamber at high RH (e.g. RH = 90%) four about one hour. Phase diagrams
were recorded by successively lowering RH in steps of ∆RH = 2% (protocol 2).

3.3 Results

In the following, the results of extended measurements at our in-house small-angle x-
ray scattering instrument are presented. After a general description of the observed
characteristic diffraction patterns, the results on lyotropic phospholipid phase behav-
ior of single-component samples and binary lipid mixtures are summarized in several
phase diagrams. Subsequently, indexing of the diffraction patterns, which is the first
step towards electron density reconstruction, is described.

3.3.1 Characteristic diffraction patterns

Fig. 3.6 shows five distinct diffraction patterns observed during phase diagram deter-
mination. In the right column, closeups of the small-angle region are given. The broad
ring is due to the Kapton windows of the sample chamber and flight tube. The specu-
larly reflected beam (SB) and the first Bragg sheet were attenuated to avoid overexpo-
sure of the detector.
A lamellar phase L is indicated by a single series of equidistant diffuse Bragg sheets
and absence of out-of-plane reflections. This phase was observed for most samples at
the highest RH values used. Due to long-range order in only one dimension, a single
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Miller index h is sufficent for indexing of the reflections. All form factors {F (~qh)} can
be measured by X-ray reflectivity scans (cf. chapter 4).

At lower RH , several nonlamellar phases can be distinguished. Upon dehydration, a
phase transition from the lamellar phase L to the rhombohedral phase R was observed
in most samples reported here. In DOPC/Chol and DOPC/DOPE mixtures, the rhom-
bohedral phase transformed to the distorted inverted hexagonal phase HIIδ upon fur-
ther dehydration for a range of lipid compositions. At the first glance, the R and HIIδ

phase patterns look quite similar and are sometimes difficult to distinguish, especially
if only few strong peaks are visible. Moreover, in a certain RH range in the phase dia-
grams, these two phases were found in coexistence. For comparison, reciprocal space
maps of both phases, i.e. transforms of the raw diffraction patterns to reciprocal space
(q||, qz ), recorded at a synchrotron are shown in Fig. 3.7. Appearance of the {113} peak
indicated in Fig. 3.6 was used as a criterion for the R phase. In case of HIIδ, peak po-
sitions in q|| are equidistant, and the {113} peak is absent. Finally, at low hydration,
diffraction patterns characteristic for the inverted hexagonal phase sketched in Fig. 1.2
were observed.

The diffraction pattern C has, to our knowledge, not been reported before. It was ob-
served in DOPC/Chol samples at XChol > 0.3 following the first protocol given in sec-
tion 3.2.4. Indexing of the rhombohedral phase, the diffraction pattern C and an addi-
tional tetragonal phase only observed during a synchrotron measurement is described
in section 3.3.3 in detail. For the HII and HIIδ phases, we refer to e.g. [119, 136].

3.3.2 Phase diagrams

Fig. 3.9 to 3.13 show the obtained partial phase diagrams. Dashed lines are shown as
guides to the eye. The figure captions contain further information on the number of
measurements and the protocol used for thermal equilibration of the samples.

In case of DOPC and DPhPC, the existence of the rhombohedral phase was known from
the literature [30, 51, 137]. We observed the R phase also in other di-monounsatura-
ted lipids with different chain lengths structurally similar to DOPC (Fig. 3.9). Of these
lipids, DOPC requires the least osmotic pressure to arrange into the R phase. Inter-
estingly, this correlates very well with the areas per lipid headgroup (at full hydration)
given by KUCERKA et al. [138]. We will expand on this point at the end of chapter 4. The
lipid di24:1PC is in the gel phase at room temperature and full hydration (Tab. 3.1),
which could explain the absence of the R phase. Since the main phase transition of
several lipids is known to increase upon dehydration [130], the same could also apply
to di22:1PC.

The phase behaviour of lipid mixtures is more complex. Focusing on stalk forma-
tion, the main effect upon addition of DOPE, Chol and PIP2 is a shift of the L/R phase
boundary to higher RH values. For DOPE, this has been reported before [137]. Follow-
ing continuum theory, this could be due to either effects of bending and lipid packing,
effects on bilayer interaction, or a combination of these. In the following chapters,
both possibilities are further explored using structural data of the lamellar and rhom-
bohedral phases. In addition, HII and HIIδ phases appear at elevated Chol or DOPE
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Figure 3.6: Characteristic diffraction patterns. Miller indices are shown for the lamellar
(L) and inverted hexagonal (HII) phases. Indexing of the rhombohedral phase (R)
and the pattern termed C , which is most likely a cubic phase of symmetry I a3d ,
are described below. A semitransparent Al strip was used to attenuate the specular
reflection and the first Bragg sheet in the three upper rows. In case of the two last
rows, a Pb absorber was used.
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Figure 3.7: Comparison of the reciprocal lattices of the R phase (di16:1PC, RH = 18%)
and HIIδ phase (DOPC/Chol 7:3, RH = 40%). Data were recorded at the Swiss Light
Source and processed as described in chapter 5. Red circles in the HIIδ pattern
indicate some residual R phase peaks.
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Figure 3.8: Diffraction patterns of DOPC/PIP2 samples: L + HII phase coexistence
(6mol% PIP2, RH = 70%) R/HII phase coexistence (4mol% PIP2, RH = 40%) and
HII phase (10 mol% PIP2, RH = 10%).
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content at low hydrations, while these phases are absent in pure DOPC in the applied
RH range.
Given the rather low molar fractions of PIP2, the effect of this lipid is particularly strong.
Apart from a shift of the L/R phase boundary, the observation of additional peaks in-
dicative of a HII phase appearing at XPIP2 > 4% is strinking, since pure DOPC alone
does not form the inverted hexagonal phase at all and considerable fractions of DOPE
or Chol are required to induce a similar effect. Representative diffraction patterns of
DOPC/PIP2 mixtures are shown in Fig. 3.8. In case of R/HII coexistence, the HII reflec-
tions become more pronounced for low RH .
In this respect, DOPC/PIP2 mixtures are similar to DPhPC/Chol mixtures at XChol ≥
15%, which display the same phase sequence HII → R → HII in the RH interval be-
tween 80 and 90%. A similar re-entrant phase behavior HII → L → HII has been ob-
served for DOPE and quantitatively explained by the balance of hydration and bending
energies [139, 140].
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Figure 3.9: Lyotropic phase diagram of different monounsaturated lipids recorded at
room temperature (protocol 2). Several lipids which are in the fluid Lα phase at
room temperature and full hydration (Tab. 3.1) display the R phase upon dehydra-
tion. Least osmotic pressure is required to induce the R phase in DOPC.
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Figure 3.10: Lyotropic phase diagram of DOPC/DOPE mixtures at room temperature
(protocol 2). This lipid mixture has been investigated previously [137], our results
are in good agreement.
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Figure 3.11: Lyotropic phase diagram of DOPC/Chol mixtures at room temperature
based two series of measurements following protocols 1 and 2. In case of protocol
1, the pattern C (▽) was observed for high Chol content.
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Figure 3.12: Lyotropic phase diagram of DPhPC/Chol mixtures at room temperature
(protocol 1). At elevated Chol content, the R phase disappeared.
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gether with S. K. GHOSH [35].
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3.3.3 Indexing of Diffraction patterns

All 3d crystalline structures can be classified into 7 crystal systems and 14 Bravais lat-
tices shown in Fig. 3.14. The unit cell is spanned by three linearly independent vectors
characterized by up to six lattice parameters a,b,c and α,β,γ. Corresponding reci-
procal lattice vectors ~qhkℓ follow from Eq. (2.9). ~ez is perpendicular to the substrate
surface. Due to the 2d powder character of the samples, the Bragg peak positions in
the (q||, qz )-plane are determined by

q|| =
√

(
~ex ·~qhkℓ

)2 +
(
~ey ·~qhkℓ

)2
, (3.8)

qz =~ez ·~qhkℓ. (3.9)

Rhombohedral phase

From the literature, it is known that the pattern R corresponds to the rhombohedral
phase [30]. Here, it is briefly explained how this can be seen: The rhombohedral phase
is observed upon dehydration of the lamellar phase, the series of equidistant Bragg
sheets along the qz axis is preserved. Therefore, one basis vector is chosen parallel to
~ez . Diffraction peaks are located in several columns of approximately constant q|| with
ratios of approximately 0:1 :

p
3:2. By calculating the diffraction patterns of 2d powders

of the seven crystal systems with the unique axis perpendicular to the substrate, it turns
out that a hexagonal lattice with basis vectors

~aH = a (1,0,0)T , ~bH = a

(

−1

2
,

p
3

2
,0

)T

, ~cH = c (0,0,1)T . (3.10)

and the resulting reciprocal lattice vectors

⇒ ~a∗
H = 4π

p
3a

(p
3

2
,

1

2
,0

)T

, ~b∗
H = 4π

p
3a

(0,1,0)T , ~c ∗
H = 2π

c
(0,0,1)T (3.11)

leads to the experimentally observed peak distribution (Fig. 3.15, top). The corre-
sponding momentum transfer components parallel and perpendicular to the substrate
are

q (hk)
|| =

√

h2 +hk +k2
︸ ︷︷ ︸

=0,1,
p

3,2,
p

7,3,...

· 4π
p

3a
, q (ℓ)

z = ℓ · 2π

c
. (3.12)

However, diffraction peaks which do not fulfil the reflection condition

−h +k +ℓ= 3n, n ∈Z (3.13)

are systematically absent in this parameterization. This occurs if, in addition to the
basis vectors, additional translational symmetries exist. Tables of reflection condi-
tions and corresponding symmetry elements can be found in crystallography text-
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Figure 3.14: Seven crystal systems and corresponding fourteen Bravais lattices in 3d .
The hexagonal and trigonal systems are sometimes combined, since also the trig-
onal system can be described by a non-primitive hexagonal unit cell [141].
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books [141]. In the present case, Eq. (3.13) indicates rhombohedral symmetry. Alterna-
tively, the rhombohedral unit cell of the trigonal crystal system can be used (Fig. 3.15,
center):

~aR = (b,0,d)T , ~bR =
(

−b

2
,

p
3b

2
,d

)T

, ~cR =
(

−b

2
,−

p
3b

2
,d

)T

, (3.14)

where b = a/
p

3 and d = c/3. This parameterization yields only the observed peak
positions. In some textbooks trigonal is treated as a subset of hexagonal [141]. The sys-
tematical absences can be understood as follows: Consider a crystal of identical atoms
with form factor f arranged on a rhombohedral lattice. Translation of the crystal by
one of the rhombohedral basis vectors is a symmetry operation. If one uses hexagonal
coordinates instead, each unit cell contains three identical atoms placed at

~r1 = (0,0,0)T , ~r2 =
(

0,
a
p

3
,d

)T

~r3 =
(

a

2
,

a

2
p

3
,2d

)T

. (3.15)

The unit cell form factor is then given by the sum

F (~q ) =
3∑

j=1

f j (~q )exp(i~qhkℓ ·~r j ) (3.16)

= f

[

1+exp

(
2π

3
[2h +k +ℓ]

)

+exp

(
2π

3
[h +2k +2ℓ]

)]

, (3.17)

which yields the above reflection condition [142]. The hexagonal unit cell as defined by
Eq. (3.10) is a non-primitive one which contains 3 lattice points (full circles) and does
not reflect the full symmetry of the lattice.
As a third alternative, by choosing a different parallelepiped with γ=120◦ as the unit
cell, hexagonal ABC stacking coordinates can be used [143] (Fig. 3.15, bottom):

~aABC = a (1,0,0)T , ~bABC = a

(

−1

2
,

p
3

2
,0

)T

, ~cABC =
(

a

2
,

a

2
p

3
,d

)T

. (3.18)

All three parameterizations are equivalent and lead, if applied consistently, to the same
electron density distribution. Following [51], hexagonal indices are used for electron
reconstruction in chapter 5. The corresponding basis vectors of the lattices in real and
reciprocal space are pairwise orthogonal. The lateral momentum transfer component
q|| depends only on h,k and the normal component qz only on ℓ. This is used further
below for the swelling method for the R phase (cf. section 5.2).
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Figure 3.15: Different unit cells compatible with the diffraction pattern of the R phase
(left) and corresponding 2d powder patterns (right). For the nonprimitive hexago-
nal unit cell, reflections which do not fulfil Eq. (3.13) are indicated by empty circles.
Due to space limitations, Miller indices (hkℓ) are only shown for reflections where
q|| = 0. A fully indexed pattern of the R phase is shown in Fig. 3.16.
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Figure 3.16: Superposition of the theoretical diffraction peak positions (empty black
circles) and part of an actual diffraction pattern of the rhombohedral phase
(DOPC/Chol 70:30, RH = 60%, ID01, after corrections). The angle of incidence
αi is chosen such that the specular beam is located approximately in the center of
the primary beam and the first diffuse Bragg sheet (0,0,3).
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Cubic phase

A diffraction pattern of the type C observed in DOPC/choesterol samples of elevated
cholesterol content has, to our knowledge, not been reported before. However, similar
patterns with diffraction peaks located in concentric circles are known from studies
on solid-supported diblock copolymer or silica thin films [103, 144], where they are
attributed to cubic phases.
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Figure 3.17: Diffraction pattern of a cubic phase observed in DOPC/Chol mixtures of
high cholesterol content (XChol = 0.4, RH = 50%) after several heating/cooling cy-
cles and peak positions predicted by a body-centered cubic lattice with an orienta-
tion as described in the main text.

A cubic lattice with one basis vector perpendicular to the substrate is spanned by

~aC = (a,0,0)T , ~bC = (0, a,0)T , ~cC = (0,0, a)T . (3.19)

The observed pattern is not compatible with Bragg peak positions predicted by this
parameterization. GIBAUD et al. note that, if a sample can transform from a cubic to a
2d hexagonal phase and vice versa, the (111) direction in the cubic phase should point
along the direction of cylindrical water tubes. A similar statement is made in [145].
Therefore, we consider a cubic phase with (111) parallel to the substrate. To rotate the
vector a(1,1,1)T into the x y plane, the matrices

R1 =







√
1
2

√
1
2 0

−
√

1
2

√
1
2 0

0 0 1







and R2 =







√
2
3 0

√
1
3

0 1 0

−
√

1
3 0

√
2
3







, (3.20)

are used. R1 corresponds to a rotation by 45◦ about ~ez (i.e. into the xz plane) and
R2 to a rotation by arccos(

p
2/3) = 35.26◦ about ~ey [144]. The theoretical diffraction
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peak positions of a 2d powder of these crystallites were then calculated by the script
index_cubic.m and found in good agreement with the observed peak positions (Fig.
3.17, lattice constant a ≈ 116Å). All observed peaks are accounted for if a body-center-
ed cubic lattice (symmetry element I for innenzentriert, reflection condition h+k+ℓ=
2n, n ∈Z) is assumed. TENCHOV et al. observed cubic phases in aqueous dispersions of
DOPC/Chol mixtures which were subject to heating/cooling cycles by powder diffrac-
tion [146]. In their analysis, the strong {211} and {220} reflections corresponding to a
ratio of spacings

p
6 :

p
8 indicate space group I a3d containing gyroid structures (Fig.

1.2). However, in our case, other space groups can not be ruled out with certainty since
only few of the allowed reflections could be observed. Metastability and difficulties in
reproducibility of bicontinuous phases, where kinetic factors seem to play an impor-
tant role, have been frequently noted in the literature [88, 146, 147, 148]. This could
explain why the appearance of pattern C depended on the protocol for thermal equili-
bration prior to the measurements.

Tetragonal phase

Fig. 3.18 shows a diffraction pattern observed during the experiment at the Swiss Light
Source (cf. chapter 5) in DOPC/Chol 70:30 after RH was increased from 40 to 70%. All
observed reflections can be indexed using a tetragonal lattice (a = b 6= c, α = β = γ =
90◦) spanned by vectors

~aT = (a,0,0)T , ~bT = (0, a,0)T , ~cT = (0,0,4d)T , (3.21)

where a = (78.0±0.5)Å and d = (49.1±0.2)Å. Peaks are found in columns with constant
q|| values in the ratio 0:

p
1:
p

2:
p

4:
p

5. Reflections which do not fulfil the condition

h +k +ℓ= 2n, n ∈Z (3.22)

are systematically absent, indicating a body-centered lattice [141]. In addition, the re-
flection condition ℓ= 4n, n ∈Z seems to hold for the reflections 00ℓ. A body-centered
tetragonal phospholipid phase of this symmetry is briefly mentioned in [120], where
is was observed in bromine-labeled DSPC in a narrow hydration interval between the
lamellar and the rhombohedral phase. Also in samples composed of DOPC and the an-
timicrobial peptide alamethicin, a diffraction pattern compatible with a body-centered
tetragonal lattice has been reported [149]. To our knowledge, the unit cell electron den-
sity distribution of a tetragonal phospholipid phase has not been determined so far.

During phase diagram determination at our in-house instrument, this phase could
not be observed. Similar to the cubic phase, it seems not unlikely that this phase is
metastable, at least in case of DOPC/Chol 70:30, and its appearance depends on kinetic
factors and thermal history. Since it was observed in the transition region between the
lamellar and rhombohedral phase, it is possibly the first nonlamellar phase to form
upon dehydration of bilayer stacks of certain lipid compositions, and would certainly
be worthwile further investigation. To this end, lipid compositions and experimental
parameters where this phase is reproducibly observed should be explored first.
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Figure 3.18: Diffraction pattern of a tetragonal phase observed in DOPC/Chol with
XChol = 0.3 at RH = 70% (SLS experiment). The green circles on the right indicate
observed reflections which coincide with the positions predicted by a 2d powder of
crystallites of space group I 41 with the unique axis perpendicular to the substrate.

3.4 Conclusions

The time available for synchrotron experiments is usually severely limited. Therefo-
re, experiments must be planned with great care to allow for an efficient use of the
granted beam time. This is difficult to reconcile with the determination of extended
phase diagrams, which requires measurements of many samples over a wide range of
control parameters. To this end, our in-house GIXD setup has proven to be an indis-
pensable tool since it can be operated without temporal restrictions. Particularly in-
teresting points in the phase diagrams of multicomponent model membrane systems
can be identified. The limited synchrotron beamtime can be efficiently used to record
data for electron density reconstruction.
The obtained phase diagrams indicate that formation of the rhombohedral phase is
a common feature of symmetric, monounsaturated phosphatidylcholines with fluid
chains. In addition, the physiologically relevant additives cholesterol, phosphatidyl-
ethanolamine and PIP2 promote stalk phase formation, i.e. lower the osmotic pressure
corresponding to the L/R phase boundary. Given the low molar concentrations of PIP2,
the effects are particularly strong for this lipid. Intuitively, due to its bulky and charged
head group (Fig. 1.1), one would not expect this lipid to promote inverted phases.
In the subsequent chapters, it is investigated more closely to what extent changes in
phase behaviour are associated with changes in bilayer interactions at small separation
and effects on the equilibrium structure of stalks.





4 Bilayer structure and interactions

Prior to stalk formation, membranes must necessarily approach each other. However,
lipid bilayers strongly repulse at small separation, even if they possess no net charges.
Therefore, establishing local close contact of membranes is associated with a consid-
erable energy barrier. In vivo, different classes of fusion proteins are regarded as the
machinery performing the required work. In protein-free model membrane systems,
repulsive forces between lipid bilayers can be studied in a systematic fashion as a func-
tion of bilayer composition. Complementary to the analysis of stalk structures in the
rhombohedral phase, we studied lipid bilayer interactions prior to stalk phase forma-
tion, i.e. at hydration levels between full hydration and the phase boundary to the stalk
phase obtained in the previous chapter. To this end, the osmotic stress method and
electron density profile analysis were used. The swelling method to solve the crystal-
lographic phase problem is considered for the one-dimensional case, before it is ex-
tended to the three-dimensional rhombohedral phase in the subsequent chapter.

4.1 Electron density profiles

Aligned lipid bilayer stacks are characterized by a single series of equidistant in-plane
reflections. The structure of each bilayer is represented by the one-dimensional elec-
tron density profile (EDP) ρ(z) (Fig. 4.1). This denotes the temporally averaged pro-
jection of the electron density of a single lipid bilayer onto the direction ~ez along the
bilayer normal. A lipid bilayer stack is not a static structure, but displays protrusions
of single lipid molecules and bilayer undulations out of the bilayer plane [75]. As ex-
plained in section 2.6, this limits the number of observable reflections and a smooth
EDP as shown in Fig. 4.1 correctly represents the mean bilayer structure. Electron den-
sity maxima correspond to the phospholipid headgroup regions and minima to the
methyl trough region in the bilayer center (Tab. 4.1). Similar EDPs are also observed in
molecular dynamics simulations [150].

Different methods to obtain EDPs exist. In the classical approach derived from con-
ventional crystallography (cf. section 2.1), EDPs are reconstructed by Fourier synthesis
using the discrete form factor values obtained from integrated Bragg peak intensities
as coefficients. A different method called full q-range fitting uses the discrete form
factors and additional experimental parameters for least-squares fitting of the entire
reflectivity curve and yields EDPs on an absolute scale [116]. In another recent tech-
nique, off-specular diffuse scattering at or close to full hydration is used to obtain the
continuous form factor |F (qz )|. Subsequently, EDP models consisting of several Gaus-
sians and step functions are fitted to the form factor data [68, 151]. While this approach
is certainly interesting, it seems less suited for the objectives in this thesis, since diffuse
scattering is strongly suppressed in partially dehydrated conditions prior to stalk for-
mation and the use of synchrotron radiation is mandatory. In this work, we follow the
classical Fourier synthesis approach, which can conveniently be combined with the
swelling method to solve the crystallographic phase problem.
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Figure 4.1: Sketch of a lipid bilayer, corresponding electron density profile (−) and
definitions of structural parameters. Due to the soft-matter character of the bilayer
stack, features such as headgroup peaks and methyl trough region are smeared
out. In a coarse description using stepwise constant electron densities (−), one
can distinguish water, lipid headgroup, hydrocarbon and methyl trough regions
(cf. Tab. 4.1).

4.2 Osmotic stress method

The osmotic stress method described here has been reviewed in [47, 74, 75, 124, 152].
The equilibrium distance between two parallel uncharged lipid bilayers in water is de-
termined by several interaction potentials introduced in section 1.4, where also dif-
ficulties in the mathematical description were addressed. Empirically, it is well es-
tablished that a strong repulsion between lipid bilayers exists at short separation dis-
tances, which is well described by an exponentially decaying total repulsive pressure

Pr(dw) = Phyd(dw)+Pund(dw)+ . . . = Pr,0 exp

(

−dw

λr

)

. (4.1)

The individual components can not directly be assessed. If the dominant repulsive
pressure is the hydration repulsion Phyd = P0 exp(−dw/λh) (cf. Fig. 4.2), then λr ≃ λh

and Pr,0 ≃ P0. This assumption is used in the following. The finite distance observed
between uncharged lipid bilayers in excess water results from the equilibrium
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region/electron density
ρ [e−/Å3]

[153] [154]

headgroup peak 0.450 0.540
hydrocarbon region 0.296 0.300
methyl trough region 0.165 0.160

Table 4.1: Electron densities for different regions of the unit cell in electron density
strip models. The electron density of water, 0.334Å−3, can easily be determined
using a mass density of 1g ·cm−3 for bulk water.

Figure 4.2: Interaction potentials of two DOPC bilayers in excess water (left) and at
RH = 90% (center) calculated from the relations given in section 1.4. At RH = 90%,
the equilibrium distance d∗

w is determined by the pressures Π and Phyd (right). The

following constants are used: P0 = 0.55 ·108 Jm−3, λh = 2.2Å, κ = 8.0kBT , dCH2 =
26.8Å, dHG = 9.0Å [68].

|PvdW(dw)| = |Phyd(dw)|. (4.2)

The osmotic stress method employs osmotic pressure Π as an additional attractive po-
tential:

|PvdW(dw)|+Π= |Phyd(dw)| (4.3)

In case of hydration from water vapour as used in this work, Π is given by

Π=−kBT

vw
ln

(
RH

100%

)

. (4.4)

For osmotic pressures leading to dw several Å below the equilibrium value in excess
water, the total attractive pressure is dominated by Π, and the van der Waals pressure
PvdW can be neglected (Fig. 4.2, right) [75, 155]. Therefore, determination of Π directly
yields the hydration pressure
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Π= P0 exp

(

−dw

λh

)

. (4.5)

Application of different osmotic pressures allows to record pressure-distance curves
Π(dw), from which P0 and λh are obtained as empirical fit parameters. This can be
achieved in two different ways. Both rely on X-ray diffraction experiments, but use
different assumptions and definitions of the water layer thickness (indicated in Fig.
4.1):

• Gravimetric method:

For this method, which has been applied in a long series of publications by
RAND, PARSEGIAN and coworkers, unoriented samples are prepared by combin-
ing weighted amounts of lipid and water. The lamellar repeat spacing d is mea-
sured by x-ray diffraction as a function of lipid weight fraction c. Further ana-
lysis relies on the assumption that water and lipids are localized in completely
distinct layers of thickness db and dw with molecular volumes identical to their
bulk values. The volume fraction occupied by lipids then is

φ=
(

1+ 1−c

c

v̄w

v̄l

)−1

, (4.6)

where v̄w and v̄l denote the partial specific volumes of water and lipid. Bilayer
thickness db and water layer thickness dw are obtained as

db =φd and dw = (1−φ)d . (4.7)

In a second series of measurements using samples at defined osmotic pressures
Π, d is determined as a function of Π. Since the change of d is monotonous with
Π, combination of the results from gravimetric and osmotically stressed samples
yields the pressure-distance relation Π(dw) and thus P0 and λh.

• Electron density profile (EDP) method:

This method was pioneered in another impressive series of papers by MCIN-
TOSH, SIMON and coworkers. EDPs are constructed at different osmotic pres-
sures. The distance between adjacent electron density maxima indicating the
lipid headgroups are used to define the headroup-headgroup distance dhh and
the water layer thickness d ′

w, which includes also parts of the lipid headgroup
region. The relation Π(d ′

w) then follows without the need for additional mea-
surements or assumptions about the partitioning of water and lipid molecules.

Importantly, both methods use a different decomposition of the lamellar repeat spac-
ing d into aqueous and lipidic regions (Fig. 4.1), which has to be taken into account if
results for P0 and λh are compared:

d =
{

db +dw gravimetric method

dhh +d ′
w EDP method

(4.8)
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In the gravimetric method, a possible intercalation of lipid headgroups and water is
ignored. In addition, as pointed out in [47], water can not exclusively be localized
between multilamellar regions with well-defined bilayer stacking, but also occupies
defect regions which necessarily occur in case of unoriented samples. Therefore, the
reliability of the gravimetric method has been questioned repeatedly ([47] and refer-
ences therein) and, as noted by RAND himself [74], its results may differ substantially
from the EDP method.
The EDP method, in contrast, does not require assumptions on the partitioning of lipid
and water molecules. The rough and diffuse character of lipid bilayers and as well as
their fluctuations are implicitly taken into accout, since an EDP is a spatial and tempo-
ral average over the entire bilayer stack. Therefore, this method seems better suited to
quantify the repulsive forces between bilayers prior to stalk phase formation and was
put into practice as described below.

4.3 Motivation of our work

After this introduction to the osmotic stress method to study bilayer interactions, the
motivation behind our efforts presented in this chapter should be clarified:
In addition to lipid monolayer deformations and transient contact of hydrophilic lipid
tails and water, the energy required to overcome the hydration repulsion may con-
stitute a decisive barrier to membrane fusion. Bilayer EDPs close to the L/R phase
boundary can reveal the critical bilayer separation d ′

w,crit at which stalk phase forma-
tion becomes energetically favourable. This corresponds to the inter-bilayer distance
which must be established locally by fusion proteins to initiate hemifusion in vivo.
Knowledge of d ′

w,crit and the hydration force parameters P0 and λh also allows to esti-
mate the corresponding work

Whyd =−A

d ′
w,crit∫

∞

Phyd(x)d x = AλhP0 exp

(

−
d ′

w,crit

λh

)

, (4.9)

were A denotes a typical contact area. For lipids displaying the stalk phase, literature
values of P0 and λh are only available for pure DOPC and a DOPC/DOPE mixture. In
addition, these seem inadequate to study phenomena at small bilayer separation:
Values of P0 and λh for DOPC and DOPC/DOPE with XDOPE = 0.75 obtained by the
gravimetric method exist [74, 156]. These are based on pressures up to Π = 104 atm
[156], which corresponds to RH close to 0% (cf. Fig. 3.2a). Therefore, nonlamellar
phase formation in DOPC and DOPC/DOPE mixtures over a considerable pressure in-
terval was not taken into account. In addition to the general problems associated with
the gravimetric method addressed above, this is another reason why these values P0,λh

should be used with caution.
Consideration of the measured interval of Π(dw) is also crucial in case of more recent
values for DOPC obtained by the EDP method, P0 = 0.55 · 108 Nm−2 and λh = 2.2Å
[68, 157]. Here, the maximum osmotic pressure was Π = 56atm, which corresponds
to RH ≃ 96% (cf. Fig. 3.2a). In this regime, the undulation pressure Pund still dominates
bilayer repulsion (Fig. 4.2). Stalk phase formation in DOPC is observed at RH ≃ 43%,
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which corresponds to values of Π more than one order of magnitude higher. This pre-
cludes a reliable extrapolation of P0 and λh to pressures relevant for stalk formation.

In order to close this existing gap, quantify the repulsive interbilayer forces at bilayer
separations relevant to stalk formation and elucidate the effect of changes in lipid com-
position, we performed the EDP method as described in the following.

4.4 Experimental

4.4.1 X-ray reflectivity Instrument

X-ray reflectivity experiments were performed at our institute using a home-built dif-
fractometer sketched in Fig. 4.3. The x-ray beam was generated by a sealed tube with
Cu anode and line focus (Seifert Dx-Cu12×0.4-S long fine focus, 35kV×40mA). A mul-
tilayer mirror (Pantak Seifert) was used to parallelize the beam and select the Cu-Kα

line (E = 8048eV, λ= 1.54056Å). After collimation to a size of 0.5×6.5mm2 by a set of
motorized slits (S1), the primary flux I0 was 2.3×108 photons per second. Stability of I0

was monitored by an additional detector not shown in Fig. 4.3, which measures the in-
tensity of a small fraction of the primary beam scattered by a Kapton foil placed behind
slit S1. The sample chamber was placed on a Huber stage with three translational and
three rotational degrees of freedom (motors xs, ys, zs and th, chi, phi, respectively).
Samples were mounted inside the sample chamber with vertical sample surface ori-
entation and fixed to the sample holder by double-sided tape. Behind the sample, the
reflected beam was collimated in horizontal direction by two slits of 2mm (S2) and
0.8mm (S3) in width placed directly behind the environmental chamber and in front
of the detector (Cyberstar fast scintillation counter, Oxford Danfysik), respectively. The
distance between the center of rotation of the Huber stage and slit S3 is 400mm. The
instrument is controlled by the software SPEC (Certified Scientific Software).

Figure 4.3: Sketch of the instrument used for reflectivity scans (top view).
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4.4.2 Measurements

Samples were prepared on 25×15mm2 substrates as described in section 3.2.1. Prior
to a measurement, the sample was equilibrated inside the environmental chamber at
the highest chosen RH level (typically between 90 and 95%) for several hours or over
night. After sample alignment, the specularly reflected intensity was recorded as a
function of the incident angle αi using the SPEC command a2scan with a stepsize
of ∆αi = 0.005◦. In a diffraction experiment, the counting process of photons follows
Poissonian statistics. The standard deviation corresponding to N counted photons isp

N . To improve the signal-to-noise level N /
p

N =
p

N , one has to increase the num-
ber of observations, which can be achieved either by higher primary intensity I0 or by
choosing longer counting times. For the given value of I0, an exposure of 1s per data-
point was regarded sufficient for the lower orders of diffraction. For higher order Bragg
peaks, the counting time was increased to 5 or 10s to improve the signal-to-noise ratio.
Automatic attenuators were used to avoid detector saturation. For all lipids which also
displayed the stalk phase, nmax = 7−9 Bragg peaks could be detected in the lamellar
phase with a signal-to-noise level allowing for proper determination of integrated peak
intensities. In case of gel-phase lipids, the number of peaks increases to nmax = 14−15
(cf. Fig. 2.8). To speed up the measurements and avoid deterioration of the samples,
which was sometimes observed during preliminary runs after longer exposure, only
intervals of about ±0.3Å−1 around each peak were recorded for most RH levels. The
peak width was typically 0.07◦ (full width at half maximum). Scans were repeated for
several hydration levels covering the desired RH range in descending order.

4.4.3 Data reduction

The recorded intensity curves I (αi ) were corrected for different counting times and
absorption, polarization and illumination effects using the equations given in sec-
tion 2.4. The corrected intensity was subsequently plotted as a function of momen-
tum transfer qz = 4π

λ sinαi perpendicular to the bilayer plane (Fig. 4.5a). For each
RH level, d and the corresponding error were determined as the mean and standard
deviation of the values obtained from the positions of the Bragg peak maxima via

d = 2π/q for the diffraction orders two to seven. The first Bragg peak was not used
because its position is systematically shifted towards slightly higher qz due to super-
position with the Fresnel reflectivity from the substrate and by refraction effects. For
each peak, a linear background was determined using the mean value of the first five
and last five datapoints in the measured interval (dark gray area in the inset of Fig.
4.5a). The corresponding area was subtracted from the total area below the mea-
sured curve, yielding the integrated peak intensity In (light gray area in Fig. 4.5a). Sub-
sequently, the amplitude of the corresponding form factor was obtained using the
Lorentz correction factor for oriented samples, K · |Fn | =

p
n · In . K denotes the un-

known experimental constant. This procedure, which was performed by the MAT-
LAB script data_extraction_reflectivity.m, yields the form factor amplitudes {K ·
|Fn |} on arbitrary scale and lattice constants d for all hydration levels.
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Figure 4.4: Typical reflectivity scans for several lipid mixtures from RH ≥ 90% down to
the stalk phase. The curves are shifted vertically for clarity.
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Figure 4.5: (a) Bragg peaks of DOPC/DOPE 50:50 recorded at five different RH levels
between 96% (blue) and 91% (magenta). The inset shows the integrated intensity
(light gray) and background (dark gray) for one peak. (b) Corresponding continu-
ous form factors obtained by the swelling method for phase determination as de-
scribed in section 4.4.5. In this case, best agreement of discrete form factor val-
ues (circles) and continuous form factor is obtained with the phase combination
−−+−+−+− (black solid line), whereas other phase combinations lead to obvi-
ously worse results (red solid line).
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4.4.4 Fourier Synthesis of electron density profiles

In case of a lamellar phase, the form factor is obtained by integration of the one-dimen-
sional EDP ρ(z) over the width d of the unit cell (Fig. 4.1). If the center of the symmetric
lipid bilayer is chosen as the origin, ρ(z) = ρ(−z) is centrosymmetric and the resulting
form factor

F (qz ) =
+d/2∫

−d/2

ρ(z)exp(iqz z)d z =
+d/2∫

−d/2

ρ(z)cos(qz · z)d z (4.10)

is real-valued and centrosymmetric as well. In addition,ρ(z) can be written as a Fourier
series [158]

ρ(z) = a0

2
+

∞∑

n=1

[

an cos

(

n
2π

d
z

)

+bn sin

(

n
2π

d
z

)]

(4.11)

with coefficients

an = 2

d

+d/2∫

−d/2

ρ(z)cos

(

n
2π

d
z

)

d z and bn = 2

d

+d/2∫

−d/2

ρ(z)sin

(

n
2π

d
z

)

d z. (4.12)

Due to centrosymmetry, bn =0 ∀n. By comparison of Eq. (4.10) and Eq. (4.12), one rec-
ognizes that the form factor values Fn = F (qn) corresponding to momentum transfer
qn = n · 2π

d
are the coefficients in the Fourier Cosine series of ρ(z):

ρ(z) = 2

d

∞∑

n=−∞
Fn cos(qn · z) (4.13)

In the following, the experimental constant K in the measured values {K · |Fn |} and the
factor 2

d
are ignored. The EDPs obtained in the end are on arbitrary scale. From the

experiments, only the amplitudes of the form factors Fn = νn |Fn | are known, the corre-
sponding phase factors νn =±1 are not directly accessible from the experimental data.
This is the well-known phase problem of crystallography. To retrieve the phase infor-
mation, additional efforts are required. Note that, due to centrosymmetry, the phase
problem is already strongly simplified, since only a finite number of 2nmax solutions
exist. In general, the number of possible phase combinations is infinite.

4.4.5 Phase retrieval: The swelling method

An established technique to recover phase information from scattering experiments on
lipid bilayer stacks is the so-called swelling method (e.g. [159] and references therein).
It is based on thickness changes of the water layer dw separating adjacent bilayers.
Therefore, precise and stable hydration control as provided by the setup explained in
section 3.2.2 is a prerequisite. In the following, the equations needed for application
and implementation of the swelling method are derived. In a later chapter, the formal-
ism is extended to the rhombohedral phase.
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We start with some introductory considerations: Inserting Eq. (4.13) into (4.10), using
the trigonometric identity

cos(x)cos(y) = 1

2

[

cos(x − y)+cos(x + y)
]

(4.14)

and carrying out the integration yields the continuous form factor

F (qz ) =
∞∑

n=−∞
νn |Fn |sinc

(
d

2
qz −nπ

)

, (4.15)

where sinc(x)= sin(x)/x. Since ρ(z) is symmetric, F (qz ) is also symmetric, i.e. Fn =
F−n . If the phase factors νn = ±1 are known, Eq. (4.15) can be used to reconstruct the
continuous form factor F (qz ) from discrete values measured at positions {qn}. This
statement is related to the sampling theorem known from signal theory [160, 161]. The
sum contains infinitely many orders of diffraction. In any real experiment, the number
of observable reflections with sufficient signal-to-noise ratio is limited. All equations
derived in this chapter are thus approximations when used to fit experimental data.
At this stage, Eq. (4.15) is of little use and changes with the hydration state of the bilayer
stack. In addition, the form factor F0 is not accessible by diffraction experiments, since
it corresponds to forward scattering which coincides with the primary beam and can
thus not be measured. On absolute scale, F0 = ρ̄d is proportional to the mean elec-
tron density ρ̄ in the unit cell, but the measured form factors {|Fn |} are on a different
arbitrary scale.
An important step to solve the phase problem is to introduce the minus fluid model

[162, 163]: Assume that the unit cell can be devided into the bilayer structure confined

to z ∈ [−db
2 ,+db

2 ] and a bulk water layer of width dw of constant electron density ρw

(Fig. 4.6). If ρw is subtracted from ρ(z), the minus-fluid EDP

ρ(−)(z) = ρ(z)−ρw (4.16)

is nonzero only for z ∈ [−db
2 ,+db

2 ]. In addition, we assume that changes in dw to not
affect the bilayer structure. Therefore, the corresponding continuous form factor

F (−)(qz ) =
+db/2∫

−db/2

ρ(−)(z)cos(qz · z)d z (4.17)

is also constant for different dw. In analogy to the derivation of Eq. (4.15), one obtains
the modified interpolation formula

F (−)(qz ) =
∞∑

n=−∞
νn |Fn |sinc

(
d

2
qz −nπ

)

−ρwd sinc

(
d

2
qz

)

. (4.18)

Apart from the additional sinc term centered around qz = 0, this is identical to Eq.
(4.15): The difference between F (qz ) and F (−)(qz ) is solely encoded in the term cor-
responding to forward scattering. Since sinc(nπ)=0 for n ∈Z/{0},
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Figure 4.6: A simulation illustrating the minus-fluid model and the swelling method:
For constant bilayer structure and water layers of varying thickness dw = d−db, the
continuous form factors {F (qz )} are determined by Fourier transform. The values
{Fn } corresponding to different dw lie on the continuous form factor F (−)(qz ) of the
minus-fluid model. By recording these in a diffraction experiment, the modulus of
F (−)(qz ) is sampled at the positions indicated by vertical lines.

F (−)
n = F (−)(qn) =

{

F0 −ρwd n = 0,

Fn n 6= 0.
(4.19)

F (−)
0 can be determined as follows: In the framework of the minus-fluid model, ρ(−)(z)

must vanish at z =±d
2 ,

ρ(−)
(

d

2

)

= 1

d
ν0|F (−)(0)|+ 2

d

∞∑

n=1
νn |Fn |cos

(

n
2π

d

d

2

)
!= 0. (4.20)

For the correct phases {νn}, F (−)
0 follows from the remaining form factors via [164]

F (−)
0 = 2 ·

∞∑

n=1
(−1)n+1νn |Fn |. (4.21)

After these preparations, the swelling method can be used to solve the phase problem
and determine the phase factors {νn =±1}. Consider the effect of increasing the wa-
ter layer thickness dw: In the minus-fluid model, the continuous form factor (4.17) is
constant for different d spacings if the structure of the lipid bilayer is not affected by
the swelling process. If the {|Fn |} are measured at different values of d , the modulus of
the continuous form factor |F (−)(qz )| is sampled at slightly different positions (Fig. 4.6).
Out of 2nmax possible choices, the most reasonable phase combination according to the
swelling method is the one where the discrete datapoints {νn |Fn |} and the continuous
form factor reconstructed by
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F (−)(qz ) =
∞∑

n=−∞
νn |F (−)

n |sinc

(
d

2
qz −nπ

)

(4.22)

using Eq. (4.19) and (4.21) agree best. An example is shown in Fig. 4.5(b). During a
long series of reflectivity scans for one sample, the sample quality and alignment may
slightly deteriorate, thus reducing the diffracted intensity. Therefore, datasets recorded
at different hydration levels should be properly normalized relative to each other prior
to application of the swelling method. To this end, a condition introduced by BLAU-
ROCK is used [165]: As noted above, a minus-fluid EDP ρ(−)(z) which does not change
with hydration corresponds to a Fourier transform F (−)(qz ) which is also independent
on RH . Consequently, also the integral

∫∞

−∞
|F (−)(qz )|2 d qz (4.23)

is constant for different values of RH . This leads to the normalization condition

∫∞

−∞
|F (−)(qz )|2 d qz

!= const. (4.24)

=
∑

n

∑

m

FnFm

∫∞

−∞
sinc

(
d

2
qz −nπ

)

sinc

(
d

2
qz −mπ

)

d qz (4.25)

= 2

d

∑

n

∑

m

FnFm

∫∞

−∞
sinc(x −nπ)sinc(x −mπ) d x

︸ ︷︷ ︸

=







π n = m

0 else

(4.26)

= 2π

d

∞∑

n=−∞
|Fn |2 (4.27)

Importantly, this condition does not require knowledge of the phase factors {νn}. Each
dataset is normalized by making the sum of squared form factor amplitudes for one
hydration level proportional to the corresponding d-spacing

∑

n

|Fn,RH |2 ∝ d(RH). (4.28)

Implementation of the swelling method was carried out in MATLAB, the program code
is provided in appendix A.4. The script swelling_lamellar.m reads the output file of
data_extraction_lamellar.m, performs the normalization of datasets by condition
(4.28) and finds the best phase combination according to the swelling method using
the minimum residual sum of squares

∑

RH

nmax∑

n=1

∣
∣νn |Fn,RH |−F (−)(qn,RH )

∣
∣
2 != min (4.29)

as a criterion. Here, phase combinations which differ only by a global factor −1 yield
the same results. Only those where ν1 =−1 are used, since only these yield EDPs com-
patible with the typical bilayer structure (cf. Tab. 4.1). F (−)(qz ) is constructed by Eq.
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one.
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(4.22) using the average d spacing and the average value of each form factor |Fn | for all
values of RH . For the best phase combination, the corresponding EDPs ∆ρ(z) are dis-
played and the structural parameters dhh and d ′

w are determined (Fig. 4.8). Since the
form factor F0 is not accessible and the experimental constant K is not known, EDPs
are shown as the electron density contrast ∆ρ(z) (i.e. the deviation from the mean elec-
tron density in the unit cell) and on arbitrary scale. All EDPs are normalized such that
max

[

∆ρ(z)
]

= 1.

a) b)

c) d)

Figure 4.8: Output of data_extraction_lamellar.m and swelling_reflectivi-

ty.m: (a) Experimental data and integration of peak intensities, (b) application of
the swelling method, (c) EDPs for several humidities (shifted vertically for clarity)
and (d) structural parameters d ,dhh and d ′

w.
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4.5 Results and Discussion

Data were recorded for all pure lipids investigated in chapter 3 which were found to dis-
play the stalk phase, for DOPC/Chol mixtures with molar fractions XChol = 0.1, 0.2, 0.3
and for DOPC/DOPE mixtures with molar fractions XDOPE = 0.25 and 0.5 and pro-
cessed as explained above. The number of used reflections is nmax = 7 in case of DPhPC
and nmax = 8 in case of all other samples.

4.5.1 Effects at close bilayer separation

For most samples, data were recorded over a RH interval covering both L and R phases
(e.g. Fig. 4.4). The bilayer stacking distance d follows immediately from the Bragg peak
positions. Upon dehydration, d decreases monotonously.
In the RH interval around the L/R phase boundaries obtained in chapter 3, two series
of Bragg peaks indicating phase coexistence could be clearly resolved only in case of
DPhPC (Fig. 4.9a, compare also [166]). For all other lipids, the phase transition was in-
dicated by shoulders of the Bragg peaks similar to the example shown in Fig. 4.9b. The
corresponding RH values agree with the L/R phase boundaries of the phase diagrams
in section 3.3.2 to within ±2%.
Distinct regimes can be recognized in the curves d(RH) (Fig. 4.9c and 4.10). The rate
∣
∣
∣

∂d
∂RH

∣
∣
∣ changes in a non-monotonous fashion, and d(RH) is characterized by two in-

flection points. The one at lower RH is in very good agreement with the L/R phase
boundary of the respective sample. In the RH interval between these two points, term-
ed “transition region” in Fig. 4.9c, the following observations indicate changes in the
bilayer stack:
As shown in Fig. 4.9d for pure DOPC, a drop of the form factor amplitudes |Fn,RH | of
the higher-order reflections is visible at RH ≤ 60%.9 Agreement of the sampled form
factor amplitudes |Fn,RH | and the reconstructed continuous form factor becomes sig-
nificantly worse in the transition region. Except for DPhPC, a similar effect could be
observed for all samples. Fig. 4.9e shows GIXD data on DOPC in the corresponding
hydration interval. Upon lowering RH and prior to appearance of out-of-plane reflec-
tions indicating the R phase, the shape of the diffuse Bragg sheets begins to change and
additional diffuse scattering components appear around the position of future out-of-
plane reflections. This effect was observed in DOPC during both synchrotron beam-
times (cf. chapter 5). A detailed analysis and explanation can not yet be provided. A
feasible explanation could be that isolated and transient stalks or a “stalk fluid” with-
out long-range correlations form at bilayer separations slightly above the L/R phase
transition.

4.5.2 Bilayer structure

For further analysis, only data corresponding to RH above this transition region were
used. The corresponding RH intervals are listed in Tab. 4.2. Fig. 4.10 summarizes the
obtained results on lipid bilayer stucture.

9 Note that the normalization by Eq. (4.28) is still valid since |F1| increases, which is not visible in Fig. 4.9d.
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Figure 4.9: (a) 4th Bragg peaks of DPhPC and (b) DOPC/DOPE 3:1 over the entire ap-
plied RH intervals. Curves indicating the L/R phase transition are shown in red. (c)

Lattice constant d in DOPC/Chol mixtures. Dashed vertical lines indicate inflec-
tion points of the curve d(RH) of DOPC. (d) In this transition region, agreement of
the discrete samples |Fn,RH | and the continuous form factor reconstructed from
all datapoints in the L phase becomes worse. (e) Also GIXD patterns in this in-
terval indicate structural changes (MS beamline, cf. section 5.1.1). The shape of
the Bragg sheets changes and considerable diffuse scattering is visible at RH levels
slightly above the appearance of sharp out-of-plane reflections.
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For all investigated samples, sufficient osmotic pressure to reduce d ′
w to about 9±0.5Å

has to be applied until the observed transition region begins. In case of lipid mixtures,
both DOPE and Chol facilitate dehydration of lipid bilayers, indicated by a shift of the
curve d ′

w(RH) to the right. It is well-known in the literature that PE lipids imbibe less
water than PC lipids at full hydration. For the lipid mixtures eggPC and eggPE, the
number of water molecules per lipid molecule at full hydration has been given as 23
and 12, respectively [74, 75, 167]. Interestingly, our data show that the difference in
hydration between PC and PE is not associated with a corresponding change of the
critical value of d ′

w at which stalk formation occurs.
The headgroup-headgroup thickness dhh increases upon dehydration for all samples.
In the applied RH ranges, this effect is strongest for the case of DOPC where dhh in-
creases about ≃ 10%. If the molecular lipid volume remains approximately constant
[125, 168], this indicates a simultaneous decrease of the cross-sectional area per lipid
headgroup AL in the bilayer plane about the same percentage, which also reduces the
number of bound water molecules per lipid [47]. A part of the work performed by ap-
plication of osmotic pressure goes into bilayer deformation. For the case of the lipid
mixture eggPC and using the assumptions of the gravimetric method, this contribution
has been estimated to constitute a fraction of about 10% [125].
The structure of DOPC bilayers between full hydration and the L/R phase boundary
has recently been investigated by energy-dispersive x-ray diffraction [169]. In compar-
ison to this study, we note that the number of reflections nmax used by us is higher (8
vs. 5), our experimental error in d is considerably smaller and we incorporate a sign
change of ν2 at RH ≈ 70%, while the authors in [169] use a fixed phase combination
−−+−+. Contrary to our results, they do not report any observations that indicate
structural changes in the bilayer stack between RH ≈ 45−60%.
In case of DOPC/Chol samples, the bilayer thickness quantified by dhh increases with
cholesterol content. This effect has been observed previously in our group by B. WEIN-
HAUSEN [142] for RH > 90% and can be explained by the preference of cholesterol to
reside primarily in the hydrocarbon region, where it increases the conformational or-
der and thus extent of acyl chains [37, 170]. Our values dhh closest to full hydration are
in very good agreement with those in [41].

4.5.3 Hydration force parameters

Each reconstructed electron density profile yields the water layer thickness d ′
w = d −

dhh. Combined with the applied osmotic pressure Π (Eq. 4.4), this yields samples of
the pressure-distance relation Π(d ′

w). When plotted on semilogarithmic scale, the da-
tapoints are approximately located on a straight line for each lipid composition (Fig.
4.11), thus confirming a total repulsive pressure that can be described empirically by an
exponential decay. The hydration force parameters P0 and λh and corresponding stan-
dard errors were therefore obtained by fitting the function Π(d ′

w) = P0 exp
(

−d ′
w/λh

)

to
the experimental data.
For several lipid compositions, more than one series of reflectivity scans were con-
ducted. In this case, P0 and λh are the weighted means of the individual results. All
obtained results are summarized in Tab. 4.2. Importantly, these are valid only for the
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Figure 4.10: Electron density profiles and corresponding bilayer data dhh and d ′
w for

(a) pure lipids which display the stalk phase, (b) DOPC/DOPE and (c) DOPC/Chol
mixtures. Both DOPE and Chol facilitate dehydration of lipid bilayers, indicated
by the shift of the curves d ′

w(RH) to the right. Cholesterol, in addition, leads to an
increase in bilayer thickness and a more pronounced electron density minimum in
the methyl trough region around z = 0.
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chosen definition of d ′
w, which has to be considered for future use. As visible in Fig.

4.11, the datapoints for the lowest values of Π tend towards larger values of d ′
w. In

addition to the hydration pressure, the undulation pressure may become relevant at
these inter-bilayer distances.
In case of pure lipid bilayers, the role of DPhPC is striking. Despite an identical phos-
phatidylcholine headgroup, its hydration pressure amplitude P0 is about one order
of magnitude smaller than those of the di-monounsaturated lipids. The values for
di14:1PC are based on a smaller interval in Π and should therefore be used with cau-
tion.
Literature values of the hydration force parameters P0 and λh for lipids relevant to stalk
phase formation used in this work could be found only for pure DOPC and DOPC/-
DOPE where XDOPE = 0.75 [74, 68, 156, 157]. Their limited applicability was discussed
above. Due to different underlying assumptions and definitions of d ′

w, the values of P0

cannot directly be compared. However, we note that our value λh,DOPC is closer to the
2.2Å given in [68, 157] and 2.1Å given in [74] than to that of 2.9Å in [156].
Upon addition of Chol or DOPE, a reduction of the hydration pressure amplitude P0 by
about one order of magnitude is observed for the largest molar fractions. At the same
time, λh increases about ∼ 50%. In case of cholesterol, these general trends agree with
the observations made on eggPC/Chol samples by the EDP method [87]. Results for
the system eggPC/Chol have also been reported by the gravimetric method [74], indi-
cating an increase of P0 by three orders of magnitude from pure eggPC to an equimolar
eggPC/cholesterol mixture. This is in striking contrast to our observations and those
in [87] and emphasizes once again that results obtained by the gravimetric method
should be used with great care.

lipid or lipid mixture P0 [109J·m−3] λh [Å] RH interval samples

di14:1PC 4.13±0.38 2.29±0.06 50−70 1
di16:1PC 2.62±0.45 2.56±0.12 50−90 1
di18:1PC (DOPC) 3.35±0.37 2.35±0.06 60−95 2
di20:1PC 3.19±0.77 2.34±0.14 50−90 1
DPhPC 0.39±0.04 3.50±0.11 82−94 1

DOPC/Chol 90:10 1.57±0.10 2.56±0.04 67.5−95 3
DOPC/Chol 80:20 1.24±0.09 2.66±0.05 72.5−95 3
DOPC/Chol 70:30 0.43±0.11 3.22±0.24 84−95 2

DOPC/DOPE 75:25 0.62±0.07 3.21±0.12 76−94 1
DOPC/DOPE 50:50 0.24±0.04 3.68±0.23 85−94 1

Table 4.2: Hydration force parameters of the investigated lipids and lipid mixtures and
corresponding RH interval of the pressure-distance relation (cf. Fig. 4.11). In sev-
eral cases, the results are the weighted means of two or three independent mea-
surements per lipid composition.
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Figure 4.11: Pressure-distance curves Π vs. d ′
w (circles) and exponential fits (solid

lines) yielding the hydration force parameters P0,λh. For pure DOPC, two different
datasets are shown.
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After presentation of our results and comparison to the literature, we discuss a feasible
explanation of the observed changes in bilayer repulsion. GEVC and MARSH described
the hydration pressure by an electrostatic model where the dipoles in the phospholipid
headgroup region (cf. Fig. 1.1) lead to an orientation of water molecules [73]. This, in
turn, gives rise to the repulsive hydration pressure when two bilayers are forced into
close contact (cf. section 1.4). They obtained the expression

P0 =
2ǫ0(ǫ−1)

ǫ
·
(
Ψ

λh

)2

(4.30)

for the hydration pressure amplitude.10
Ψ denotes the dipole potential and Ψ/λh the

polarizing electrical field of the lipid bilayer [75]. The quadratic dependence of P0 on
Ψ has been confirmed experimentally [172].
In single-component bilayers, an increase of the cross-sectional area AL per lipid
would lower the dipole density and thus reduce P0. Tab. 4.3 shows recent values of
AL for the phosphatidylcholines used in this work. These correlate very well with our
data on the critical relative humidity RH∗ of the L/R phase boundary, and also with
the hydration pressure amplitude P0, taking into account the experimental errors. The
larger AL, the larger RH∗ and the smaller P0. The strikingly different values of RH∗ and
P0 for DPhPC compared to the di-monounsaturated lipids are well compatible with its
large AL. Within the four di-monounsaturated lipids, the order of AL reflects the val-
ues of RH∗ obtained by us. If the propensity for R phase formation was determined
by bending energy, one would expect RH∗ to decrease from 14:1PC to 20:1PC, since
the bending modulus κ is expected to increase quadratically with hydrocarbon chain
length [86]. Our results on RH∗, which were confirmed by repeated measurements,
clearly indicate that this is not the case.
In this spirit, SIMON proposed that a common mechanism of membrane fusogens
could be to increase the area per lipid and hence decrease the dipole density in the
headgroup region [168]. The preferred location of Chol in a lipid bilayer has been de-
scribed by the so-called umbrella model [173]. Due to its largely unpolar character,

lipid AL

[

Å2
]

RH∗ [%] P0
[

109 Nm−2]

di14:1PC 64.2 21 4.13±0.38
di16:1PC 65.8 37 2.62±0.45
di20:1PC 66.6 39 3.19±0.77
di18:1PC 66.9 43 3.35±0.37
DPhPC 80.5 81 0.39±0.04

Table 4.3: Pure lipids investigated in this thesis sorted according to the critical value
RH∗ of the L/R phase transition, which was confirmed by repeated measurements.
The propensity for R phase formation correlates very well with recent values of the
area per lipid headgroup at full hydration AL taken from [138, 176].

10 Note that, in our analysis, P0 is an empirical fit parameter which applies only for the chosen definitions
on bilayer structure. No assumptions about its physical origin are made.
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Chol accumulates in the hydrocarbon region of the bilayer, its single OH group (cf.

Fig. 1.1) constituting the polar part of the molecule is located at the hydrocarbon/lipid
headgroup interface. The average area AL per lipid molecule (PC and Chol) decreases
upon addition of Chol, known as the condensing effect [170]. However, AL per PC
molecule increases [174], which in total may lead to a decrease of the dipole density
and thus explain the observed decrease of P0.

Increasing AL by membrane tension has been discussed as a possible mechanism by
which proteins could facilitate membrane fusion [175]. Lateral tension is a key param-
eter in simulations of bilayer fusion [58]. Spreading lipid headgroups apart could also
facilitate the formation of solvent-exposed lipid tails prior to stalk formation, which
has recently been proposed as the rate-determining step in membrane fusion [53].
However, studying lateral tension is out of the scope of the methods used in this work.

4.5.4 Hydration barrier for membrane fusion

In chapter 6, values of 40-50Å are obtained for the diameter ds of the stalk neck region
(cf. Fig. 6.1). The area As = π

4 d 2
s can be considered the minimum area on which two bi-

layer patches must be brought into close contact to induce hemifusion. The associated
work given by Eq. 4.9,

W min
hyd = AsλhP0 exp

(

−
d ′

w,crit

λh

)

, (4.31)

is therefore a lower bound for the “hydration barrier” for membrane fusion. In Fig.
4.12a, W min

hyd is plotted for As = 20nm2, d ′
w,crit = 9.0±0.5Å and the values P0,λh from

Table 4.2. The maximum molar fractions of Chol or DOPE reduce W min
hyd by more than

50%. Vice versa, if Chol or PE are removed from membranes, the energy to overcome
the hydration barrier that needs to be provided by fusion proteins increases. This may
e.g. explain why depletion of cholesterol prevents viral entry mediated by several viral
fusion proteins [177]. For the area

p
3a2/2 ≈ 40-50nm2 per stalk in the stalk phase,

W min
hyd has to be multiplied by a factor of 2-2.5, yielding ∼ 80-200kBT per stalk for the

used lipid compositions. Following KOZLOVSKY et al. [55], the energy W min
hyd may be

released during stalk formation, since the hydration repulsion vanishes on the area As,
and thus compensate for the energy required for lipid monolayer deformation.

In a similar fashion, one can estimate the hydration barrier to establish a minimum
distance of zmin = d ′

w,crit for stalk formation between a spherical vesicle of radius R and
a planar membrane (Fig. 4.12b): In cylindrical coordinates, the hydration energy for an
infinitesimal area element is

dW vesicle
hyd =λhP0 exp

(

− z(r )

λh

)

r dr dφ. (4.32)

With z(r ) = d ′
w,crit +R −

p
R2 − r 2, integration over r and φ yields
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W vesicle
hyd = 2πλhP0 exp

(

−
d ′

w,crit +R

λh

)

·
∫R

0
r exp

(p
R2 − r 2

λh

)

dr (4.33)

≈ 2πλ2
hRP0 exp

(

−
d ′

w,crit

λh

)

, R ≫λh. (4.34)

These energies are plotted in Fig. 4.12a as well, using a typical radius of a synaptic vesi-
cle of R = 20nm [178, 179]. Remarkably, for each lipid composition, W vesicle

hyd exceeds

W min
hyd merely by a factor of ∼ 2 and corresponds to 3-4 times the energy of 35±7kBT re-

leased during formation of a single SNARE complex [180]. Since synaptic vesicle mem-
branes contain about 40 mol% cholesterol and considerable amounts of PE lipids and
PIP2 [178], the value W vesicle

hyd for the physiologically relevant case is probably lower

than those shown in Fig. 4.12. Therefore, our results are compatible with recent obser-
vations that SNARE-mediated membrane fusion requires only 1-3 SNARE complexes
[181, 182, 183] and provide the dominating role of hydration energies as a possible ex-
planation.

Due to the discussed shortcomings of previous data P0,λh based on the gravimetric
method, these can yield very different results. For example, using P0 = 109.6 Nm−2 and
λh = 2.1Å obtained for DOPC [74] and adding 10Å to dhh as indicated in [75] to account
for the lipid headgroup thickness, one obtains W min

hyd > 6 ·103 kBT , which severely over-

estimates the hydration barrier.

XChol, XDOPE

a) b)

W vesicle
hyd

W min
hyd

z

φ

R

r

z(r )

zmin

Figure 4.12: (a) Hydration barrier for establishing the distance d ′
w,crit = 9.0± 0.5Å be-

tween two parallel bilayer patches per cross-sectional area of a stalk (W min
hyd ) and

between a spherical vesicle (R = 20nm) and a planar bilayer (W vesicle
hyd ) as sketched

in (b). Addition of 30mol% Chol or 50mol% DOPE reduces the hydration barrier
by about 50%. All energies correspond to few times the energy 35±7kBT released
during formation of a single SNARE complex.
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4.6 Conclusions

This chapter described systematic studies of bilayer structure and interaction at close
bilayer contact prior to stalk phase formation. To this end, the osmotic stress method
and electron density profile analysis were used. Based on the obtained data, we con-
lude the following: The critical bilayer separation d ′

w,crit at which stalk phase formation

is initiated is about 9Å for all investigated lipids and mixtures. Addition of cholesterol
and DOPE shows no detectable effect on this value. These molecules rather facilitate
dehydration and thereby shift the phase boundary between lamellar and rhombohe-
dral phase towards lower osmotic pressure. The corresponding critical values RH∗ of
pure lipids correlate with the area per lipid headgroup at full hydration. The hydration
force parameters obtained by us fill a gap in the literature and allow more reliable es-
timates e.g. of the work that fusion proteins must perform to bring bilayers into close
contact. As a perspective for future work, the diffuse scattering observed close to the
phase transition may contain additional information on stalk formation.





5 Structure determination of stalks

This chapter addresses the primary goal of this thesis: Studying stalk structures in the
rhombohedral phase by x-ray diffraction. The required experimental methods have
been introduced in chapter 2, regions in the phase diagram of several lipids and lipid
mixtures where this phase exists have been identified in chapter 3. With this knowledge
at hand, grazing-incidence x-ray diffraction data on the stalk phase of several phospho-
lipids were recorded during two synchrotron beamtimes. In combination with addi-
tional in-house x-ray reflectivity and powder diffraction measurements, the crystallo-
graphic data for electron density reconstruction were obtained. The extended swelling
method for the rhombohedral phase and additional criteria were then used for phase
retrieval. All experimental aspects and data reduction are described here in detail. In
the end, stalk structures in seven different lipid systems suitable for further quantita-
tive analysis in the subsequent chapter are obtained.

5.1 Data collection and reduction

As demonstrated by our group, the electron density of stalks can be reconstructed us-
ing conventional sealed-tube laboratory diffractometers [31, 126, 132]. However, due
to significantly higher beam quality in terms of brilliance [97], experiments at state-
of-the-art synchrotron beamlines are required for optimum data quality and to push
the obtainable resolution. Within the framework of this thesis, GIXD data were col-
lected during two syncrotron beamtimes. The goal of these experiments was to obtain
the maximum number of observable form factor amplitudes {|Fhkℓ|} of out-of-plane
reflections (q|| 6= 0) as allowed by the inherent disorder of phospholipid samples (cf.

section 2.6) of the stalk phases of several phospholipids. These data are combined
with the form factor amplitudes {|F00ℓ|} of in-plane reflections (q|| = 0) obtained by re-
flectivity measurements performed in our laboratory as described for bilayer data in
chapter 4.
A step of great practical importance is the subsequent relative normalization of these
two sets of form factor amplitudes. From GIXD and reflectivity data alone, this is a
highly nontrivial task. The form factor amplitudes recorded in each of these geome-
tries result from a different number of crystallites due to the 2d powder character of
the samples. In addition, effects such as mosaicity and crystallite size may affect the
diffraction signal in both geometries in possibly different ways. In this thesis, addi-
tional powder measurements from true 3d powder samples are introduced to solve
this issue.

5.1.1 Synchrotron GIXD experiments

Materials Science Beamline (Swiss Light Source)

Grazing-incidence x-ray diffraction data for the rhombohedral phases of the lipids
di14:1-PC, di16:1-PC, di18:1-PC (DOPC), DPhPC and an equimolar lipid mixture of
DOPC and DOPE were recorded at the Materials Science beamline (MS-X04SA) at the
Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI, Villigen, Switzerland). A
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complete beamline layout and further background information is available e.g. from
the web page of the beamline11 and in [184]. The 2+3-circle surface diffractometer
(Micro-Controle Newport) at the surface diffraction endstation (experimental hutch 2)
was used with horizontal sample surface orientation. The sample stage is mounted
on a hexapod. A double-crystal monochromator consisting of two Si(111) crystals
was used to select the photon energy E = 19.5keV corresponding to a wavelength of
λ = 0.6358Å from the wiggler beam. The energy resolution has been determined pre-
viously as ∆E

E
= 1.39 · 10−4 [184]. The beam was collimated by a set of slits to a size

of 200µm in horizontal and 50µm in vertical direction, yielding a primary intensity
I0 = 2.4× 1010 photons per second. For some samples, the horizontal extent of the
beam was reduced to 100µm. Diffraction patterns were recorded using a Pilatus II pixel
detector (487×195 pixels with a size of 172×172µm2) mounted on the detector arm of
the diffractometer at a fixed distance of 1140.8±0.25mm from the center of rotation.
The path between sample and detector was evacuated by a flight tube. To correct for
different detector pixel sensitivities, flatfield files were recorded using a piece of lead
glass as a diffuse scatterer.
Aligned samples were prepared on 15×10mm2 substrates few days before the trip to
the synchrotron. During the beam time, they were stored in a fridge. Prior to a mea-
surement, each sample was rehydrated in an atmosphere saturated with water vapour
at room temperature for typically few hours. Samples were fixed by double-sided tape
in a custom-built chamber shown in Fig. 5.1 optimized for application during the syn-
chrotron beamtimes and connected to the setup for RH control described in section
3.2.2. The inner volume of the chamber of about 4cm3 allowed a fast response to
changes in the RH setpoint. During sample alignment, RH was set to a value corre-
sponding to the L phase of the used lipid. The windows of the chamber consisted of
polypropylene foil with a thickness below 1µm to minimize background scattering. No
signals comparable to the Kapton ring visible in Fig. 3.6 for the other chambers could
be detected. To suppress scattering from air, lead tape was used to cover the vast part
of the entrance window and create a horizontal entrance slit just large enough for the
primary beam.
During sample alignment, the beam intensity was attenuated by a factor of 106. A user-
defined region of interest on the detector around the primary beam position was used
as a quasi-point detector. Translations and rotations of the sample were achieved by
the hexapod, which allows to control all six degrees of freedom by pseudo-motors. The
sample was first translated in vertical direction (motor hz) to move the lipid film into
the beam center, indicated by a drop of intensity to 50%. At this position, the sample
was rotated using motor oh to align the sample surface parallel to the beam (incident
angle αi = 0) as indicated by an intensity maximum. Subsequently, the sample was
translated in horizontal direction perpendicular to the beam (motor hx) to check if the
substrate surface remained at the same position in the beam and thus the number of
photons hitting the lipid film approximately constant for different regions of the sam-
ple. This was achieved by rotation about the axis parallel to the primary beam direc-
tion (motor hroy). This procedure was iterated several times until the obtained motor

11 http://www.psi.ch/sls/ms/ms

http://www.psi.ch/sls/ms/ms
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Figure 5.1: Sample chamber used during the synchrotron GIXD experiments and
sketch of the setup and used motors at the MS beamline.

positions of hz,oh,hroy remained approximately constant, indicating alignment of
the substrate surface in the beam center and parallel to both the beam and the direc-
tion of translation (motor hx). The angle of incidence αi was set to αi ≃ 0.15◦ (motor
oh), i.e. about 1.5 times the critical angle αc of total external reflection from the silicon
substrate for the used energy (Tab. 2.1). This angle was sufficiently small such that all
reflections were located above the sample horizon. With a length of l = 1cm of the
sample in beam direction, the lipid film extends over l sinαi = 26µm in z direction (cf.

Fig. 2.7). Finally, the motor position hzwas increased by 10µm to reduce the fraction of
the primary beam passing unhindered above the sample and thus reduce background
scattering by air.
Since the active area of the detecor did not subtend the entire region where diffrac-
tion peaks were visible, a complete diffraction pattern was obtained by combination
of four slightly overlapping frames at different detector positions as sketched in Fig.
5.2. To this end, the motors del and gam moving the detector arm were used. At each
position, a partial diffraction pattern was recorded with an exposure of 30s. After each
frame, the sample was translated along the beam (hx) to expose a fresh patch of the
lipid film and prevent radiation damage. For the detector position recording the pri-
mary and specular beam (del = gam = 0), an attenuation factor of 103 was used. This
cycle was repeated several (≥ 3) times for subsequent addition of corresponding frames
and thus improvement of the signal-to-noise ratio. To allow for phase retrieval by the
swelling method, data were recorded for at least 4 different RH levels with a typical
stepsize of ∆RH = 2−3% for each lipid.
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Figure 5.2: Conversion of grazing-incidence data recorded during the SLS beamtime to
reciprocal space maps I (q||, qz ) (DPhPC, RH = 70%): (a) Pilatus frames, 487×195
pixel. In case of del=gam=0, an attenuator is used. (b) Composite diffraction pat-
tern (c) Reciprocal space map obtained by transformation from pixel coordinates
to the (q||, qz ) plane as explained in the main text. Arrows indicate the {110} reflec-
tion below the sample horizon which was obtained from powder diffraction data.
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Figure 5.3: RSMs of further lipids recorded at the Materials Science beamline. The
colormaps are adjusted to maximize the visibility of weaker diffraction peaks. In
case of DOPC/DOPE 1:1, traces of a second phase, most likely HII, are visible.
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Beamline ID01 (European Synchrotron Radiation Facility)

GIXD data on DOPC/Chol samples were recorded in a different experiment at beam-
line ID0112 at the European Synchrotron Radiation Facility (ESRF, Grenoble, France).
A photon energy of 17keV (λ = 0.7293Å) was selected from the undulator beam by a
double-crystal monochromator composed of two Si(111) crystals and collimated to a
size of 500×100µm2. The resulting primary beam intensity was 1−2×1010 photons
per second, depending on the refill status of the storage ring. A Princeton CCD detec-
tor (1340×1300 pixels 48×49µm2 in size) mounted on the detector arm at distances
of 495.1±2.4 or 487.0±1.8mm to the sample was used to record diffraction patterns.13

The synchrotron sample chamber shown in Fig. 5.1 was mounted on the Huber tower
of the ID01 diffractometer. A fast shutter was used to prevent exposition of the sample
to the beam when no data were recorded.
Handling of the samples and sample environment were the same as described in the
previous section. However, sample alignment was different, since no quasi-point de-
tector was available. The sample height and angle of incidence were first varied in
small steps (motors hz,hai) to find a position where the characteristic diffraction pat-
tern of the rhombohedral phase was visible. This was achieved by direct visual inspec-
tion of diffraction patterns recorded with 1s exposure. Sample alignment was then
optimized such that no peaks were attenuated by the substrate, i.e. the (still unknown)
angle of incidence αi was sufficiently small, and the pattern was symmetric with re-
spect to a line in z direction on the detector. Precaution was taken to assure that the
fraction of the primary beam passing the chamber without hitting the sample was min-
imized in order to reduce scattering by air. At ID01 this issue was more severe than at
the MS beamline, since no flight tube between sample and detector was available, and
a strong background appeared if the sample position was too low.
Prior to data acquisition, several frames with different αi were recorded to determine
the distance between sample and detector from the positions of the specular reflec-
tions as described in [142]. The specular reflection and the first, very strong Bragg
sheet were attenuated by an absorber strip mounted directly in front of the CCD. The
size of the CCD allowed to record all visible diffraction peaks using a single detector
position. The exposure for each frame was limited to 10 or 20s before the CCD was
read out. 30 to 50 equivalent frames were recorded for each RH level. Fig. 5.4 shows a
typical diffraction pattern. The sample was translated along the beam to use the entire
available sample area and prevent radiation damage. After a translation, the sample
position in z sometimes had to be readjusted to keep the diffracted signal strong and
at the same time background scattering weak. Note that changes in the illuminated
sample volume are not a problem due to the normalization procuedures applied later
for the swelling method and for combination with reflectivity data as described below.
Only the relative strength of reflections at one RH is required.

12 e.g. http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID01/
13 Different values of D are due to the fact that the night shifts of the ESRF beamtime were dedicated to

measurements of the chain correlation peak at q ≃ 1.4Å−1, which required smaller D [142].

http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID01/


5.1 Data collection and reduction 89

200 400 600 800 1000 1200

200

400

600

800

1000

1200

2.5

3

3.5

4

4.5

0

0

0.2

0.4

0.6

0.8

1

2.5

3

3.5

4

4.5

0.20.4 0.2 0.4

y [pixel]

z
[p

ix
el

]

q|| [Å ]-1

(i
n
te

rp
o
la

te
d
)

( , )y zB B

003

006

009

0012

0015

0018

{ 02}1

{101}

{202}

{ 01}2

{113}

{ 05}1

{ 08}1

{104}

{107}

{116}

{119}

{ 04}2

{ 07}2

{ ,0,10}2

{119}

{1,1,12}

{ ,0,14}1

{ ,0,17}1

{ ,0,20}1

{ ,0,23}1

{1,0,22}

{1,0,16}

{ ,0,11}1

{1010}

Figure 5.4: Raw diffraction pattern recorded at ID01 (DOPC/Chol, XChol = 0.3, RH =
60%, sum of 50 frames of 10s exposure) (top) and corresponding RSM obtained
after polarization correction, left/right averaging, smoothing by a 3× 3 box filter
and transformation to (q||, qz ) coordinates (bottom).
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Figure 5.5: RSMs of pure DOPC and DOPC/Chol 90:10 recorded at ID01.

Data reduction

The MATLAB script data_extraction_GISAXS.m was written to process the data of
both synchrotron experiments. The main steps are briefly explained in the following:

1. Data import

Prior to data analysis, ESRF data files in .edf format were opened in FIT2D

and equivalent CCD frames were added. The resulting diffraction patterns with
higher signal-to-noise ratio corresponding to an exposure of several minutes
(Fig. 5.4) were saved in .spr format which can be opened by MATLAB. To import
.img datafiles recorded at the MS beamline, the function imageread.m written
by R. HERGER and provided by the MS beamline was included.

2. Combination of frames to complete patterns (SLS data only)

After flatfield correction and elimination of dead pixels, frames recorded at four
different detector positions were combined into a full diffraction pattern. This
was achieved using the known steps in del and gam by which the detector was
moved between the different positions and the angle of 0.00863◦×0.00863◦ sub-
tended by each detector pixel (Fig. 5.2).

3. Transformation to reciprocal space coordinates

For further analysis, it is convenient to convert diffraction patterns to reciprocal
space coordinates (q||, qz ), i.e. scattering vector components parallel and per-
pendicular to the substrate surface. We call the obtained intensity distribution
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I (q||, qz ) a reciprocal space map (RSM). From Fig. 2.4, the angles α f and ψ cor-
responding to each detector pixel are obtained as

α f = arctan

(
∆z

D

)

−αi , and ψ= arctan

(
∆y

D

)

(5.1)

provided the active area of the detector is almost perpendicular to the primary
beam. These angles are also used to perform the polarization correction. The
subsequent transformation from (α f ,ψ) to (q||, qz ) based on Eq. (2.24) and (2.25)
is then performed by a modified version of the function scaling.m written by B.
WEINHAUSEN [142]. Again, recall that the lateral momentum transfer q|| van-
ishes only at the positions of the primary beam and the specular reflection in a
GIXD pattern (cf. section 2.2). After transformation to I (q||, qz ), there is a wedge-
shaped region along the qz axis with no corresponding datapoints. These regions
are filled by interpolation (Fig. 5.4, bottom). For ID01 data, the left and right half
of a RSM were averaged.

4. Determination of lattice parameters

Since no additional information such as a powder pattern of a calibration stan-
dard was acquired for beam center determination, the following strategy was
used to simultaneously determine beam center coordinates (yB, zB) and the lat-
tice parameters a,d : Since sharp and distinct Bragg peaks are observed, we know
that well-defined lattice constants a,d must exist. In a RSM, these follow from
Bragg peak positions by Eq. (3.12). To assess errors in a and d , the mean and
standard deviation of values obtained from different Bragg peaks are used. If the
chosen (yB, zB) do not coincide with the actual beam center, the obtained lattice
parameters are affected by a systematic error increasing their standard devia-
tion. The correct choice of (yB, zB) therefore minimizes errors in a,d . To find
these coordinates, we proceeded iteratively. First, approximate primary beam
coordinates (yB, zB) were determined from the diffraction patterns. Using these,
the transformation to (q||, qz ) was performed as described in the previous step.
The lattice parameter d and its error σ(d) were then determined as the mean and
standard deviation of the values d = 2πℓ/3q00ℓ obtained from the first five Bragg
sheets (Fig. 5.6a). This was repeated for several values of zB. Minimum error in d

indicates a choice zB closest to the actual beam center. Subsequently, the proce-
dure was repeated with yB and lattice parameter a. In this case, a was obtained
from several pairs of peaks in the first and third off-axis column corresponding
to q|| = 4π/

p
3a and 8π/

p
3a (Fig. 5.6b). The obtained lattice parameters are in-

cluded in the formfactor tables in appendix A.2.

5. Indexing

Miller indices hkℓ were assigned to the reflections as described in section 3.3.3
using a nonprimitive hexagonal unit cell. In Fig. 5.4, the Miller indices corre-
sponding to each peak are shown again. This time, the notation {hkℓ} for a fam-
ily of symmetry-related coinciding reflections is used. For example, {101} de-
notes the 101, 01̄1 and 1̄11 reflections (cf. Tab. A.1). Due to the assumption of a
centrosymmetric unit cell and thus Fhkℓ = Fh̄k̄ℓ̄, diffraction peaks with qz < 0
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located below the sample horizon have a symmetry-related counterpart with
qz > 0. Therefore, it is sufficient to measure reflections in one quadrant in the
upper half plane of (q||, qz ≥ 0) to obtain full information.

6. Peak integration and correction factors

The intensity I (q||, qz ) was first integrated in q|| direction over several narrow
intervals containing all diffraction spots of each peak series (Fig. 5.6c). The
integrated peak intensities were then obtained from the one-dimensional pro-
files. For each peak, an interval of fixed width around the peak maximum was
considered. The peak area equivalent to the integrated intensity Ihkℓ was ob-
tained by subtraction of linear background (Fig. 5.6d) and addition of the re-
maining intensity values. Up to a scaling factor KOPR, the form factor amplitudes
{|Fhkℓ|, |h|+ |k| 6= 0} of the out-of-plane peaks were obtained by

KOPR · |Fhkℓ| =
√

q||Ihkℓ/mhkℓ (5.2)

using peak multiplicities mhkℓ = 3, 6, 3, 6, 6 for the 1. to 5. off-axis column and
q|| ∝ 1,

p
3, 2,

p
7, 3 to take into account the Lorentz factor using the approxima-

tion L ∝ q−1
|| (cf. section 2.4).
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Figure 5.6: Determination of lattice parameters a,d and Bragg peak intensities Ihkℓ

from a RSM (di16:1PC): (a) d is determined from the Bragg sheet positions along
qz , (b) a from the positions of out-of-plane reflections in q||. (c) Integration inter-
vals in q|| for each peak series. (d) The peak area in the resulting 1d profiles yileds
the integrated intensity Ihkℓ corresponding to a family of reflections {Fhkℓ}.
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5.1.2 X-ray reflectivity experiments

Additional x-ray reflectivity measurements were required to record the Bragg peaks
along the qz axis. Experiments were performed in the same way as for the bilayer
data using our laboratory reflectometer described in section 4.4.1. For several hydra-
tion levels covering the RH range of the corresponding grazing-incidence dataset, the
specularly reflected intensity was recorded using a stepsize of ∆αi = 0.005◦, automatic
attenuators and an exposure of 1s per datapoint for reflections with ℓ ≤ 15 and 5 or
10s for the weaker higher-order reflections. To speed up the measurements, only the
intervals required for integration of the Bragg peaks were recorded. The time required
for one RH level and 8 Bragg peaks was less than one hour.14 Reflectivity data ob-
tained for pure DOPC and DOPC/Chol (XChol = 0.3) are shown in Fig. 5.7. No signs of
sample deterioration or radiation damage such as changes in peak width or lineshape
were observed. The raw data were processed and corrections applied as described in
section 4.4.3, yielding 7 to 8 form factor amplitudes {KIPR · |F00ℓ|} at several RH values
covering the range in d of the corresponding synchrotron GIXD data. KIPR denotes the
experimental scaling factor.
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Figure 5.7: Reflectivity data of the rhombohedral phase of DOPC/Chol (XChol = 0.3,
∆RH = 2%) and pure DOPC (∆RH = 3%). With lower RH , the peak positions
moved to higher qz , indicating a decrease in d .

14 In addition to the pure counting time, few seconds per datapoint are required for motor movements and
finding the most appropriate attenuator.
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5.1.3 Powder diffraction experiments

At this stage, the following problem due to the unusual 2d powder character of the sam-
ples occurs: For electron density reconstruction, two sets of form factor amplitudes

{KIPR · |F00ℓ|} and {KOPR · |Fhkℓ|, |h|+ |k| 6= 0} (5.3)

must be brought to a common scale. However, the two scaling factors KIPR and KOPR

are unknown. To achieve relative normalization, the ratio KIPR/KOPR is required. Obvi-
ously, this step is crucial to obtain correct structures ∆ρ(~r ) enabling a further analysis.

The most straightforward way to achieve relative normalization is to measure form
factor amplitudes corresponding to both groups in Eq. 5.3 on a common scale. To this
end, the alignment of crystallites in the rhombohedral phase with respect to the sub-
strate must be circumvented. This was achieved by preparing true 3d powder samples
without preferred crystallite orientations.

Preparation of powder samples

For the powder measurements presented here, lipid solutions of concentrations of 0.5
or 1g/ml were prepared. The considerably higher concentration compared to aligned
samples was required to achieve sufficiently high scattering volumes. For each sample,
10µl were pipetted onto an area of approximately 10×2mm2 on a cellulose/polyester
wiper (Durx 670, Berkshire) which served as a rough surface that does not, unlike the
silicon substrates, induce a preferred crystallite orientation. Solvent extraction was
achieved by evaporation in air and subsequent storage in vacuum in the same way as
for the oriented samples. The sheet was then cut into several stripes about 2mm in
width. These were stacked on top of each other to increase the amount of lipid in the
x-ray beam (Fig. 5.8a).

Instrumental setup and data collection

The basic powder diffraction geometry is shown in Fig. 2.5. We used the setup ap-
plied previously for phase diagram determination. The distance between sample and
detector was increased to D = 867.9± 1.8mm as determined by silver behenate cal-
ibration standard. For this distance, no flight tube was available. A beamstop was
placed directly behind the sample to remove the primary beam and thus reduce back-
ground scattering by air. For each lipid composition, powder diffraction patterns were
recorded for several RH values covering the RH range of the corresponding grazing-
incidence data. The exposure per frame was typically 3 or 4 hours. The observed L/R

phase boundaries were in agreement with those found in chapter 3. A typical powder
pattern of the rhombohedral phase is shown in Fig. 5.8(b).

Data reduction

For each sample, the beam center was determined by the “beam centre” function in
FIT2D from about 20 manually selected points on the very strong ring corresponding
to the 003 reflection. The script data_extraction_powder.m was then used for data
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Figure 5.8: (a) Sketch of the preparation of powder samples and (b) powder diffraction
pattern of the rhombohedral phase of DPhPC.

analysis. For each pixel, the corresponding modulus of the scattering vector was deter-
mined by (cf. Fig. 2.5)

q = 4π

λ
sin

[

1

2
arctan

(√

∆y2 +∆z2

D

)]

. (5.4)

The 2d array of intensity values was transformed to the 1d curve I (q) by division of the
measured q range into bins of ∆q = 0.0005Å−1 and addition of the intensity values of
all pixels falling into one bin, equivalent to integration over the azimuthal angle φ. A
typical curve I (q) is shown in Fig. 5.9. Values of φ corresponding to regions covered by
the beamstop were excluded from the analysis.

The curves I (q) show one strong double peak located in the q interval between 0.10
and 0.16Å−1. The weaker peak of this pair corresponds to the {101} reflections, whereas
the stronger one contains contributions both from the overlapping {003} and {102} re-
flections due to the strongly broadened peaks as compared to GIXD and reflectivity
data. Therefore, we denote the corresponding integrated intensity as Imix. A further
considerably weaker peak visible at higher q is compatible with Miller indices {110}. In
reciprocal space maps obtained by GIXD, this peak is sometimes faintly visible along
the q|| axis (cf. Fig. 5.2), but attenuated by the substrate and therefore not suitable for
further analysis. By powder diffraction, also the form factor amplitude |F110| becomes
accessible.

To obtain lattice parameters and form factor amplitudes, the following empirical strat-
egy was employed: For each peak, a Pseudo-Voigt (pV ) profile, i.e. a linear combination
of a Lorentzian (L) and a Gaussian (G) with the same center q0 and full width at half
maximum 2ω was assumed [185, 186, 187]:

pV (I ,η, q, q0,ω) = I ·
[

η ·L(q, q0,ω)+ (1−η) ·G(q, q0,ω)
]

0 ≤ η≤ 1 (5.5)
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Figure 5.9: One-dimensional intensity profile I (q) obtained from the diffraction pat-
tern in Fig. 5.8 (top) and peak fitting (bottom). Vertical lines indicate the peak posi-
tions obtained after profile fitting. The {102} and {003} peaks strongly overlap and
can not be separated. The integrated area of the resulting strong peak was decom-
posed into these two contributions as described in the text (DPhPC, RH = 76%).

where

L(q, q0,ω) =
[

1+
( q −q0

ω

)2
]−1

, G(q, q0,ω) = exp

[

− ln(2)
( q −q0

ω

)2
]

. (5.6)

I denotes the peak amplitude and η the mixing parameter. The low-angle region of I (q)
containing the strong double peak was then fitted using a model composed of poly-
nomial background up to quadratic order and two pseudo-Voigt peaks with the same
ω and η. For the {110} peak, a single pseudo-Voigt peak and an interval of ±0.02Å−1

around the appproximate peak position was used. Peak fitting was performed by the
MATLAB function fminsearch. Typical results are shown in Fig. 5.9. From the obtained
fit parameters, integrated intensities Ihkℓ were obtained as the area

ApV = η ·πω+ (1−η) ·
√

π/ln(2)ω (5.7)
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below a pseudo-Voigt peak. With the correction factors for the powder case provided
in section 2.4, the corresponding form factors of the {101} and {110} reflections are

Kp · |Fhkℓ| =
[

Ihkℓ

mhkℓLhkℓPhkℓ

] 1
2

, (5.8)

where Kp denotes the unknown scaling factor of a powder diffraction experiment. The
mixed peak was assumed to contain both intensities I003 and I102,

Imix = I003 + I102 (5.9)

= K 2
p ·

[

L003P003m003|F003|2 +L102P102m102|F102|2
]

. (5.10)

This can be rearranged into

Kp · |F003| =
[

1

L003P003m003

(

Imix −L102P102m102 · |F102|2
)
] 1

2

(5.11)

=
[

1

L003P003m003

(

Imix −L102P102m102 · |F101|2 ·
∣
∣
∣
∣

F102

F101

∣
∣
∣
∣

2)]
1
2

(5.12)

=
[

1

L003P003m003

(

Imix −
L102P102m102

L101P101m101
· I101 ·

∣
∣
∣
∣

F102

F101

∣
∣
∣
∣

2)]
1
2

(5.13)

The ratio |F102/F101| is known from the grazing-incidence data and typically in the
range of 1 to 1.5 for all samples investigated in this thesis (cf. appendix A.2). Since
I101/Imix ≪ 1, the second term in brackets in the above equation is only a small correc-
tion to |F003|. The Lorentz and polarization factors follow from the lattice parameters
a,d obtained from the fits and the peak multiplicities are m003 = 1, m101 = m102 = 3.
Combination of Eq. (5.8) and (5.13) finally yields the form factor ratios

∣
∣
∣
∣

F101

F003

∣
∣
∣
∣=: cnorm and

∣
∣
∣
∣

F110

F003

∣
∣
∣
∣ (5.14)

independent of an experimental scaling factor. cnorm is the ratio of the form factor
amplitudes of the strongest in-plane and one very strong out-of-plane reflection. This
allows to perform the relative normalization of GIXD and reflectivity data and put all
formfactor amplitudes onto a common relative scale. In addition, powder measure-
ments provide the form factor amplitude |F110| which is inaccessible by GIXD mea-
surements.
A different method for relative normalization is described in [51, 101]. However, it can
only be applied if in- and out-of-plane reflections are measured using the same in-
strument. In addition, to obtain exact values, the scattering volume must remain con-
stant. This may be difficult to achieve in practice if translation of the sample along the
beam is required to minimize radiation damage. For future experiments, one could
place both oriented and powder samples in one sample chamber and record powder
patterns of higher quality along with the synchrotron GIXD data. However, as will be
demonstrated below, also the present strategy yields satisfactory results.
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5.1.4 Combination of different X-ray geometries

Diffraction data in all three geometries, GIXD, reflectivity and powder, were recorded
for several RH levels and thus values of d in the rhombohedral phase. For nominally
identical RH , the d values were slighly different, which is due to limited precision of
the used RH sensors, experimental errors in determination of d and possibly thermal
history of the different samples. The lattice constant d is directly related to the hydra-
tion state of the samples and indicates the true hydration, rather than the measured
RH value. We performed a linear interpolation of the reflectitivy and powder data as a
function of d as shown in Fig. 5.10 and 5.11. Each GIXD dataset at a given d was com-
bined with the corresponding interpolated values of {KIPR · |F00ℓ|(d)} from reflectivity
data. Relative normalization was performed according to the condition

KOPR

KIPR

|F101(d)|
|F003(d)|

!= cnorm(d). (5.15)

In addition, the form factor amplitude |F110| from powder data was added in a simi-
lar way. Finally, this yields complete datasets consisting of all measured form factor
amplitudes {|Fhkℓ|} on a common relative scale.

5.2 Solving the phase problem

The next step towards electron density reconstruction is to solve the phase problem.
The swelling method as explained in section 4.4.5 can be extended the rhombohedral
phase. The following derivation ist based on YANG et al. [51]. The authors use a hexag-

onal prism of height d with the same volume
p

3
2 a2d as the primitive unit cell. The

hexagonal footprint corresponds to the Wigner-Seitz cell of a 2d hexagonal lattice (e.g.

Fig. 5.16). As will turn out later, this is the volume corresponding to one stalk between
two planar bilayers. This choice is not a parallelepiped and thus no primitive unit cell
in the conventional crystallographic sense. However, the rhombohedral phase can be
obtained by combining these hexagonal prisms into layers and stacking the layers on
top of each other in ABC fashion [51]. The center of the hexagonal prism is chosen
as the origin and centrosymmetry ρ(~r ) = ρ(−~r ) is assumed. In analogy to the lamellar
case, one starts from the form factor F (~q ) (Eq. 2.37) and Fourier cosine series of ρ(~r )
(Eq. 2.38) of a centrosymmetric unit cell:

F (~q ) =
∫

V
ρ(~r )cos(~q ·~r )dV ⇔ ρ(~r ) = 1

V

∑

h,k,ℓ

Fhkℓ cos(~qhkℓ ·~r ) (5.16)

Substitution of ρ(~r ) by its Fourier series and use of the trigonometric identity cosα ·
cosβ= 1

2

[

cos(α−β)+cos(α+β)
]

yields

F (~q ) = 1

2V

∑

h,k,ℓ

Fhkℓ

∫

V

{

cos
[

(~q −~qhkℓ) ·~r
]

+cos
[

(~q +~qhkℓ) ·~r
]}

dV. (5.17)

The vectors are split into components parallel and perpendicular to the substrate. If
Miller indices corresponding to the nonprimitive hexagonal unit cell with α= β= 90◦
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are used (Eq. 3.10), the parallel component of ~qhkℓ depends only on h,k and the per-
pendicular component only on ℓ:

~q =





qx

qy

0





︸ ︷︷ ︸

~q||

+





0
0

qz





︸ ︷︷ ︸

~qz

~qhkℓ =





qhk,x

qhk,y

0





︸ ︷︷ ︸

~qhk

+





0
0

qℓ





︸ ︷︷ ︸

~qℓ

~r =





x

y

0





︸︷︷︸

~r||

+





0
0
z





︸︷︷︸

~rz

(5.18)

With cos(α+β) = cosαcosβ−sinαsinβ, the integrands in Eq. (5.17) factorize into con-
tributions parallel and perpendicular to the substrate depending only on h,k or only
on ℓ, respectively:

∫

V

cos[(~q ±~qhkℓ) ·~r ]dV =
∫∫

A

cos
[

(~q||±~qhk ) ·~r||
]

dx dy

︸ ︷︷ ︸

=:C±
hk

(~q||)

·
+ d

2∫

− d
2

cos
[

(qz ±qℓ) · z
]

dz (5.19)

=C±
hk

(~q||)d sinc

[
d

2
(qz −qℓ)

]

(5.20)

The continuous form factor then is

F (~q||, qz )= d

2V

∑

h,k,l

Fhkℓ

{

C+
hk (~q||)sinc

[
d

2
(qz+qℓ)

]

+C−
hk (~q||)sinc

[
d

2
(qz−qℓ)

]}

. (5.21)

In the swelling method for lamellar phases, the continuous form factor was considered
as a function of qz . In analogy, F (~q||, qz ) is considered separately for each peak series
in a diffraction pattern parallel to the qz axis where ~q|| =~qh′,k ′ . In this case,

C±
hk

(~qh′k ′ ) =
∫∫

A

cos
[
~qh±h′,k±k ′ ·~r||

]

dxdy =
{

V
d

h =∓h′,k =∓k ′,

0 else.
(5.22)

This result can either be obtained by explicit integration15 or inferred from the cosine
waves sketched in Fig. 5.12. The case ~qh±h′,k±k ′ = 0 is obvious. We obtain

F (~qhk , qz ) = 1

2

∑

ℓ

{

Fh̄k̄ℓ sinc

[
d

2
(qz +qℓ)

]

+Fhkℓ sinc

[
d

2
(qz −qℓ)

]}

. (5.23)

Due to centrosymmetry, Fh̄k̄ℓ = Fhkℓ̄ and therefore [51]

F (~qhk , qz ) =
∑

ℓ

νhkℓ|Fhkℓ|sinc

[
d

2
qz −

ℓ

3
π

]

, h,k = const. (5.24)

15 Consider the footprint of the unit cell sketched in Fig. 5.12. The sum of two reciprocal lattice vectors is
another reciprocal lattice vector. Due to the symmetry of the cosine, consider only x ≥ 0 and write the
integration limits in y as y = ±(a − x)/

p
3. Solving the double integral results in cosine terms that cancel

each other.
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Figure 5.12: Sketch of partial waves cos(~qhk ·~r||). The sum of all contributions inside
the hexagonal area is zero unless ~qhk = 0. For definitions of the lattice vectors see
section 3.3.3.

This result is very similar to the lamellar case in section 4.4.5. Assuming that the un-
derlying structure and thus F (~qhk , qz ) is approximately constant for different levels of
hydration, Eq. (5.24) can be used in the same way as for the lamellar phases. After
assigning correct phase factors {νhkℓ} to all reflections of a series with h,k = const.,
the discrete datapoints {νhkℓ|Fhkℓ|} corresponding to different hydration levels should
approximately lie on a continuous form factor reconstruction obtained by Eq. (5.24).
Form factor amplitudes |Fhkℓ| corresponding to ℓ< 0 are obtained because their sym-
metry-related counterparts with |Fh̄k̄ℓ̄| are located in the upper half plane of reciprocal
space (q||, qz ).

To correct for changes in the scattering volume due to e.g. translation of the sample
along the beam, datasets recorded at different hydration levels must be normalized
with respect to each other. Similar to the case of lipid bilayers, this is achieved by re-
quiring that F (~qhk , qz ) and hence |F (~qhk , qz )|2 is approximately constant for slightly
different hydration levels and thus [51] (cf. section 4.4.5)

+∞∫

−∞

|F (~qhk , qz )|2 dqz
!= const. h,k = const. (5.25)

=
∑

ℓ

∑

ℓ′
FhkℓFhkℓ′

∞∫

−∞

sinc

(
d

2
qz −

ℓ

3
π

)

sinc

(
d

2
qz −

ℓ′

3
π

)

dqz (5.26)

=
∑

ℓ

∑

ℓ′
FhkℓFhkℓ′

2

d

∞∫

−∞

sin(x)

x
· sin[x + (ℓ−ℓ′)π]

x + (ℓ−ℓ′)π
dx

︸ ︷︷ ︸

=







π ℓ= ℓ′

0 else

(5.27)

= 2π

d

∑

ℓ

|Fhkℓ|2 h,k = const. (5.28)
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For application of the swelling method to each peak series, the sets of form factor am-
plitudes at different hydration levels are normalized such that

∑

ℓ

|Fhkℓ|2 ∝ d(RH), h,k = const. (5.29)

For lipid bilayers, our results in chapter 4 indicate an increase in bilayer thickness upon
dehydration, thus rendering the assumption of constant lipid structure an approxi-
mation. However, the phase information obtained by the swelling method yield very
reasonable bilayer electron density profiles. In the rhombohedral phase, the assump-
tion of a constant lipidic structure has an even more approximative character, since
there is no way to shrink a unit cell containing a continuous 3d lipid structure without
changing the structure itself. The continuous form factor (5.24) must change slightly
for different levels of hydration. Nevertheless, as shown below, the swelling method
yields phase combinations that lead to reasonable electron density maps also for the
case of rhombohedral phases, which justifies the approximations.
The data corresponding to in-plane reflections 00ℓ were treated using the script
swelling_reflectivity.m already applied in the lamellar case. F000 was set to a
fixed value of ±0.8, since no relation comparable to Eq. (4.21) is available for the rhom-
bohedral phase. This choice improved the agreement of F (~qhk , qz ) and discrete data-
points for the case of most lipids.
For out-of-plane reflections obtained by GIXD, the script swelling_GISAXS.m was
used. Its structure is very similar to swelling_reflectivity.m. Since the datapoints
{|Fhkℓ|} are subject to stronger experimental noise than the reflectivity data {F00ℓ}, one
additional step was included: A straight-line fit was applied to each group of datapoints
corresponding to fixed Miller indices hkℓ. The interpolated values were used for the
swelling method (but not for electron density reconstruction) to suppress the effect of
possible outliers. Continuous form factors F (~qhk , qz ) were reconstructed by Eq. (5.24)
using the mean lattice constant d and the mean value of each form factor amplitude
|Fhkℓ|.
Fig. 5.13 shows typical results of the swelling method. Swelling diagrams for all other
datasets used in this thesis are provided in appendix A.2. For each peak series, the
displayed curves correspond to the phase factor combination {νhkℓ |h,k = const.} out
of 2N−1 possibilities (N denotes the number of reflections) minimizing the residual
sum of squares

∑

d

∑

ℓ

∣
∣νhkℓ|Fhkℓ,d | −F (~qhk , qz )

∣
∣2 != min. (5.30)

Each combination is determined up to a total factor ±1, i.e. only the relative phase re-
lations inside each peak series are obtained.

Considering the swelling diagrams, the following can be noted: In each series, the signs
{νhkℓ} are typically alternating, i.e. signs of two adjacent reflections with ∆ℓ = 3 are
different in most cases. This is related to the triplet relationship for centrosymmetric
structures used in direct methods of crystallography: It can be shown that the signs
corresponding to three reflections with



5.2 Solving the phase problem 103

z

F
(

0

F

F

2. out-of-plane series 11{ }l 3. out-of-plane series 2{0 }l

qz [Å ]-1
qz [Å ]-1

0.1 0.2 0.3 0.4 0.5 -0.4 -0.2 0 0.2 0.4

0

0

0

in-plane reflections (XR) {00 }l

0 0.2 0.4 0.6 0.8 1 1.2

qz [Å ]-1

1. out-of-plane series 1{ 0 }l

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

qz [Å ]-1

Figure 5.13: Swelling plots for the stalk phase of DOPC/DOPE 1:1 indicating the best
phase combinations for each peak series. For q|| 6= 0, each group of datapoints (◦)
was fit by a straight line (−), the interpolated values (×) were used to determine the
residuals (|).



104 Structure determination of stalks

3∑

i=1

~qhi kiℓi
= 0 (5.31)

are likely to fulfil the condition

3∏

i=1

νhi kiℓi
=+1 (5.32)

if the corresponding |Fhi kiℓi
| are all relatively strong [141, 188]. The underlying princi-

ple is sketched in appendix A.1. In all of our datasets, |F003| is by far the strongest form
factor amplitude (cf. appendix A.2). Electron density maps which display one contin-
uous region of elevated electron density separating two continuous regions of lower
electron density are only obtained if ν003 =−1. For triplets containing {003}, the triplet
relationship makes

νhkℓ ·νh̄k̄(ℓ̄−3) ·ν003 =+1 (5.33)

likely. Due to centrosymmetry and for ν003 =−1, this yields

νhkℓ ·νhk(ℓ+3) =−1 (5.34)

in agreement with the observed behaviour of F (~qhk , qz ). Importantly, this is a prob-
abilistic statement for triplets of strong reflections. In the final version of the script
swelling_GISAXS.m, only phase combinations with ν003 =−1 and ν101 =−ν102 were
used, since these constitute the strongest triplet.

Subsequent to determination of the {νhkℓ} within each series by the swelling method,
the relative phases between the four series were determined by considering all 8 pos-
sible electron density maps ∆ρ(0, y, z) and choosing the only one which leads to plau-
sible electron density distributions (Fig. 5.14) [51].

For all lipids under investigation, the final phase combinations are very similar. With-
out exception, the phase factors {ν11ℓ} where ℓ= 3,6,9,12 were obtained as +−++ for
all lipids. For the {110} reflection determined from powder measurements, we used
ν110 = −ν113, in agreement with the triplet relationship. A slight ambiguity arises for
the phase factors {ν20ℓ} where ℓ = −2,1,4,7,10. For different datasets, both +−+−+
and−−+−+were obtained as the best combinations according to the swelling method.
Based on the corresponding electron density maps in the x, y plane, we used the for-
mer choice because it leads to a more homogeneous and radially symmetric electron
density in the lipid headgroup region (Fig. 5.15).
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Figure 5.14: Electron density maps in the y z plane for eight possible combinations of
the total phases of the four peak series q||/

4πp
3a

= 0,1,
p

3,2 after fixing the phase

of the specular series to assure that ν003 =−1 (DOPC/DOPE 1:1, RH = 68%). Only
the phase combination+−−+ is compatible with continuous lipid monolayers and
typical molecular dimensions.
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5.3 Results

After data reduction and phase determination, the form factors {Fhkℓ} of 26 to 37 in-
dependent (i.e. not symmetry-related) reflections are obtained for several hydration
levels of 7 different lipids and lipid mixtures. All data used for electron density recon-
struction are provided in appendix A.2. The electron density contrast ∆ρ(x, y, z), i.e.

the deviation from the mean electron density in the unit cell, is constructed by

∆ρ(~r ) =
∑

h,k,l

νhkℓ|Fhkℓ|cos

(

2π

[
h

a
x + 2k +h

p
3a

y + ℓ

3d
z

])

(5.35)

and normalized such that max
[

∆ρ(~r )
]

= 1 for each RH level. Absolute scaling would
require knowledge of the exact number of lipid and water molecules per unit cell and
the form factor F000 encoding the mean electron density. The latter cannot be mea-
sured, since it corresponds to scattering in forward direction which coincides with the
primary beam. For our purposes, absolute scaling is not required. In the electron den-
sity maps presented in this chapter, all diffraction peaks listed in the tables in the ap-
pendix were used. The phase relations within each peak series are those indicated as
the best choices by the swelling method, with the exception of the third out-of-plane
series {02ℓ} as explained above.
Fig. 5.16(a) shows slices of ∆ρ(~r ) for a region consisting of several nonprimitive hexag-
onal unit cells spanned by vectors ~aH ,~bH ,~cH (cf. section 3.3.3). Regions of elevated
electron density contrast (dark red) indicate continuous lipid headgroup regions.
These separate two regions of lower or negative electron density contrast indicative
of the hydrocarbon region (blue) or residual water. Within the x y plane, the hexagonal
arrangement of stalks can readily be recognized. Lattice parameter a corresponds to
the distance between the centers of adjacent stalks. From one layer to the next, the
stalk centers are shifted with respect to each other. The hexagonal prism of height d

corresponding to one stalk is indicated in all three slices. In Fig. 5.16(b), a perspective
view of this volume is shown.
On the following pages, ∆ρ(~r ) is visualized for each lipid and one arbitrary RH value by
slices through the hexagonal prism corresponding to one stalk, both in 3d representa-
tion (Fig. 5.17 and 5.18) as well as by 2d slices along the x y , xz and y z planes (Fig. 5.19
and 5.20). The maximum number N of obtained reflections indicated in each figure is
used. In all cases, a strongly curved lipid monolayer reminiscent of the cis monolayer
in stalk can clearly and unambiguously be recognized. Close to z = 0, the radius of cur-
vature of the lipid headgroup region in the xz or y z plane can be estimated to be on
the order of few Å.
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Figure 5.16: (a) Slices of ∆ρ(~r ) along the coordinate axes and (b) 3d representation
of the hexagonal prism corresponding to one stalk (DOPC/DOPE 1:1, RH = 70%,
N=31). The lattice constant a corresponds to the distance between adjacent stalks
in one layer.
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Figure 5.17: Representations of the hexagonal prism containing a single stalk for seve-
ral lipids (DPoPC=dipalmitoleoyl-PC=di16:1PC and DMoPC=dimyristoleoyl-PC
= di14:1PC).
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Figure 5.18: Representations of the hexagonal prism containing a single stalk for sev-
eral lipids.
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Figure 5.21: Comparison of a recent coarse-grained MD simulation by SMIRNOVA et al.

(adapted with permission from [53], Copyright (2010) American Chemical Society)
and our experimental data. Importantly, the lipid species are different and number
densities are used instead of electron densities. However, the general stalk shape is
strikingly similar.

5.4 Discussion

So far, to the very best of our knowledge, only data on stalks in pure DPhPC and DOPC
are available in the literature. In the pioneering work of YANG et al. using DPhPC [51],
the number of independent reflections used for electron density reconstruction is N =
23. Data on DOPC with N = 20 have been published by RAPPOLT et al. [52]. The number
of indendent reflections in our datasets is between 26 and 37. Therefore, our results
increase both the number of datasets as well as the obtainable resolution in electron
density maps and provide the first structural data on stalks in lipid mixtures.
To the naked eye, the reconstructed electron density maps are quite similar. Except for
variations of the total dimensions in case of different chain lengths, only subtle varia-
tions can be distinguished. For example, the water region in case of DPhPC is slightly
higher than in case of all other samples. The high degree of similarity is also reflected
in the formfactor data provided in the appendix A.2: For all datasets, the relative am-
plitudes |Fhkℓ| are typically very similar and the phase factors νhkℓ are, with only few
exceptions, the same.
Fig. 5.21 compares a recent simulation by SMIRNOVA et al. and one of the obtained
electron density maps. Although the used lipids and displayed quantities are different
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(number density vs. electron density), the general stalk shape is strikingly similar. For
example, both the headgroup density in the simulation and the electron density in the
lipid headgroup region in the experimental data decrease at the stalk neck close to
z = 0, and the strength of the “dimples” of the trans monolayers are comparable.

5.5 Conclusions

In this chapter, the determination of stalk structures in terms of electron density con-
trast ∆ρ(~r ) by x-ray diffraction on the rhombohedral phase of several phospholipids
and lipid mixtures has been described. To this end, we applied the methods pioneered
by the group of HUANG [30, 51] with several modifications, e.g. the use of separate re-
flectivity scans and powder diffraction data, as well as a criterion derived from direct
methods as an additional aid for phase determination.
Our results on seven different lipid systems, including the first data on lipid mixtures,
considerably extent the available structural data on stalks and provide better resolu-
tion. The reconstructed electron density maps indicate a highly conserved structure of
stalks in the rhombohedral phase with only subtle variations. These are investigated
more closely in the following chapter.





6 Analysis of the 3d electron density of stalks

In the previous chapter, the structures of stalks in several lipids and lipid systems have
been obtained by x-ray diffraction on the rhombohedral phospholipid phase. Based on
these data, we study variations in stalk structure. After definition of structural param-
eters for stalk phase characterization, the major goal is to investigate the curvatures
of the strongly bent cis monolayer. To this end, we propose the analysis of electron
density isosurfaces. The required formalism derived from differential geometry of im-
plicit surfaces is introduced and its application to reconstructed electron density data
explained in detail. After presentation of our results, we compare these to existing con-
tinuum models.

6.1 Structural parameters of the stalk phase

6.1.1 Definitions

To characterize lipid bilayer structure, the headgroup-headgroup distance dhh and the
associated water layer thickness d ′

w have been used in chapter 4. These parameters
are obtained from the positions of electron density maxima indicative of phospholipid
headgroup regions in one-dimensional bilayer electron density profiles. As a first step
towards comparison of the structure of different stalks obtained in the previous chap-
ter, we define similar structural parameters for the stalk phase.

The stalk diameter ds along its “waist” is obtained from the electron density contrast
∆ρ in the x y plane (Fig. 6.1a). To this end, radial slices starting from the origin are
extracted as a function of the angle φ. ds is defined as twice the mean position of the
electron density maximum for φ ∈ [0,2π].

Bilayer thickness db and water layer thickness dw in the stalk phase are defined as
sketched in Fig. 6.1(b). The one-dimensional electron density profile ∆ρ(0,0, z) is re-
constructed in the interval indicated by the vertical white line with a sampling of ∆z =
0.01Å. The line corresponds to the edges of two hexagonal prisms indicated by red
dashed lines. This choice maximizes the distance to adjacent stalks, the original bi-
layer stucture of the lamellar phase is expected to be least disturbed at this position.
db and dw are determined from the positions of electron density maxima. The relation
d = db +dw (Eq. 4.8) used in case of the lamellar phase has to be replaced by

3d = db +2dw +dt. (6.1)

This also yields the parameter dt indicating the minimum distance between the distal
or trans monolayers corresponding to one stalk as shown in Fig. 6.1(c).

An empirical measure for the volume fraction of water in the sample is obtained as
sketched in Fig. 6.1(c). Electron density maxima corresponding to the headgroup re-
gion of the strongly curved cis monolayer are approximated by semi-elliptical contours
zx,y (r ). The semimajor and semiminor axes are determined using the lattice param-
eter a, stalk neck diameter ds and the positions hx,y of lipid headgroup peaks in ∆ρ

along ( a
2 ,0, z)T and (0, ap

3
, z)T , respectively, yielding
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zx (r ) =± hx
a
2 − rs

√

r 2
s +a(r − rs )− r 2, (6.2)

zy (r ) =±
hy

ap
3
− rs

√

r 2
s + 2

p
3

a(r − rs)− r 2 (6.3)

The hydrophilic volume is approximated by solids of revolution obtained by rotation
of the shaded areas about the z axis:

Vhyd = 4π

∫

r zx,y (r )dr (6.4)

The mean of the volumes obtained for zx (r ) and zy (r ) is used to take into account
variations upon rotation.
The above steps have been carried out by the script stalkanalysis.m using the form-
factor tables in the appendix. Some very weak reflections are subject to considerable
experimental noise. This implies the danger of possibly incorrect phase assignments
by the swelling method. Since the associated form factor amplitudes are very small,
this hardly affects the visual appearance of the reconstructed electron density maps.
However, effects on the results of a quantitative analysis can not be excluded. There-
fore, we did not include a number of very weak reflections {hkℓ} in electron density
reconstruction in this chapter. These are the same for all datasets and are indicated in
each formfactor table in appendix A.2. The data presented here are based on electron
density maps reconstructed with a sampling of 0.1Å.

6.1.2 Results

Fig. 6.2 displays the obtained structural parameters along with the corresponding RH

range of each dataset. To facilitate comparison of the results of different stalks, several
dimensionless ratios are used. We summarize the significant observations:
The first plot displays the structural parameters db, ds and dt. In all cases, the stalk neck
diameter ds exceeds the corresponding bilayer thickness db. For the dimensionless
ratio ds/db, we find values of 1.13 < ds/db < 1.33. Upon addition of cholesterol, ds/db

decreases slightly, while addition of DOPE rather has the opposite effect. The ratio of
transversal and lateral extent of the stalk quantified by dt/ds varies between ≃ 1.53−
1.78.
The water layer thickness dw in most samples is above the critical value of (9.0±0.5)Å
where the onset of stalk phase formation has been observed in chapter 4 (Fig. 4.11).
This effect is strongest in DPhPC and the three lipid mixtures. In addition to formation
of stalks, the L/R phase transition also involves a spatial redistribution of the volumes
occupied by lipid and water, which locally reduces the hydration repulsion.
In regard to hydration, DPhPC seems to differ from the remaining samples. According
to our results, its stalk phase imbibes a significantly larger amount of water, since the
values for dw and Vhyd/Vs clearly exceed those of the remaining lipids.
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6.2 Electron density isosurface analysis

6.2.1 Motivation

The continuum theory of membrane bending introduced in section 1.5 has been used
and refined for almost 30 years to propose stalk geometries that minimize different en-
ergy functionals. As discussed below, it is disputed to what extent this formalism can
yield reliable predictions of the free energy in case of strongly bent monolayers such
as in membrane fusion intermediates of few nanometers in size. Nevertheless, ana-
lyzing our experimental data within this framework can certainly be helpful. Firstly, it
may stimulate further refinements of the theory. Secondly, in addition to the structural
parameters introduced in section 6.1, it provides additional criteria for an objective
comparison of the obtained stalk structures in different lipids.

In case of the inverted hexagonal phase HII, several authors have quantitatively ana-
lyzed electron density data to study elastic deformations of the water cylinders and
chain packing [136, 189, 190]. To the very best of our knowledge, no comparable at-
tempts exist in case of the stalk phase. While the latter is arguably more relevant with
respect to membrane fusion, it also poses a higher degree of difficulty due to its three-
dimensional structure. Here, we propose one possible strategy to analyze structural
data of stalks in the framework of continuum theory.

Our goal is to minimize the amount of modelling and relate monolayer curvature as
directly as possible to the measured crystallographic data. As the first step, in order
to establish a connection between theory and our experimental results presented in
the previous chapter, a reasonable criterion for possible neutral surfaces in electron
density representation has to be found. In planar lipid bilayers, the neutral surface
of each monolayer is assumed in the interfacial region between lipid headgroups and
acyl chains. For DOPC, a fixed distance of 13Å from the bilayer midplane has been
used [25, 88]. In a one-dimensional electron density profile representing a bilayer in
the L phase, this corresponds to a constant value ρiso of electron density (Fig. 6.3).

If the electron density contrast ∆ρ(~r ) was free of truncation errors due to the limited
number of measureable reflections, it would provide a perfect representation of the
average stalk in the R phase. Also in this case, the neutral surfaces of the curved lipid
monolayers of a stalk should, at least approximately, correspond to 2d surfaces of con-
stant electron density embedded in 3d space. Therefore, we consider electron density
isosurfaces

Siso := {~r | f (~r ,ρiso) = 0} where f (~r ,ρiso) :=∆ρ(~r )−ρiso (6.5)

as approximations to possible neutral surfaces. Since ∆ρ(~r ) given by Eq. (5.35) is a sum
of typically 80 to 100 cosine terms, the implicit function f (~r ,ρiso) = 0 cannot be con-
verted to parametric form such as the Monge representation f : (x, y) 7→

(

x, y,h(x, y)
)

.
Some concepts from differential geometry of implicit surfaces are required.

The basis for current energy functionals incorporating lipid tilt [25] or higher-order
terms in curvature [85] is still the well-known Helfrich Hamiltonian
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Figure 6.3: Bilayer and stalk represented by surfaces of constant electron density. Black
dashed lines in the electron density maps correspond to the isosurface contours in
the xz plane. As motivated in the main text, we analyze electron density isosurfaces
as possible neutral surfaces with respect to bending (DOPC, RH = 60% (lamellar
phase), RH = 34% (stalk phase, SLS dataset), ρiso = 0.3).

Fbend = κ

2

∫

A
(2H −c0)2 dA+κG

∫

A
K dA (6.6)

describing the free energy with respect to bending deformations in terms of the mean
and Gaussian curvature H and K of the neutral surface. For our purposes, we rewrite
it into the more convenient form

∆Fbend = ∆FH + ∆FK (6.7)

= κ (Σ1 +c0Σ2) + (−4πκG). (6.8)

The terms ∆FH and ∆FK denote the energy difference due to mean and Gaussian cur-
vature with respect to a flat monolayer of the same area, Fbend = κ

2 c2
0 A. The quantities
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Σ1 = 2

∫

A
H 2 dA and Σ2 =−2

∫

A
H dA. (6.9)

depend only on H and thus only on stalk geometry and can be used to compare stalks
in different lipids irrespective of their elastic constants κ and c0, whose values are, at
best, only approximately known. As noted above, the integrated Gaussian curvature
of a smooth surface representing a stalk

∫

K dA = −4π is constant due to the Gauss-
Bonnet theorem.
In the following, we describe how to find an electron density isosurface for a given
isodensity value ρiso, determine its principal, mean and Gaussian curvatures at any
point and carry out surface integrals yielding Σ1,Σ2, the monolayer area A and

∫

K dA.

6.2.2 Differential geometry of implicit surfaces

Due to crystal symmetry, it is sufficient to consider a single stalk in a hexagonal prism
indicated in Fig. 6.3. Surfaces of constant ∆ρ(~r ) are given implicity by Eq. (6.5), ρiso

denotes the chosen density value. Expressions for the mean and Gaussian curvature
of implicit surfaces are given in some differential geometry textbooks [191, 192]. The
following considerations are based on GOLDMAN, where also rigorous proofs are pro-
vided [193]. For an implicit surface defined by f (~r ,ρiso) = 0, the mean and Gaussian
curvature at any point~r of the surface are

H = ∇ f T ·Hess( f ) ·∇ f −|∇ f |2 ·Tr(Hess( f ))

2|∇ f |3
and (6.10)

K = ∇ f T ·Hess∗( f ) ·∇ f

|∇ f |4
, (6.11)

where

∇ f =
(

fx , fy , fz

)T
(6.12)

denotes the gradient,

Hess( f ) =





fxx fx y fxz

fy x fy y fy z

fzx fz y fzz



 (6.13)

the Hessian and

Hess∗( f ) =





cofactor( fxx ) cofactor( fx y ) cofactor( fxz )
cofactor( fy x ) cofactor( fy y ) cofactor( fy z )
cofactor( fzx ) cofactor( fy z ) cofactor( fzz )



 (6.14)

=





fy y fzz − fy z fz y fy z fzx − fy x fzz fy x fz y − fy y fzx

fxz fz y − fx y fzz fxx fzz − fxz fzx fx y fzx − fxx fz y

fx y fy z − fxz fy y fy x fxz − fxx fy z fxx fy y − fx y fy x



 (6.15)
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the adjugate of the Hessian of f (~r ). Therefore, H and K are fully determined by the first
and second derivatives fi and fi j with respect to Cartesian coordinates i , j = x, y, z.16

In our analysis, the electron density contrast ∆ρ(~r ) and thus f is only known up to a
scale factor. If f is replaced by λ · f , λ ∈ R, factors of λ3 or λ4 are introduced in both
the numerator and the denominator of Eq. (6.10) and (6.11), respectively. Therefore, H

is invariant under rescaling, while K changes its sign for λ< 0 [193]. Due to Schwarz’s
theorem, Hess( f ) and Hess∗( f ) are symmetric. Once H and K are known, the principal
curvatures follow from [191]

c1,2 = H ±
√

H 2 −K . (6.16)

For a sphere of radius R given by f (x, y, z) = x2 + y2 + z2 −R2 = 0, one can easily verify
that the above formulas lead to the expected results H = R−1, K = R−2, c1,2 = R−1 [193].

6.2.3 Implementation

In the present case where f (~r ,ρiso) contains the Fourier cosine series of ∆ρ(~r ) (Eq.
5.35), gradient and Hessian obtained from Eq. (6.5) are

∇ f =−
∑

h,k,ℓ

νhkℓ|Fhkℓ|sin(~qhkℓ ·~r ) ·~qhkℓ, (6.17)

Hess( f ) =−4π2
∑

h,k,ℓ

νhkℓ|Fhkℓ|cos(~qhkℓ ·~r ) ·







h2

a2
h(2k+h)p

3a2
hℓ

3ad

h(2k+h)p
3a2

(2k+h)2

3a2
(2k+h)ℓ
3
p

3ad
hℓ

3ad
(2k+h)ℓ
3
p

3ad

ℓ2

9d2







. (6.18)

The adjugate of the Hessian can be determined using the cofactor relation

cofactor( fi j ) = (−1)i+ j Mi j , (6.19)

where the minor Mi j denotes the determinant of the 2× 2 matrix obtained by can-
celling row i and column j of Hess( f ). These equations allow to determine H ,K ,c1

and c2 in an arbitrary point~r in a fully analytic way using exclusively the experimen-
tally determined form factors and lattice parameters provided in the appendix.
In order to obtain the integrals Σ1 and Σ2 for a certain isosurface ρiso, only points
{~r | f (~r ,ρiso) = 0} defining this surface must be considered. Due to the implicit surface
definition, we use the following algorithm:

• As noted above, considering the hexagonal prism containing a single stalk is suf-
ficient. In addition, due to centrosymmetry, the region z ≤ 0 contains all relevant
information.17 The coordinates (x, y) within the hexagonal base are discretized
on a grid with ∆x =∆y = 0.25Å (Fig. 6.4, left).

16 Alternatively, H is related to the divergence of the surface normal ~n = ∇ f

|∇ f | by 2H =−div(~n).
17 In fact, due to centrosymmetry and three-fold rotational symmetry about the z axis, one sixth of the hexag-

onal prism constituting the asymmetric unit would be sufficient.
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∆x∆y

∆A

~n
~ez

(x, y,0)

(x, y, z)

Figure 6.4: (left) Isosurface determination: The hexagonal base corresponding to one
stalk is discretized. For each point (x, y) of the grid, the height z(x, y) such that
f (x, y, z(x, y),ρiso) = 0 is determined numerically (green). For higher accuracy, the
strongly curved region was subsequently resampled using a finer grid (blue). For
the final results presented in this work, the sampling was considerably finer than
shown in the figure. (right) Sketch of an area element in the x y plane and corre-
sponding isosurface patch of area ∆A.

• For each pair of coordinates (x, y) and a chosen isodensity ρiso, values
z ∈ [−20Å,0] solving f (x, y, z,ρiso) = 0 are computed numerically by the MAT-
LAB function fzero. Depending on ρiso, either one, two, or no solutions are ob-
tained. The latter applies to the waist region of the stalk where

√

x2 + y2 is close
to or smaller than ds. With an initial value z0 =−10Å, isosurfaces such as shown
in Fig. 6.4 displaying no unphysical discontinuities are obtained. To improve the
accuracy of the final results, the waist region of the stalk where the strongest cur-
vatures were found to occur is resampled using a finer grid of ∆x = ∆y = 0.05Å
and z0 =−1.

• The area element ∆A corresponding to each pair (x, y) is required for numerical
surface integration (Fig. 6.4, right). Projection of ∆A onto the x y plane yields the

area ∆x∆y = |~n ·~ez |∆A [194, 195]. With the surface normal ~n = ∇ f
|∇ f | , we obtain

∆A =
∣
∣∇ f

∣
∣

∣
∣∂z f

∣
∣
∆x∆y =

∣
∣
∑

h,k,ℓνhkℓ|Fhkℓ| · sin(~qhkℓ ·~r ) ·~qhkℓ

∣
∣

∣
∣
∑

h,k,ℓνhkℓ|Fhkℓ| · sin(~qhkℓ ·~r ) · 2π
3d

ℓ
∣
∣
∆x∆y. (6.20)

• For all obtained points {~r = (x, y, z) | f (~r ) = 0}, H and K are calculated by Eq.
(6.10) and (6.11). The principal curvatures c1,c2 follow from Eq. (6.16).

• Integrations yielding Σ1, Σ2, the isosurface area A and
∫

A K d A are performed
by summation over all area elements. Finally, to take into account the entire cis

monolayer corresponding to one stalk, the results are multiplied by 2.

This algorithm is implemented in the MATLAB script isocurv.m (appendix A.4). The
only approximation is the use of non-infinitesimal area elements.



124 Analysis of the 3d electron density of stalks

6.2.4 Results

Fig. 6.5 shows typical results of the electron density isosurface analysis. Electron den-
sity isosurfaces (top) and corresponding distributions of c1,c2, H and K (bottom) have
been computed for ρiso ∈ [−0.2,+0.8] with a stepsize of 0.02.18 The following general
observations are common to all datasets:

At most positions, the two principal curvatures c1,c2 are different in sign and adopt
large absolute values in a narrow region close to the stalk neck at z = 0. The latter
applies also to the mean and Gaussian curvatures H and K . In a narrow region very
close to z = 0, a small ring-like portion of the isosurface is missing due to discretization
of the x y plane.
Fig. 6.6 shows the corresponding integralsΣ1,Σ2, A and

∫

K d A as a function of ρiso. For
ρiso ≤ 0.5, the numerical results for

∫

A K d A are close to the theoretical value −4π.19 We
use this as a control that the algorithm works correctly and attribute deviations from
−4π to the missing area elements close to z = 0 where K assumes its most extreme
values (cf. Fig. 6.5, top).
In this range of ρiso, all electron density isosurfaces possess a stalk-like topology. Σ1

varies nonmonotonously and displays a minimum between 0.1 and 0.4 in ρiso, while
Σ2 increases monotonously in this interval. The monolayer area A decreases mono-
tonously with ρiso, since the isosurface moves from the hydrophobic stalk interior to-
wards the strongly curved lipid headgroup region with increasing ρiso.
For the different levels of hydration in each dataset indicated by different line colors
in Fig. 6.6, the monolayer area A increases systematically with RH , compatible with
the increasing lattice parameters. However, considering all datasets, no systematic
changes in Σ1 and Σ2 with hydration could be inferred. At given ρiso, these vary rather
randomly with RH , indicating that the experimental uncertainties preclude to study
hydration effects. Therefore, in the subsequent figures, the mean and standard devia-
tion of Σ1 and Σ2 obtained from the different hydration levels in each dataset are used
to indicate the typical experimental errors.

18 One exception had to be made: In case of DOPC/Chol 70:30, vales ρiso < 0 did not yield continuous iso-
surfaces describing the curved cis monolayer of a stalk. In this case, ρiso = 0 was used as a minimum.

19 In the stalk model including lipid tilt, KOZLOVSKY et al. obtain a slightly larger value of −11.8 since their
neutral surface is nonsmooth and includes a discontinuity at z = 0 [55, 88].
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Figure 6.5: (top) Electron density isosurface ∆ρ = 0.3 and (bottom) corresponding spa-
tial distribution of curvatures c1,c2, H and K in the lower half of the isosurface
viewed from the top. Extremal values of H and K are concentrated in a narrow
region around the stalk neck close to z = 0. All images reflect the three-fold ro-
tational symmetry of the rhombohedral phase about the z axis (DOPC/DOPE 1:1,
RH = 70%).
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Figure 6.6: Typical results of electron density isosurface analysis (DOPC/DOPE 1:1,
RH = 68−74%). The monolayer area A at given ρiso increases with the lattice pa-
rameter d or degree of hydration. A value of

∫

A K d A = −4π is expected due to
the Gauss-Bonnet theorem (cf. appendix A.3). Up to ρiso ≃ 0.5, this value is ap-
proximately obtained in all datasets. The two quantities Σ1,Σ2 describe the mean
curvature properties of the surface. Σ1 typically displays minima at ρiso = 0.3±0.2,
while Σ2 increases monotonously in the interval where

∫

A K d A ≈−4π.
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Pure DOPC at different synchrotrons

For a start, it is desirable to check if the datasets including GIXD data recorded at differ-
ent synchrotron beamlines yield comparable results. To this end, we compare the two
DOPC datasets including data recorded at the Materials Science and ID01 beamlines,
respectively. However, note that the reflectivity data to determine {F00ℓ} and powder
data for relative normalization are the same. Contour plots of constant electron den-
sity levels ∆ρ = 0.1, 0.3, 0.5 in the xz and y z plane are shown in Fig. 6.7 (top). These
indicate that the structure of stalks in the R phase of DOPC constructed from different
GIXD datasets recorded at two different synchrotrons is very similar. Corresponding
results of the electron density isosurface analysis are plotted Fig. in 6.7 (bottom). The
results of both datasets agree within experimental uncertainty.
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Figure 6.7: Comparison of two DOPC datasets recorded at different synchrotrons: (top)
Lines of constant ∆ρ = 0.1, 0.3, 0.5 in the xz and y z planes are in good agreement.
For both datasets, isolines are shown for all hydration levels. (bottom) Also the
isosurface analysis yields very similar results.
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Effects of chain length and structure

In addition to DOPC (di18:1PC), data on the the structurally similar lipids di14:1PC and
di16:1PC as well as DPhPC have been recorded and analyzed. Results are shown in Fig.
6.8. The minimum of Σ1 increases with chain length and moves towards higher ρiso.
The structure of stalks in DPhPC is different from the other lipids: The trans mono-
layers form more pronounced “dimples”, while the strongly curved cis monolayer sur-
rounds a slightly larger aqueous region. Since its branched and bulky hydrocarbon
chains are the characteristic feature of DPhPC, it is likely that these cause differences
in stalk structure.
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Figure 6.8: Comparison of lipids with different chain length and structure: (top) Lines
of constant ∆ρ = 0.1, 0.3, 0.5 in the xz and y z planes. Especially in the xz plane, the
more pronounced dimples in the trans monolayers of DPhPC are visible. (bottom)
Values of Σ1 increase with chain length. The minimum of Σ1 is less pronounced in
case of DPhPC.
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Effects of DOPE

The dataset of the equimolar mixture of DOPC and DOPE is the one with the highest
molar ratio of a fusogenic additive used in this thesis. Electron density isocontours of
stalks in pure DOPC and DOPC/DOPE 1:1 in the x y and xz plane are superimposed
in Fig. 6.9(top). These almost coincide, no systematic differences can be observed by
the naked eye. This indicates that addition of DOPE, despite its smaller headgroup and
therefore different molecular shape, hardly affects the equilibrium structure of stalks.
Also the isosurface results are very similar.
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Figure 6.9: Comparison of DOPC and an equimolar mixture of DOPC and DOPE: (top)
Lines of constant ∆ρ = 0.1, 0.3, 0.5 in the xz and y z planes are in very good agree-
ment. For both datasets, isolines are shown for all hydration levels. (bottom) Re-
sults of the isosurface analysis of both datasets are very similar. Although DOPE
differs considerably in spontaneous curvature c0 and hydration properties from
DOPC, addition of an equimolar amount DOPE to DOPC has only a very subtle
effect on stalk structure.
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Effects of cholesterol

To study the effect of cholesterol on stalk structure, data on DOPC/Chol samples with
molar ratios of 90:10, 80:20 and 70:30 have been recorded during the ID01 beamtime.
During the analysis, it turned out that data on the 80:20 mixture were not suitable for
further analysis, since the angle of incidence αi was too high and the out-of-plane re-
flections with ℓ = 1 were attenuated by the substrate. The results of electron density
isosurface analysis of the remaining samples are plotted in Fig. 6.10. The minimum
of Σ1 increases with Chol content, whereas no clear trend is observable for Σ2. At the
same time, upon addition of 30mol% cholesterol, the stalk waist region becomes more
narrow and the isocontours adopt a more pointed shape. This is also reflected in the
increase of dt/ds in Fig. 6.2.
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Figure 6.10: Comparison of DOPC and DOPC/Chol mixtures: Lines of constant ∆ρ =
0.1, 0.3, 0.5 in the xz and y z planes indicate that the stalk waist becomes more nar-
row upon addition of cholesterol and the cis monolayer adopts a more pointed
shape than in pure lipids. As discussed in the main text, this could be due to partial
lipid demixing.



6.3 Discussion and comparison to continuum theory 131

6.3 Discussion and comparison to continuum theory

6.3.1 General remarks

To the very best of our knowledge, the analysis of stalk structure in different lipids
based on experimental data has not been attempted before. By the naked eye, elec-
tron density maps of stalks obtained in the previous chapter are very similar. As a first
step, we have defined structural parameters like the the diameter of the stalk waist to
carry out a simple characterization of the typical length scales. Changes in the dimen-
sionless ratios of these values are very moderate, even upon addition of 50mol% DOPE
or 30mol% cholesterol. This indicates that, similar to the observation of an approxi-
mately constant critical bilayer separation for stalk phase formation in chapter 4, also
the structure of stalks in the R phase is largely universal with only weak variations upon
changes in lipid composition. Obviously, these findings must be considered in view of
the rather low resolution resulting from the disorder inherent to lipid mesophases.
For further analysis, we have introduced a method to analyze stalk structures in terms
of the curvature of electron density isosurfaces. The results obtained for DOPC at two
different synchrotrons agree within errorbars. In addition, upon variation of the chain
length or cholesterol content, we observe systematic variations. We consider this as
an indication that the results correctly reflect small, but systematic changes in stalk
structure.
Our results allow, for the first time, a comparison of experimentally obtained stalk
structures to results and predictions of continuum theory. In principle, one can use the
Helfrich Hamiltonian to estimate the bending energy of the strongly curved cis mono-
layer of stalks in the rhombohedral phase using the obtained values Σ1,Σ2. We do this
below, however, possible limitations of this approach should be addressed first.
As an alternative to electron density isosurfaces, one could also extract the surface cor-
responding to the electron density maximum of the lipid headgroup region and shift
this to the expected neutral surface position at the interface of lipid headgroup and
hydrocarbon region using parallel surface theory [191, 196, 197].

6.3.2 Possible limitations of continuum theory

Eq. (6.6) has been derived to describe e.g. vesicle shapes [198], where typical radii of
curvature are large compared to molecular dimensions. In case of strongly bent mono-
layers expected in membrane fusion intermediates and visible in our electron density
maps, radii of curvature are on the order of lipid monolayer thickness or even below.
With a typical area per lipid headgroup of 60 to 70Å2 (cf. Tab. 4.3), the obtained values
of the isosurface area A indicate that the described cis monolayer of a stalk contains
about 100 to 150 lipids. In addition, the strongly curved waist of the stalk, which gives
the major contributions to Σ1 and Σ2, contains only a minor fraction of these. For
example, if the area per lipid headgroup AL is modeled as a circle, the circumference
πds of the waist of the stalk corresponds to only approximately 10 lipid headgroups.
For these reasons, it is debated to what extent the expansion of bending energy up to
quadratic order in c1,c2 in the Helfrich Hamiltonian is still sufficient and the treatment
of a lipid monolayer as an elastic continuum characterized by few global elastic con-
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stants is justified in the case of membrane fusion intermediates [24, 25, 42, 53, 58, 88,
90].
Nevertheless, as noted in [25], continuum theory has been able e.g. to provide a quan-
titative explanation for the experimentally observed relative stability of lamellar and
inverted hexagonal phases. Therefore, while aware of its possible limitations and thus
rather semiquantitative character, we compare results of our analysis to predictions of
continuum theory based on Eq. (6.6). Importantly, our method using electron density
isosurfaces can be extended to any other functional of the principal curvatures c1,c2.

lipid κ [kBT ] c0 [Å−1] κG [kBT ]

DOPC 9 −0.0115 −7.6±1.5
DOPE 9 −0.0365 −8.3±1.0
DOPC/Chol 1:1 11 −0.0250 −8.4±1.1

Table 6.1: Literature values for curvature elastic constants relevant to our data. Taken
from [88].

6.3.3 Comparison to continuum models

First, we consider general features of stalk shape. MARKIN et al. determined the struc-
ture of a stress-free stalk based on the Helfrich Hamiltonian (Eq. 6.6) by requiring that
2H − c0 = 0 in any point of the neutral surface [24]. KOZLOVSKY et al. included lipid tilt
as an additional degree of freedom. In their stalk, this introduces a kink in the neutral
surface at z = 0 [25, 55]. Our results derived from experimental data are located in be-
tween these two cases. This is not surprising: Obviously, isosurfaces of a Fourier series
representation of ∆ρ(~r ) with a limited number of terms can neither possess a constant
mean curvature, nor any discontinuities. However, we observe that the modulus of
the mean curvature |H | adopts large values in a concentrated region around the stalk
waist. Therefore, our data rather support the Kozlovsky/Kozlov structure. In addition,
as mentioned in the previous chapter, we do not observe pronounced hydrophobic
voids. Absence of voids is another feature of the Kozlovsky/Kozlov stalk and also in
agreement with a molecular dynamics simulation [54]. It should be noted that studies
by continuum theory consider single, isolated stalks (e.g. [24, 25]) or neglect possible
effects of packing stalks into a dense array [55].
In their paper on stalk phase formation, KOZLOVSKY et al. investigated the interplay of
curvature and hydration energies. They report that the stalk shape obtained by min-
imization of the sum of these two energies was practically independent of the elastic
moduli c0 andκG (κ is similar for DOPC and DOPE, cf. Tab. 6.1) [55]. This is in very good
agreement with the striking similarity of stalks in DOPC and DOPC/DOPE observed by
us (cf. Fig. 6.9). However, as indicated in section 4.5.3, it could be that the parameters
P0 and λ used in [55] lead to an overestimation of the hydration force.
To examine the bending energies predicted by the Helfrich Hamiltonian for our elec-
tron density isosurfaces, numerical values of the curvature elastic constants κ, c0 and
κG are required. Values used in recent continuum models which are relevant for our
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Figure 6.11: (a) Free energy term due to mean curvature ∆FH = κ(Σ1 + c0Σ2) and
its components for DOPC (κ=9kBT,c0 =−0.0115Å−1) and an equimolar DOPC/-
DOPE mixture (κ= 9kBT,c0 =−0.024Å−1) as a function of ρiso. (b) ∆FH for one
isosurface as a function of c0 and κ.

datasets are summarized in Tab. 6.1. Following [55], we estimate values for lipid mix-
tures by the molecular fraction-weighted mean of the parameters for the individual
components. The results for the mean curvature contribution ∆FH of DOPC and
DOPC/DOPE 1:1 are plotted in Fig. 6.11. Since Σ1 can only be positive and Σ2 is also
positive in all of our datasets, both terms in ∆FH are different in sign for negative
spontaneous curvature c0. Using our values of Σ1 and Σ2, we obtain a minimum of
∆FH ≈ 15kBT for the DOPC/DOPE mixture and about ∆FH ≈ 50kBT for pure DOPC.
Importantly, this is only the energy due to deviations from the spontanteous curva-
ture. No additional contributions due to e.g. effects of lipid tilt or stretched chains are
included.
The energy term ∆FK =−4πκG due to Gaussian curvature has been neglected in many
older papers. More recently, it has been realized that it may dominate the bending
rigidity, which has stimulated new effords to determine its value e.g. by experiments
on bicontinuous cubic phases. It has been indicated that its modulus κG is negative
and related to κ by [55, 88, 89, 199]

−1 ≤ κG

κ
≤−1

2
. (6.21)

Tab. 6.1 provides recent values on some lipids used by us. With these, ∆FK ≈ 100kBT

dominates the mean curvature term ∆FH in case of DOPC and DOPC/DOPE 1:1. This
agrees with results from continuum theory [55, 88] which point out a possibly crucial
role of Gaussian curvature in stalk formation. Importantly, since the stalk phases we in-
vestigate are thermodynamically stable, there must be additional contributions to the
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free energy which compensate the curvature energy and make the stalk phase stable
with respect to the lamellar phase. We note that the work of hydration Whyd corre-
sponding to the cross section of the stalk waist estimated on the basis of our results of
chapter 4 (cf. Fig. 4.12) is on the same order of magnitude as the total curvature energy.
This makes the idea that stalk phase formation is driven by the interplay of hydration
effects and Gaussian curvature energy put forward in [55] seem feasible.
In case of the two lipids with shorter chains, 14:1PC and 16:1PC, the minimum of Σ1

is lower than in case of DOPC. In addition, due to the smaller monolayer thickness, κ
is expected to be smaller as well. With an approximately constant spontaneous curva-
ture, this predicts a decrease of ∆FH for shorter chains. However, in the phase diagram
(Fig. 3.9) we observe the reverse sequence, i.e. the stalk phase is formed most readily
in DOPC. This example may serve to illustrate that mean and spontaneous curvature
alone do not rationalize phospholipid phase behaviour.
Importantly, the available curvature elastic coefficients have been obtained in excess
water conditions. It is not clear how and to what extent they vary upon dehydration. c0

is expected to become more negative due to an decrease of the effective headgroup size
by removal of water, κG is expected to become less negative. Both effects would lower
∆Fbend [55, 88]. In contrary, due to the observed thickening of lipid bilayers upon dehy-
dration (cf. section 4.5.2), κ is expected to increase. Assuming a quadratic dependence
of κ on the monolayer thickness [86] and a maximum increase of dhh by about 10% (cf.

Fig. 4.10) predicts a modest increase by a factor of ∼ 1.2.
While the observed structures of stalks in DOPC and the equimolar DOPC/DOPE mix-
ture are very similar, changes are observed upon addition of cholesterol. On length
scales relevant to stalk formation, the possibility of lipid demixing has been demon-
strated for the distorted hexagonal phase [119]. Since we also observe this phase in
DOPC/Chol mixtures (cf. section 3.3.1), the possibility of demixing should also be con-
sidered in case of the stalk phase in these lipid mixtures.

6.4 Conclusions

To the very best of our knowledge, the work presented in this chapter is the first at-
tempt toward a structural characterization of stalks in different lipid systems based on
experimental data. While some moderate changes are visible, our results indicate that
the general features of stalks in the rhombohedral phospholipid phase are very simi-
lar for different lipid compositions. To analyze the curvature of the strongly bent lipid
monolayer in a stalk, we have introduced an approach based on differential geometry
of implicit surfaces. The obtained results indicate systematic changes in monolayer
curvature with acyl chain length or cholesterol content. Being aware of the possible
shortcomings of continuum theory on the length scales of membrane fusion interme-
diates, we note that our results are compatible with some of its recent predictions.
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The aim of the present thesis was to use the stalk phase in phospholipids as a model
system and study the initial steps in lipid bilayer fusion. Aligned lipid multibilayer
stacks were used as samples throughout all experiments. In vivo, stalk formation and
subsequent membrane fusion are most likely initiated by close bilayer contact medi-
ated by proteins. To mimic this situation, the well-established osmotic stress method
by relative humidity control was applied to vary the degree of hydration and thus the
inter-bilayer distance in a controlled fashion. X-ray diffraction was then used to study
lyotropic lipid polymorphism and identify conditions under which the stalk phase is
stable (chapter 3), to quantify the repulsive forces opposing bilayer approach prior to
stalk formation (chapter 4) and to obtain the structure of stalks in different lipids and
lipid mixtures (chapter 5). Finally, concepts for the further analysis of stalk structures
were presented (chapter 6).

The lyotropic phase behaviour of different lipids and several lipid mixtures was studied
using a dedicated in-house diffractometer. The stalk phase was observed in several
monounsaturated lipids structurally similar to dioleoylphosphatidylcholine (DOPC),
where its existence was known before. Using DOPC as the host lipid, the effects of
addition of cholesterol, dioleoylphosphatidylethanolamine (DOPE) and Phosphatidyl-
inositol(4,5)-bisphosphate (PIP2) were studied. These lipids promote stalk formation,
i.e. lower the osmotic pressure required to induce the stalk phase or, equivalently, shift
the phase boundary towards higher relative humidity. In addition, at lower hydration
and higher molar ratio of cholesterol, DOPE or PIP2, further nonlamellar phases were
observed. In case of PIP2, this effect was particularly strong. At a PIP2 concentration
of only 4mol%, diffraction peaks characteristic for the inverted hexagonal phase ap-
peared upon dehydration. This could have important implications for the role of PIP2

in membrane fusion. The results of these experiments were summarized in several
partial phase diagrams.

The repulsive forces between adjacent bilayers prior to stalk phase formation were
studied for several pure phosphatidylcholines as well as DOPC/cholesterol and
DOPC/DOPE mixtures. The parameters of the exponentially decaying repulsive pres-
sure between bilayers in close contact, i.e. at low hydration, were determined by the
osmotic stress method in conjunction with electron density profile analysis. To this
end, the swelling method was implemented and successfully applied to solve the phase
problem and obtain bilayer electron density profiles. For the investigated samples, our
results indicate that stalk phase formation becomes feasible at an interbilayer distance
below 9.0±0.5Å, measured as the distance between the electron density maxima of ad-
jacent lipid bilayers. Addition of cholesterol or DOPE does not change this value, but
rather promotes dehydration and thereby shifts the phase boundaries. The obtained
hydration force parameters allow to calculate the work required to bring lipid bilayers
into close contact, i.e. determine the “hydration barrier” opposing membrane fusion.

The foremost goal was to characterize stalks in different lipid systems. Due to the un-
usual 2d powder character of aligned samples, measurements in different scattering
geometries were required. Grazing-incidence x-ray diffraction data on the stalk phases
of a variety of lipids were recorded during two synchrotron beam times. Combined
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with additional reflectivity scans as well as powder diffraction data, the form factor
amplitudes were obtained. Subsequently, by application of the swelling method for
the rhombohedral phase and additional criteria, the phase problem was solved and
electron density maps could be reconstructed for seven different lipid systems, includ-
ing the first data on stalks in lipid mixtures. The observed number of reflections are
clearly higher than in previous studies and thus yield better resolved electron density
maps.
Finally, the obtained structures were investigated more closely. By direct visual inspec-
tion, stalks in the investigated lipid systems are very similar. This is confirmed by the
dimensionless ratios of structural parameters defined in analogy to the lamellar phase.
To assess the curvatures of lipid monolayers, a method based on electron density iso-
surfaces is proposed. Only the experimentally determined form factors and lattice pa-
rameters are required as an input. To this end, concepts from differential geometry
of implicit surfaces were applied. For monounsaturated phosphatidylcholines as well
as for DOPC/cholesterol mixtures, systematic changes are observed. According to our
results, addition of an equimolar amount of DOPE to DOPC has only a very subtle ef-
fect on stalk structure. In contrast, upon addition of 30mol% cholesterol, changes can
be observed in the strongly curved stalk waist region. Our results are discussed in the
framework of the continuum theory of membrane bending. For the first time, they en-
able an evaluation of the bending and hydration energies involved in stalk formation
on the basis of experimental data.



A Appendix

A.1 Triplet relationship

Consider a centrosymmetric crystal, i.e. Fhkℓ = νhkℓ|Fhkℓ| where νhkℓ =±1. For three
reflections which are all strong and whose scattering vectors sum to zero,

3∑

i=1

~qhi kiℓi
= 0, (A.1)

it is likely that

3∏

i=1

νhi kiℓi
=+1. (A.2)

This is a special case of the triplet relationship known from direct methods of crys-
tallography [141, 188]. To understand its origin, one has to ask under which circum-
stances a particular reflection is strong, i.e. the form factor amplitude |Fhkℓ| is large.
The electron density is always positive, ρ(~r ) ≥ 0. From the definition of the form factor
in case of centrosymmetry,

Fhkℓ =
∫

V
ρ(~r )cos(~qhkℓ ·~r )dV , (A.3)

were V denotes the unit cell volume, it follows that Fhkℓ tends to adopt large positive
values if the electron density is concentrated at positions~r where the cosine is close to
its maximum value, i.e. ~qhkℓ ·~r = 2π ·n, n ∈Z. This is the definition of a family of lattice
planes (hkℓ). In contrast, if ρ(~r ) is concentrated in regions between the lattice planes
where the cosine is close to its minimum, the form factor will adopt large negative
values.
In Fig. A.1, this principle is illustrated for two arbitrary reflections 200 and 010. For
all four possible phase combinations {ν200 = ±1,ν010 = ±1}, an electron density dis-
tribution leading to large |F200| and |F010| exists. Now assume that the reflection 2̄1̄0
which completes the triplet is strong as well. The corresponding family of planes (2̄1̄0)
is shown by solid blue lines in the right column. For each of the four electron density
distributions leading to strong 200 and 010 reflections, the electron density is concen-
trated either close to or in between the planes (2̄1̄0), thus making either ν2̄1̄0 = +1 or
ν2̄1̄0 = −1 more likely. For each row, one recognizes that Eq. (A.2) is always fulfilled.
Importantly, for realistic electron density distributions ρ(~r ), triplet relationships have
probabilistic character.
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Figure A.1: Illustration of a triplet relationship. Blue regions indicate electron density
maxima. The unit cell is centrosymmetric and the three form factor amplitudes
|F200|, |F010|, |F2̄1̄0| are all assumed to be strong. Lattice planes (200) are shown
in red, (010) in green and (2̄1̄0) in blue. In the right column, electron density dis-
tributions leading to the four possible sign combinations {ν200 = ±1,ν010 = ±1}
are indicated. If ν200 and ν010 are fixed and provided that all three reflections are
strong, then ν2̄1̄0 =±1 is likely to have a value such that Eq. A.2 is fulfilled.
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A.2 Crystallographic data and swelling diagrams

Below, the swelling diagrams used for phase determination are provided for all stalk
phase datasets. The data correspond to the most likely phase factor combinations
{νhkℓ = ±1 |h,k = const.} of each peak series as determined by the swelling method.
After a swelling diagram, a table with the corresponding form factors (including phase
information) and lattice parameters used for electron density reconstruction by Eq.
(5.35) is given. The notation {hkℓ} for a family of equivalent reflections summarized in
Tab. A.1 is used. Lattice parameters were obtained from the GIXD data. Form factors in
each column are normalized such that max

[

∆ρ
]

= 1. Reflections which were not used
for further analysis in chapter 6 are indicated by an asterisk ∗. When comparing the
swelling diagrams and formfactor tables, the following points should be noted:

• Deviations between swelling plots and tables occur for some lipids in case of the
{02ℓ} reflections, since the “best” phases according to the swelling method did
not always yield the most reasonable ∆ρ(~r ) (cf. Fig. 5.15).

• Datapoints corresponding to the strong |F003| reflection with νhkℓ = −1 are not
shown in order to increase the visibility of the higher orders {00ℓ}.

• The number of hydration levels used in reflectivity and GIXD data was different
in most cases. Therefore, the number of datapoints in the swelling diagrams of
in-plane and out-of-plane reflections may be different.

• SLS datasets for DOPC, DPhPC and DOPC/DOPE 1:1 are each composed of data
from two samples. Therefore, some RH values may occur twice and, in case of
DOPC, even in non-monotonous order. Here, the limitations in RH measure-
ments become apparent once again.

• For the two DOPC datasets (SLS/ESRF) from two synchrotron beamlines, the
same reflectivity (and powder) data were used. Therefore, the swelling plots for
the {00ℓ} series are the same in both figures.

family reflections q||/
4πp
3a

{00ℓ} (00ℓ) 0
{10ℓ} (10ℓ),(01̄ℓ),(1̄1ℓ) 1
{11ℓ} (11ℓ),(1̄1̄ℓ),(21̄ℓ),(2̄1ℓ),(12̄ℓ),(1̄2ℓ)

p
3

{02ℓ} (02ℓ),(2̄0ℓ),(22̄ℓ) 2
{21ℓ} (21ℓ),(31̄ℓ),(13̄ℓ),(1̄2̄ℓ),(2̄3ℓ),(3̄2ℓ)

p
7

{30ℓ} (30ℓ),(3̄0ℓ),(03ℓ),(03̄ℓ),(33̄ℓ),(3̄3ℓ) 3

Table A.1: Families of reflections {hkℓ} and their members (hkℓ) (R phase).
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DOPC (SLS), RH = 18−34%
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DOPC (SLS), RH = 18−34%

RH 18 21 24 28 27 30 32 30 34
d 44.59 44.89 45.07 45.40 45.41 45.49 45.66 45.79 45.95
σ(d) 0.07 0.22 0.07 0.15 0.20 0.16 0.16 0.30 0.13
a 63.47 64.53 65.49 66.49 66.66 66.90 67.74 68.21 68.89
σ(a) 0.19 0.14 0.01 0.01 0.14 0.08 0.22 0.08 0.08

{0,0,3} -0.6295 -0.6468 -0.6717 -0.6790 -0.6759 -0.6803 -0.6760 -0.6785 -0.6930
{0,0,6} 0.0431 0.0423 0.0428 0.0410 0.0408 0.0405 0.0391 0.0383 0.0381
{0,0,9} 0.0451 0.0476 0.0502 0.0522 0.0520 0.0527 0.0531 0.0539 0.0557
{0,0,12} -0.0474 -0.0520 -0.0560 -0.0603 -0.0601 -0.0615 -0.0630 -0.0647 -0.0679
{0,0,15} 0.0136 0.0146 0.0156 0.0164 0.0164 0.0167 0.0169 0.0173 0.0180
{0,0,18} -0.0080 -0.0086 -0.0092 -0.0098 -0.0098 -0.0099 -0.0101 -0.0103 -0.0108
{0,0,21} 0.0060 0.0063 0.0067 0.0070 0.0070 0.0071 0.0071 0.0072 0.0075
{0,0,24}∗ 0.0029 0.0031 0.0033 0.0035 0.0035 0.0035 0.0036 0.0037 0.0038
{1,0, 2̄0}∗ 0.0114 0.0121 0.0119 0.0100 0.0115 0.0111 0.0113 0.0125 0.0106
{1,0, 1̄7} -0.0141 -0.0137 -0.0146 -0.0132 -0.0152 -0.0144 -0.0151 -0.0153 -0.0145
{1,0, 1̄4} 0.0144 0.0131 0.0142 0.0132 0.0134 0.0137 0.0139 0.0141 0.0145
{1,0, 1̄1} -0.0593 -0.0567 -0.0523 -0.0522 -0.0543 -0.0541 -0.0578 -0.0577 -0.0588
{1,0, 8̄} 0.0189 0.0183 0.0188 0.0231 0.0189 0.0237 0.0235 0.0186 0.0225
{1,0, 5̄} 0.0204 0.0174 0.0165 0.0139 0.0134 0.0139 0.0128 0.0135 0.0126
{1,0, 2̄} -0.1619 -0.1549 -0.1331 -0.1366 -0.1393 -0.1347 -0.1445 -0.1386 -0.1301
{1,0,1} 0.1319 0.1275 0.1275 0.1197 0.1190 0.1174 0.1120 0.1088 0.1067
{1,0,7} -0.0042 -0.0040 -0.0051 -0.0071 -0.0047 -0.0078 -0.0077 -0.0068 -0.0086
{1,0,10}∗ 0.0075 0.0069 0.0079 0.0070 0.0066 0.0070 0.0069 0.0076 0.0072
{1,1,0} -0.0300 -0.0296 -0.0300 -0.0289 -0.0288 -0.0286 -0.0277 -0.0273 -0.0272
{1,1,3} 0.0269 0.0260 0.0240 0.0239 0.0240 0.0234 0.0242 0.0232 0.0227
{1,1,6} -0.0099 -0.0089 -0.0083 -0.0079 -0.0077 -0.0080 -0.0079 -0.0077 -0.0071
{1,1,9} 0.0051 0.0043 0.0034 0.0029 0.0028 0.0034 0.0028 0.0023 0.0021
{1,1,12} 0.0040 0.0044 0.0046 0.0041 0.0054 0.0044 0.0047 0.0057 0.0047
{0,2, 2̄} -0.0124 -0.0124 -0.0117 -0.0118 -0.0126 -0.0113 -0.0113 -0.0141 -0.0111
{0,2,1} 0.0156 0.0150 0.0155 0.0149 0.0156 0.0151 0.0166 0.0132 0.0154
{0,2,4} -0.0093 -0.0092 -0.0080 -0.0079 -0.0075 -0.0084 -0.0084 -0.0083 -0.0080
{0,2,7} 0.0098 0.0094 0.0071 0.0074 0.0067 0.0066 0.0067 0.0069 0.0062
{0,2,10} -0.0125 -0.0113 -0.0093 -0.0093 -0.0084 -0.0091 -0.0078 -0.0072 -0.0066
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di16:1PC (SLS), RH = 18−31%
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di16:1PC (SLS), RH = 18−31%

RH 18 22 25 28 31
d 41.93 42.14 42.38 42.56 42.88
σ(d) 0.07 0.10 0.06 0.10 0.05
a 61.85 62.93 63.86 65.37 67.10
σ(a) 0.20 0.01 0.16 0.17 0.07

{0,0,3} -0.6302 -0.6791 -0.6943 -0.6662 -0.7171
{0,0,6} 0.0172 0.0149 0.0108 0.0073 0.0021
{0,0,9} 0.0665 0.0734 0.0771 0.0754 0.0839
{0,0,12} -0.0573 -0.0650 -0.0703 -0.0702 -0.0806
{0,0,15} 0.0149 0.0163 0.0170 0.0165 0.0182
{0,0,18} -0.0130 -0.0145 -0.0154 -0.0152 -0.0171
{0,0,21} 0.0084 0.0092 0.0095 0.0093 0.0102
{0,0,24}∗ 0.0039 0.0043 0.0046 0.0045 0.0050
{1,0, 2̄0}∗ 0.0152 0.0125 0.0094 0.0135 0.0096
{1,0, 1̄7} -0.0217 -0.0185 -0.0167 -0.0228 -0.0168
{1,0, 1̄4} 0.0120 0.0110 0.0102 0.0118 0.0108
{1,0, 1̄1} -0.0639 -0.0587 -0.0591 -0.0626 -0.0598
{1,0, 8̄} 0.0326 0.0309 0.0274 0.0322 0.0313
{1,0, 5̄} 0.0097 0.0056 0.0047 0.0048 0.0025
{1,0, 2̄} -0.1696 -0.1354 -0.1465 -0.1571 -0.1352
{1,0,1} 0.1193 0.1220 0.1169 0.1068 0.1045
{1,0,4}∗ 0.0073 0.0055 0.0077 0.0097 0.0126
{1,0,7} -0.0090 -0.0057 -0.0076 -0.0076 -0.0071
{1,0,13}∗ -0.0042 -0.0030 -0.0032 -0.0050 -0.0045
{1,0,16}∗ -0.0043 -0.0019 -0.0014 -0.0029 -0.0022
{1,1,0} -0.0278 -0.0286 -0.0277 -0.0255 -0.0253
{1,1,3} 0.0335 0.0302 0.0312 0.0316 0.0293
{1,1,6} -0.0113 -0.0079 -0.0076 -0.0079 -0.0050
{1,1,9} 0.0038 0.0016 0.0011 0.0000 0.0000
{1,1,12} 0.0062 0.0060 0.0052 0.0073 0.0051
{0,2, 5̄}∗ 0.0057 0.0041 0.0040 0.0036 0.0035
{0,2, 2̄} -0.0168 -0.0162 -0.0166 -0.0146 -0.0194
{0,2,1} 0.0188 0.0180 0.0198 0.0216 0.0176
{0,2,4} -0.0130 -0.0094 -0.0103 -0.0117 -0.0065
{0,2,7} 0.0103 0.0089 0.0070 0.0076 0.0041
{0,2,10} -0.0126 -0.0094 -0.0074 -0.0074 -0.0041
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di14:1PC (SLS), RH = 13.6−17%
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di14:1PC (SLS), RH = 13.6−17%

RH 13.6 14 15.6 17
d 39.68 39.72 39.77 39.85
σ(d) 0.07 0.06 0.11 0.17
a 60.87 61.14 61.96 62.93
σ(a) 0.01 0.29 0.24 0.01

{0,0,3} -0.7611 -0.7523 -0.7644 -0.7466
{0,0,6} -0.0301 -0.0304 -0.0317 -0.0321
{0,0,9} 0.0838 0.0834 0.0854 0.0844
{0,0,12} -0.0729 -0.0729 -0.0751 -0.0748
{0,0,15} 0.0157 0.0156 0.0158 0.0155
{0,0,18} -0.0226 -0.0225 -0.0231 -0.0229
{0,0,21} 0.0125 0.0124 0.0127 0.0125
{0,0,24}∗ -0.0065 -0.0064 -0.0066 -0.0065
{1,0, 1̄7} -0.0197 -0.0210 -0.0204 -0.0232
{1,0, 1̄4} 0.0062 0.0065 0.0070 0.0066
{1,0, 1̄1} -0.0422 -0.0465 -0.0420 -0.0511
{1,0, 8̄} 0.0251 0.0258 0.0243 0.0298
{1,0, 5̄} -0.0036 -0.0041 -0.0046 -0.0045
{1,0, 2̄} -0.1119 -0.1207 -0.1173 -0.1322
{1,0,1} 0.1045 0.1011 0.1001 0.0941
{1,0,4} 0.0084 0.0083 0.0106 0.0118
{1,0,7} -0.0060 -0.0065 -0.0071 -0.0079
{1,1,0} -0.0254 -0.0249 -0.0250 -0.0240
{1,1,3} 0.0213 0.0220 0.0215 0.0230
{1,1,6} -0.0044 -0.0045 -0.0040 -0.0040
{1,1,12} 0.0045 0.0049 0.0047 0.0051
{0,2, 2̄} -0.0143 -0.0141 -0.0135 -0.0167
{0,2,1} 0.0109 0.0116 0.0116 0.0092
{0,2,4} -0.0075 -0.0082 -0.0079 -0.0087
{0,2,7} 0.0050 0.0055 0.0048 0.0052
{0,2,10} -0.0044 -0.0048 -0.0053 -0.0053
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DPhPC (SLS), RH = 62−78%
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DPhPC (SLS), RH = 62−78%

RH 62 64 66 68 70 70 72 74 76 78
d 43.15 43.27 43.54 43.69 43.87 43.92 44.13 44.38 44.63 44.94
σ(d) 0.10 0.06 0.16 0.09 0.09 0.16 0.07 0.16 0.01 0.11
a 60.73 61.34 61.54 62.21 62.93 63.09 63.92 64.86 65.92 67.71
σ(a) 0.23 0.01 0.29 0.13 0.01 0.07 0.07 0.08 0.20 0.15

{0,0,3} -0.6130 -0.6133 -0.6598 -0.6705 -0.6615 -0.6499 -0.6696 -0.6729 -0.6922 -0.6818
{0,0,6} -0.0457 -0.0471 -0.0545 -0.0575 -0.0591 -0.0588 -0.0635 -0.0673 -0.0728 -0.0760
{0,0,9} 0.0673 0.0680 0.0747 0.0768 0.0768 0.0758 0.0793 0.0812 0.0850 0.0856
{0,0,12} -0.0361 -0.0366 -0.0408 -0.0423 -0.0426 -0.0421 -0.0444 -0.0459 -0.0485 -0.0494
{0,0,15} 0.0109 0.0109 0.0116 0.0118 0.0116 0.0114 0.0117 0.0117 0.0119 0.0117
{0,0,18} -0.0062 -0.0062 -0.0068 -0.0070 -0.0070 -0.0069 -0.0072 -0.0073 -0.0076 -0.0076

{0,0,21}∗ -0.0023 -0.0023 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0026 -0.0027 -0.0026

{1,0, 2̄0}∗ 0.0046 0.0030 0.0013 0.0014 0.0038 -0.0272 -0.0288 -0.0298 -0.0316 -0.0322

{1,0, 1̄7} -0.0132 -0.0121 -0.0101 -0.0105 -0.0124 -0.0130 -0.0118 -0.0127 -0.0110 -0.0112

{1,0, 1̄4} 0.0130 0.0124 0.0105 0.0103 0.0120 0.0120 0.0113 0.0110 0.0091 0.0087

{1,0, 1̄1} -0.0519 -0.0524 -0.0479 -0.0486 -0.0548 -0.0583 -0.0587 -0.0565 -0.0557 -0.0620

{1,0, 8̄} 0.0441 0.0453 0.0423 0.0441 0.0470 0.0485 0.0469 0.0558 0.0565 0.0563

{1,0, 5̄} -0.0123 -0.0143 -0.0142 -0.0159 -0.0188 -0.0189 -0.0205 -0.0256 -0.0282 -0.0305

{1,0, 2̄} -0.1643 -0.1683 -0.1557 -0.1532 -0.1560 -0.1496 -0.1418 -0.1483 -0.1545 -0.1742
{1,0,1} 0.1391 0.1370 0.1419 0.1410 0.1356 0.1322 0.1320 0.1276 0.1259 0.1177
{1,0,4} 0.0125 0.0119 0.0132 0.0148 0.0171 0.0150 0.0162 0.0209 0.0232 0.0258
{1,0,7} -0.0067 -0.0065 -0.0071 -0.0072 -0.0079 -0.0091 -0.0090 -0.0097 -0.0096 -0.0108

{1,0,13}∗ -0.0021 -0.0012 -0.0016 -0.0012 -0.0023 -0.0026 -0.0025 -0.0029 -0.0015 -0.0030

{1,0,16}∗ 0.0039 0.0027 0.0024 0.0021 0.0032 0.0048 0.0040 0.0044 0.0024 0.0034
{1,1,0} -0.0232 -0.0236 -0.0263 -0.0273 -0.0275 -0.0272 -0.0288 -0.0298 -0.0316 -0.0322
{1,1,3} 0.0297 0.0305 0.0298 0.0299 0.0301 0.0285 0.0287 0.0292 0.0303 0.0323
{1,1,6} -0.0140 -0.0136 -0.0128 -0.0122 -0.0119 -0.0129 -0.0110 -0.0117 -0.0108 -0.0102
{1,1,9} 0.0085 0.0074 0.0064 0.0056 0.0052 0.0068 0.0053 0.0041 0.0034 0.0026
{1,1,12} 0.0031 0.0031 0.0028 0.0032 0.0046 0.0043 0.0044 0.0050 0.0048 0.0062

{0,2, 2̄} -0.0079 -0.0079 -0.0096 -0.0106 -0.0114 -0.0123 -0.0128 -0.0121 -0.0140 -0.0140
{0,2,1} 0.0081 0.0082 0.0086 0.0094 0.0119 -0.0099 -0.0116 -0.0130 -0.0127 -0.0159
{0,2,4} -0.0123 -0.0127 -0.0128 -0.0131 -0.0131 0.0156 0.0145 0.0134 0.0135 0.0129
{0,2,7} 0.0180 0.0183 0.0173 0.0166 0.0153 -0.0162 -0.0140 -0.0138 -0.0111 -0.0099
{0,2,10} -0.0177 -0.0183 -0.0168 -0.0160 -0.0148 -0.0048 -0.0040 -0.0038 -0.0018 -0.0018

{0,2,13}∗ 0.0043 0.0029 0.0017 0.0012 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000

{0,2,16}∗ -0.0067 -0.0053 -0.0036 -0.0032 -0.0048 0.0000 0.0000 0.0000 0.0000 0.0000

{2,1, 5̄}∗ -0.0044 -0.0042 -0.0034 -0.0034 -0.0036 − − − − −
{2,1, 2̄}∗ 0.0050 0.0053 0.0050 0.0049 0.0049 − − − − −
{2,1,1}∗ -0.0052 -0.0053 -0.0054 -0.0055 -0.0053 − − − − −
{2,1,4}∗ -0.0039 -0.0039 -0.0040 -0.0040 -0.0043 − − − − −
{3,0,3}∗ -0.0025 -0.0028 -0.0029 -0.0028 -0.0031 − − − − −
{3,0,6}∗ 0.0034 0.0032 0.0029 0.0029 0.0026 − − − − −
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DOPC/DOPE 1:1(SLS), RH = 68−74%
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DOPC/DOPE 1:1 (SLS), RH = 68−74%

RH 68 70 72 72 74
d 45.50 45.59 45.77 45.93 46.31
σ(d) 0.08 0.01 0.32 0.12 0.20
a 68.43 69.65 72.11 71.19 73.56
σ(a) 0.08 0.16 0.39 0.31 0.02

{0,0,3} -0.7114 -0.7135 -0.7239 -0.7259 -0.7339
{0,0,6} 0.0289 0.0285 0.0281 0.0274 0.0259
{0,0,9} 0.0620 0.0632 0.0661 0.0682 0.0732
{0,0,12} -0.0549 -0.0565 -0.0602 -0.0630 -0.0698
{0,0,15} 0.0131 0.0134 0.0140 0.0144 0.0155
{0,0,18} -0.0066 -0.0067 -0.0071 -0.0073 -0.0079
{0,0,21} 0.0036 0.0037 0.0038 0.0040 0.0043
{0,0,24}∗ -0.0016 -0.0017 -0.0018 -0.0019 -0.0022
{1,0, 1̄7} -0.0086 -0.0089 -0.0076 -0.0090 -0.0095
{1,0, 1̄4} 0.0109 0.0117 0.0104 0.0113 0.0117
{1,0, 1̄1} -0.0520 -0.0522 -0.0528 -0.0509 -0.0559
{1,0, 8̄} 0.0291 0.0284 0.0312 0.0286 0.0271
{1,0, 5̄} 0.0089 0.0077 0.0057 0.0064 0.0034
{1,0, 2̄} -0.1542 -0.1467 -0.1609 -0.1445 -0.1340
{1,0,1} 0.1134 0.1111 0.1078 0.1034 0.0939
{1,0,4}∗ 0.0095 0.0113 0.0154 0.0127 0.0149
{1,0,7} -0.0081 -0.0087 -0.0096 -0.0087 -0.0084
{1,0,13}∗ -0.0022 -0.0033 -0.0029 -0.0033 -0.0042
{1,0,16}∗ 0.0015 0.0023 0.0013 0.0022 0.0024
{1,1,0} -0.0210 -0.0212 -0.0219 -0.0223 -0.0233
{1,1,3} 0.0294 0.0284 0.0305 0.0279 0.0263
{1,1,6} -0.0115 -0.0108 -0.0098 -0.0097 -0.0083
{1,1,9} 0.0032 0.0027 0.0015 0.0016 0.0004
{1,1,12} 0.0029 0.0040 0.0041 0.0041 0.0044
{0,2, 8̄}∗ -0.0008 -0.0011 -0.0011 -0.0001 -0.0009
{0,2, 5̄}∗ -0.0028 -0.0035 -0.0033 -0.0036 -0.0032
{0,2, 2̄} -0.0139 -0.0133 -0.0131 -0.0135 -0.0132
{0,2,1} 0.0118 0.0117 0.0176 0.0125 0.0125
{0,2,4} -0.0107 -0.0101 -0.0107 -0.0105 -0.0096
{0,2,7} 0.0095 0.0091 0.0063 0.0074 0.0050
{0,2,10} -0.0111 -0.0105 -0.0064 -0.0082 -0.0073
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DOPC (ESRF), RH = 24−32%
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DOPC (ESRF), RH = 24−32%

RH 24 26 28 30 32
D 44.99 45.18 45.34 45.62 45.75
σ(d) 0.22 0.23 0.25 0.27 0.25
a 64.01 65.13 65.69 66.50 67.41
σ(a) 0.41 0.46 0.68 0.36 0.44

{0,0,3} -0.6014 -0.6376 -0.6298 -0.6352 -0.6292
{0,0,6} 0.0388 0.0399 0.0384 0.0369 0.0358
{0,0,9} 0.0446 0.0481 0.0482 0.0498 0.0498
{0,0,12} -0.0493 -0.0543 -0.0554 -0.0588 -0.0595
{0,0,15} 0.0138 0.0150 0.0151 0.0158 0.0159
{0,0,18} -0.0082 -0.0089 -0.0090 -0.0095 -0.0095
{0,0,21} 0.0059 0.0064 0.0064 0.0067 0.0067
{0,0,24}∗ 0.0029 0.0032 0.0032 0.0034 0.0034
{1,0, 2̄0}∗ 0.0115 0.0114 0.0124 0.0116 0.0117
{1,0, 1̄7} -0.0142 -0.0139 -0.0145 -0.0141 -0.0154
{1,0, 1̄4} 0.0142 0.0145 0.0151 0.0144 0.0146
{1,0, 1̄1} -0.0569 -0.0527 -0.0576 -0.0578 -0.0579
{1,0, 8̄} 0.0205 0.0182 0.0195 0.0197 0.0219
{1,0, 5̄} 0.0170 0.0154 0.0153 0.0146 0.0139
{1,0, 2̄} -0.1538 -0.1367 -0.1286 -0.1331 -0.1457
{1,0,1} 0.1162 0.1181 0.1125 0.1062 0.1020
{1,0,4}∗ -0.0086 -0.0073 -0.0059 -0.0073 -0.0064
{1,0,7} -0.0066 -0.0062 -0.0065 -0.0072 -0.0076
{1,0,10}∗ -0.0091 -0.0080 -0.0083 -0.0078 -0.0083
{1,1,0} -0.0280 -0.0288 -0.0277 -0.0266 -0.0258
{1,1,3} 0.0273 0.0254 0.0244 0.0243 0.0258
{1,1,6} -0.0099 -0.0094 -0.0089 -0.0080 -0.0079
{1,1,9} 0.0057 0.0049 0.0044 0.0051 0.0034
{1,1,12} 0.0054 0.0057 0.0061 0.0068 0.0068
{0,2, 2̄} -0.0153 -0.0154 -0.0144 -0.0149 -0.0171
{0,2,1} 0.0203 0.0198 0.0199 0.0197 0.0203
{0,2,4} -0.0122 -0.0100 -0.0108 -0.0105 -0.0092
{0,2,7} 0.0112 0.0099 0.0083 0.0085 0.0088
{0,2,10} -0.0129 -0.0112 -0.0095 -0.0089 -0.0088
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DOPC/Chol 90:10 (ESRF), RH = 36−42%
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DOPC/Chol 90:10 (ESRF), RH = 36−42%

RH 36 38 40 42
d 45.79 46.01 46.15 46.45
σ(d) 0.29 0.28 0.36 0.30
a 66.38 67.81 68.02 69.10
σ(a) 0.51 0.44 0.75 0.73

{0,0,3} -0.5790 -0.5863 -0.5970 -0.5983
{0,0,6} 0.0119 0.0112 0.0108 0.0096
{0,0,9} 0.0447 0.0453 0.0462 0.0463
{0,0,12} -0.0504 -0.0531 -0.0554 -0.0584
{0,0,15} 0.0141 0.0147 0.0152 0.0157
{0,0,18} -0.0079 -0.0083 -0.0086 -0.0090
{0,0,21} 0.0051 0.0053 0.0055 0.0057
{0,0,24}∗ 0.0023 0.0024 0.0026 0.0027
{1,0, 2̄3}∗ -0.0081 -0.0107 -0.0092 -0.0106
{1,0, 2̄0}∗ 0.0111 0.0145 0.0144 0.0139
{1,0, 1̄7} -0.0180 -0.0205 -0.0192 -0.0206
{1,0, 1̄4} 0.0185 0.0190 0.0198 0.0210
{1,0, 1̄1} -0.0715 -0.0769 -0.0725 -0.0758
{1,0, 8̄} 0.0271 0.0276 0.0263 0.0263
{1,0, 5̄} 0.0120 0.0106 0.0096 0.0093
{1,0, 2̄} -0.1964 -0.1821 -0.1717 -0.1705
{1,0,1} 0.1438 0.1388 0.1371 0.1281
{1,0,4} 0.0085 0.0097 0.0094 0.0119
{1,0,10}∗ 0.0095 0.0099 0.0084 0.0089
{1,0,16}∗ 0.0061 0.0059 0.0059 0.0062
{1,1,0} -0.0383 -0.0371 -0.0368 -0.0345
{1,1,3} 0.0311 0.0293 0.0286 0.0279
{1,1,6} -0.0102 -0.0103 -0.0091 -0.0090
{1,1,9} 0.0079 0.0075 0.0062 0.0054
{1,1,12} 0.0066 0.0071 0.0067 0.0075
{0,2, 2̄} -0.0211 -0.0200 -0.0179 -0.0184
{0,2,1} 0.0216 0.0217 0.0203 0.0214
{0,2,4} -0.0131 -0.0126 -0.0127 -0.0114
{0,2,7} 0.0130 0.0115 0.0111 0.0105
{0,2,10} -0.0151 -0.0138 -0.0150 -0.0126
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DOPC/Chol 70:30 (ESRF), RH = 50−60%
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DOPC/Chol 70:30 (ESRF), RH = 50−60%

RH 50 52 54 56 58 60
d 46.75 46.94 47.14 47.36 47.60 47.82
σ(d) 0.32 0.32 0.29 0.28 0.32 0.33
a 69.06 70.06 70.76 71.62 72.54 74.44
σ(a) 0.45 0.42 0.76 0.82 0.57 0.41

{0,0,3} -0.6933 -0.7197 -0.7219 -0.6968 -0.7065 -0.6924
{0,0,6} -0.0271 -0.0295 -0.0310 -0.0314 -0.0335 -0.0343
{0,0,9} 0.0369 0.0381 0.0380 0.0365 0.0368 0.0358
{0,0,12} -0.0461 -0.0490 -0.0504 -0.0499 -0.0520 -0.0523
{0,0,15} 0.0139 0.0147 0.0150 0.0147 0.0152 0.0151
{0,0,18} -0.0078 -0.0083 -0.0085 -0.0084 -0.0088 -0.0089
{0,0,21} 0.0043 0.0045 0.0046 0.0045 0.0047 0.0047
{0,0,24}∗ 0.0020 0.0021 0.0022 0.0021 0.0022 0.0022
{1,0, 2̄0}∗ 0.0095 0.0090 0.0076 0.0084 0.0081 0.0074
{1,0, 1̄7} -0.0162 -0.0162 -0.0150 -0.0162 -0.0159 -0.0168
{1,0, 1̄4} 0.0178 0.0162 0.0156 0.0171 0.0163 0.0166
{1,0, 1̄1} -0.0622 -0.0558 -0.0554 -0.0608 -0.0555 -0.0601
{1,0, 8̄} 0.0165 0.0153 0.0155 0.0162 0.0143 0.0152
{1,0, 5̄} -0.0072 -0.0072 -0.0077 -0.0082 -0.0089 -0.0088
{1,0, 2̄} -0.1454 -0.1320 -0.1327 -0.1315 -0.1225 -0.1232
{1,0,1} 0.0991 0.0996 0.0964 0.0893 0.0865 0.0810
{1,0,4} 0.0127 0.0136 0.0149 0.0162 0.0146 0.0159
{1,0,7} -0.0073 -0.0064 -0.0059 -0.0065 -0.0057 -0.0062
{1,1,0} -0.0244 -0.0231 -0.0207 -0.0173 -0.0146 -0.0116
{1,1,3} 0.0248 0.0235 0.0233 0.0232 0.0220 0.0221
{1,1,6} -0.0065 -0.0054 -0.0055 -0.0051 -0.0043 -0.0044
{1,1,9} 0.0082 0.0075 0.0070 0.0062 0.0054 0.0044
{1,1,12} 0.0047 0.0042 0.0046 0.0048 0.0044 0.0047
{0,2, 2̄} -0.0156 -0.0163 -0.0147 -0.0171 -0.0154 -0.0164
{0,2,1} 0.0165 0.0147 0.0167 0.0146 0.0152 0.0158
{0,2,4} -0.0096 -0.0093 -0.0090 -0.0095 -0.0080 -0.0078
{0,2,7} 0.0100 0.0095 0.0084 0.0079 0.0073 0.0073
{0,2,10} -0.0190 -0.0167 -0.0165 -0.0155 -0.0143 -0.0126
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A.3 Gauss-Bonnet theorem applied to stalks

For two exemplary surfaces which have been used to describe the neutral surface of
fusion pores or stalks in the literature, we briefly show that the surface integral of the
Gaussian curvature,

∫

A K dA, actually yields −4π. We consider surfaces of revolution
obtained by rotation of a contour z(r ) around the z axis:

~R(r,φ) =





r cosφ
r sinφ

z(r )



 , r ∈ [0,∞), φ ∈ [0,2π). (A.4)

It can be shown that the principal curvatures c1,c2 are

c1(r ) = z ′′(r )
√

1+ z ′2(r )
3

and c2(r ) = z ′(r )

r
√

1+ z ′2(r )
. (A.5)

With the area element dA = r
√

1− z ′2(r )dr dφ, the integral of the Gaussian curvature
becomes

∫

A
K dA = 2

∫2π

0
dφ

∫rmax

rmin

K (r )r
√

1+ z ′2(r )dr (A.6)

= 4π

∫rmax

rmin

c1(r )c2(r )r
√

1+ z ′2(r )dr (A.7)

= 4π

∫rmax

rmin

z ′′(r )z ′(r )
√

1+ z ′2(r )
3

dr. (A.8)

The factor 2 in the first line is used to take into account the lower half of the surfaces.
As a first example, consider the catenoid defined by the contour

z(r ) =±a ·cosh−1
( r

a

)

, r ∈ [a,∞]. (A.9)

Using Eq. (A.5) and d
d x

cosh−1(x) = (x2 −1)−1/2, we obtain

c1,2 =∓ a

r 2
⇒ H = 0, K =−a2

r 4
. (A.10)

At each point of a catenoid, the mean curvature vanishes. The catenoid is thus a mini-
mal surface. It can be shown that the catenoid is the only surface of revolution (except
for a plane) which has this property [200]. Using these results, the surface integral over
K yields

(

x = r
a

)

∫

A
K dA =−4π

∫∞

1

1

x2
p

x2 −1
dx

︸ ︷︷ ︸

=1

=−4π. (A.11)

As a second example, consider the semitoroidal surface obtained by rotation of a half
circle of radius R centered at r = a around~ez . The first stalk models used this parame-
terization [21]. As can be inferred from Fig. A.2, the contour is
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Figure A.2: Sketch of the contours of a catenoid (blue) and a semitoroidal connection
(green, solid) connecting two planes (green, dashed) for the parameters a = R =
20Å. The 2d surfaces of revolution embedded in 3d space are obtained by rotation
of the contours around the z axis.

z(r ) =
√

R2 − (R +a − r )2, r ∈ [a, a +R]. (A.12)

After a somewhat lengthy calculation starting from Eq. (A.5), one obtains

c1(r ) =− 1

R
and c2(r ) = (R +a − r )

r R
. (A.13)

As required, one curvature is given by the inverse radius of the circle describing the
contour, c1 = R−1, whereas the other one fulfils c2(a) = 1

a
and c2(a+R) = 0. The integral

of the Gaussian curvature over the surface of revolution of ±z(r ) yields

∫

A
K dA =−4π

R

∫R

a

R +a − r
√

R2 − (R +a − r )2
dr (A.14)

=−4π

R

∫R

0

x
p

R2 −x2
dx (x = R +a − r ) (A.15)

=−4π

R

[√

R2 −x2
]R

0
(A.16)

=−4π. (A.17)
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A.4 MATLAB code: Examples

The data extraction and analysis tools written during this thesis comprise about 4000
lines of code and are available upon request. In the following, a limited selection of
some very relevant scripts is provided.

Swelling method (lamellar phase)

swelling_lamellar.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % swelling_lamellar.m %
3 % Sebastian Aeffner , April 28, 2010 %
4 % %
5 % tool to obtain a reasonable phase setting %
6 % on the basis of the swelling method %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 clear;

10 close all;
11
12 % data input (all reqired corrections must have been completed !)
13 samplename = ’DOPC’;
14 file_input = ’23-Jul -2010 _DOPC.mat’;
15 file_output = strcat ([date ,’_’,samplename ,’_swellingdata’]);
16 eval([’load ’ file_input ]);
17 disp([’Reading dataset ’ file_input ’ ... done’]);
18
19 % display RH values corresponding to the available form factor sets and
20 % define which ones will be used to apply the swelling method
21 disp(’Available d-spacings in the dataset:’);
22 disp(’ ’);
23 strarray = cell (1,4);
24 strarray {1} = ’index’;
25 strarray {2} = ’RH’;
26 strarray {3} = ’d’;
27 strarray {4} = ’std(d)’;
28 disp(strarray);
29 disp([ linspace (1,length(d_obs (:,1)),length(d_obs (:,1)))’,RH , d_obs]);
30 firstindex = input(’Enter index of first form factor set: ’);
31 lastindex = input(’Enter index of last form factor set: ’);
32
33 % use only the date we have just defined
34 F_obs = F_obs(firstindex :1: lastindex ,:);
35 d_errors = d_obs(firstindex :1: lastindex ,2);
36 d_obs = d_obs(firstindex :1: lastindex ,1);
37 RH = RH(firstindex :1: lastindex);
38
39 n_max = length(F_obs (1,:)); % number of recorded diffraction orders
40 n_obs = 1:1: n_max; % observed Bragg orders
41 num_RH = length(F_obs (:,1)); % number of RH values
42 d_mean = mean(d_obs); % mean d-spacing of the dataset
43 F_mean = sum(F_obs)/num_RH; % mean form factors for each order n
44
45 % generate all 2^( n_max) possible phase combinations
46 % (the phase for F(-)(0) will be determined from the other phases !)
47 nu = [1,-1]’;
48 for i = 1:n_max -1;
49 nu = [ [nu ones(length(nu(:,1)) ,1)] ; -[nu ones(length(nu(:,1)) ,1)] ];
50 end;
51 num_phases = length(nu(:,1));
52
53 % check if no phase combination occurs twice
54 for i = 1: num_phases;
55 for j = (i+1):num_phases;
56 if nu(i,:) == nu(j,:);
57 disp(’Error: ’);
58 end;
59 end;
60 end;
61
62 % generate all 2^{ n_max} phased form factors including F(-)(0)
63 % (use formula of Nagle , F^(-)(0) = 2*sum_n (-1)^(n+1) *...
64 F_mean_phased = zeros(num_phases ,n_max +1);
65 for i = 1: num_phases;
66 F_mean_phased(i,1) = 2*sum( cos(pi *(1:1: n_max))*(-1).*nu(i,:).* F_mean);
67 F_mean_phased(i ,(2:1: n_max +1)) = nu(i,:).* F_mean;
68 end;
69
70 % due to centrosymmetry: incorporate "negative" orders of diffraction
71 n_obs = [-fliplr(n_obs) 0 n_obs];
72 F_mean_phased = [fliplr(F_mean_phased (: ,2:1:( n_max +1))) F_mean_phased];
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73 F_obs = [fliplr(F_obs) zeros(num_RH ,1) F_obs];
74 q_z_obs = (1./ d_obs)*2*pi*n_obs;
75
76
77 % data required for interpolation of continuous form factor
78
79 % generate q_z axis for form factor plot
80 delta_q_z = 50;
81 n_q = 2*( n_max +1)*delta_q_z;
82 q_z = linspace (-(n_max +1)*2*pi/d_mean ,+( n_max +1)*2*pi/d_mean ,n_q);
83
84 % sinc functions centered around q_z = n*2*pi/d_mean , n=-n_max ... n_max
85 sinc_mean = zeros ((2* n_max)+1,n_q);
86 for i = 1: length(n_obs);
87 argument = d_mean /2* q_z - n_obs(i)*pi;
88 sinc_mean(i,:) = sin(argument)./( argument);
89 end;
90
91 % generate all possible mean continuous form factors for d_mean , use en-
92 % tries in F_mean as coefficients.
93 F_mean_cont = F_mean_phased * sinc_mean;
94
95 % determine sum of squared errors
96 % vector containing sum of squared residuals for each phase setting
97
98 errors = zeros(num_phases ,1);
99

100 for i = 1: num_phases; % for all possible phase combinations
101 sum_squares = 0;
102 F_obs_phased = (ones(num_RH ,1)*[ fliplr(nu(i,:)) 0 nu(i,:)]).* F_obs;
103
104 for j = 1: num_RH; % for all RH_num humidity value
105 for k = 2:n_max +1; % for all n_max measured datapoints
106 % calculate function value of the mean , continuous form
107 % factor at the observed q_z value and subtract the
108 % observed F(q_z) value (-> NO F(-)(0))
109 argument = 0.5* d_mean*q_z_obs(j,n_max+k)-n_obs*pi;
110 delta = F_mean_phased(i,:)*(sin(argument)./( argument))’ ...
111 - F_obs_phased(j,n_max+k);
112 sum_squares = sum_squares + delta ^2;
113 end;
114 end;
115 errors(i) = sum_squares;
116 end;
117
118 % sort phase combinations based on their fit quality
119 [errors_sorted , ind] = sort(errors ,1);
120 nu_sorted = [];
121 for i = 1: length(nu(:,1));
122 nu_sorted = [nu_sorted; nu(ind(i) ,:)];
123 end;
124
125 % indices , phases and phased observed form factors for the two best phase
126 % combinations releted by total phase factor (-1)
127 i_opt = find(errors ==min(errors));
128 nu_opt = nu(i_opt ,:);
129 if nu_opt (1,1) == -1;
130 i_opt = i_opt (1);
131 nu_opt = nu_opt (1,:);
132 else i_opt = i_opt (2);
133 nu_opt = nu_opt (2,:);
134 end;
135 F_phased_opt = (ones(num_RH ,1)*[ fliplr(nu_opt) 1 nu_opt ]).*F_obs;
136
137 % Plot swelling graph for the num_plots best independent phase combinations
138 num_plots = input(’How many swelling plots would you like to see? ’ );
139
140 for h = 1:2:(2* num_plots +1);
141
142 % out of 2 equivalent phase settings differing by global factor (-1),
143 % use the one which leads to EDP with bilayer interior centered around
144 % origin
145 if nu_sorted(h,1) ~= -1;
146 h = h + 1;
147 end;
148 F_obs_phased = ...
149 (ones(num_RH ,1)*[ fliplr(nu_sorted(h,:)) 1 nu_sorted(h,:)]).* F_obs;
150
151 % create ’linear ’ versions of observed data required for plot
152 q_z_obs_lin = [];
153 F_obs_phased_lin = [];
154 for i = 1: num_RH;
155 q_z_obs_lin = [q_z_obs_lin q_z_obs(i,:)];
156 F_obs_phased_lin = [F_obs_phased_lin F_obs_phased(i,:) ];
157 end;
158
159 % plot swelling graph
160 F_continuous = F_mean_cont(ind(h) ,:);
161 figure;
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162 hold on;
163 plot(q_z_obs_lin ,F_obs_phased_lin ,’o’,’color’,’black’);
164 plot(q_z ,F_continuous ,’-’,’color’,’black’);
165 plot(q_z ,zeros(length(q_z)),’--’,’color’,’black’);
166 plot(0, F_mean_phased(ind(h),n_max +1),’s’,’MarkerEdgeColor ’,’k’ ,...
167 ’MarkerFaceColor ’,’k’,’MarkerSize ’ ,8);
168 xlim ([0 max(q_z)]);
169 xlabel(’$q_z$ [\AA$^{-1}$]’,’interpreter ’,’latex’,’fontsize ’ ,16);
170 ylim([min(F_continuous) -0.1 max(F_continuous)+0.2]);
171 ylabel(’$F^{(-)}(q_z)$ [a.u.]’,’interpreter ’,’latex’,’fontsize ’ ,16);
172 title([’Swelling plot for ’ samplename],’fontsize ’ ,16);
173 text (0.3 ,0.4 ,[ ’phase ranking: ’ num2str(ceil(h/2)) ...
174 ’/’ num2str(num_phases /2)],’FontSize ’ ,14);
175
176 % add lines showing the residuals and sum um their squares
177 %F_mean_phased = [ nu_opt 1 fliplr(nu_opt) ].* F_mean;
178 error_min = 0;
179 for i = 1: num_RH;
180 for j = (n_max +2) :(2* n_max +1);
181 argument = d_mean /2* q_z_obs(i,j)-n_obs*pi;
182 xpos_1 = q_z_obs(i,j);
183 xpos_2 = q_z_obs(i,j);
184 ypos_1 = F_obs_phased(i,j);
185 ypos_2 = F_mean_phased(ind(h) ,:)*(sin(argument)./ argument) ’;
186 line([ xpos_1 xpos_2],[ypos_1 ypos_2],’linestyle ’,’-’);
187 error_min = error_min + ( ypos_1 - ypos_2 ).^2;
188 end;
189 end;
190
191 % show error message if sum of resuduals as calculated here and first
192 % entry of errors_sorted are not the same
193 if error_min ~= errors_sorted(h);
194 disp(’Mismatch of errors: Check program!’);
195 end;
196
197 end;
198
199 % plot all num_RH resulting electron density profiles for the best phase
200 % setting , determine approx. values for d_hh and d_w for reach RH
201 figure;
202 hold on;
203 for i = 1: num_RH;
204 z(i,:) = linspace (-0.5* d_obs(i) ,0.5* d_obs(i) ,1000);
205 rho(i,:) = sum(( F_phased_opt(i,:) ’*ones (1 ,1000))...
206 .*cos(n_obs ’*2*pi/d_obs(i)*z(i,:)));
207 d_hh(i,:) = 2*mean(abs(z(i,rho(i,:)==max(rho(i,:)))));
208 d_w(i,:) = d_obs(i) - d_hh(i);
209 plot (z(i,:),rho(i,:),’-’);
210 end;
211 title(’Most reasonable EDPs for all hydrations ’,’fontsize ’ ,16);
212 xlabel(’$z$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,16);
213 ylabel(’$\Delta\rho(z,RH)$ [a.u.]’,’interpreter ’,’latex’,’fontsize ’ ,16);
214
215 % data output
216 eval([’save ’ file_output ]);
217 disp([’Data saved into ’ file_output ’.mat’]);
218 disp(’Finished !!!’);
219
220 %%%%%%%%%%%%%%%%%%%%%%% end of swelling_lamellar.m %%%%%%%%%%%%%%%%%%%%%%%

Isosurface analysis

isocurv.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % i s o c u r v . m %
3 % %
4 % Sebastian Aeffner , Institut f. Roentgenphysik , Universitaet Goettingen %
5 % %
6 % last modified: February 18, 2011 %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 clear;

10 close all;
11
12 % add path with directory containing functions
13 %path(path ,’E:/ Promotion/Auswertung/functions ’);
14 path(path ,pwd);
15
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % user input %
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19
20 sample = ’DOPC -SLS’;
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21 dataset = ’DOPC -SLS_formfactor_data_comparison ’;
22
23 eval([’load ’ dataset ]);
24
25 d_all = round (100*d)/100;
26 a_all = round (100*a)/100;
27
28 disp(’ ’);
29 disp([’Used data set: ’ dataset ’.mat’]);
30 disp(’ ’);
31 disp([’d-spacings in dataset ’ sample ’:’]);
32 disp(’ ’);
33 disp(’# RH d a’);
34 disp(’ ’);
35 for i = 1: length(RH);
36 disp([ num2str(i) ’ ’ num2str(RH(i)) ’ ’ ...
37 num2str(d_all(i,1), ’%10.2f’) ’+-’ num2str(d_all(i,2), ’%10.2f’) ’ ’...
38 num2str(a_all(i,1), ’%10.2f’) ’+-’ num2str(a_all(i,2), ’%10.2f’) ]);
39 end;
40 disp(’ ’);
41
42 spacings = input([’Enter number of d-spacing for further analysis: ’]);
43 cont = 1;
44 while cont ~= 0;
45 disp(’d-spacings of datasets to be analyzed:’);
46 disp(d_all(spacings ,1) ’);
47 cont = input(’Add another spacing? Enter number (#) if yes ,(0) if no: ’);
48 if cont ~= 0;
49 spacings = [spacings cont];
50 end;
51 end;
52
53 % length of area element in xy plane
54 disp(’ ’);
55 delta = input(’Enter length of area element dx*dy: ’);
56
57 % parameters for electron density isosurface search
58 z_min_coarse = -20;
59 z_0_coarse = -10;
60 z_min_fine = -8;
61 z_0_fine = -1;
62
63 disp(’Initial values for isosurface search:’);
64 disp([’z_0_coarse = ’ num2str(z_0_coarse)]);
65 disp([’z_0_fine = ’ num2str(z_0_fine) ]);
66 dummy = input(’Press return to continue ...’);
67 disp(’ ’);
68
69 % minimum and maximum electron density considered
70 min_rho_iso = input(’Enter minimum e- density for isosurfaces: ’);
71 max_rho_iso = input(’Enter maximum e- density for isosurfaces: ’);
72 del_rho_iso = input(’Enter e- density stepsize for isosurfaces: ’);
73
74 rho_iso = min_rho_iso:del_rho_iso:max_rho_iso;
75
76 disp([’The following isosurfaces will be considered:’]);
77 disp(num2str(rho_iso));
78 dummy = input(’Is this correct? Press return to continue.’);
79 choice_isosurf = input([’Also show isosurface plots by MATLAB ’...
80 ’commands for comparison? Enter (Y)es/(N)o: ’],’s’);
81
82
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84 % Numerical analysis of stalk electron densities for specified d-spacings %
85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86
87 disp(’ ’);
88 disp(’================================================================== ’);
89 disp([’Starting analysis of ’ sample ’ dataset.’]);
90 disp([’Used d-spacings: [’ num2str(d_all(spacings ,1) ’) ’]’]);
91 disp(’================================================================== ’);
92 disp(’ ’);
93
94 for s = 1: length(spacings);
95
96 disp(’==============================================================’);
97 disp([ sample ’, d = ’ num2str(d_all(spacings(s) ,1))]);
98 disp(’==============================================================’);
99

100 % Miller indices and form factors from reconstruction.m
101 h = table_hkl{spacings(s)}(:,1);
102 k = table_hkl{spacings(s)}(:,2);
103 l = table_hkl{spacings(s)}(:,3);
104 F = table_hkl{spacings(s)}(:,4);
105 num_terms = length(F);
106
107 % lattice parameters
108 a = a_all(spacings(s) ,1);
109 d = d_all(spacings(s) ,1);
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110
111 % axes/grids for plotting
112 xlim = delta*round(a/( 2 *delta));
113 ylim = delta*round(a/(sqrt (3)*delta));
114 zlim = delta*round(d/( 2 *delta));
115 x = -xlim:delta:xlim;
116 y = -ylim:delta:ylim;
117 z = -zlim:delta:zlim;
118 [X,Y] = meshgrid(x,y);
119
120 % create directory to save figures
121 dtag = [’d=’ num2str(floor(d)) ’p’ num2str(round(mod (100*d,100)),’%02d’)];
122 dirname = [’results_ ’ dtag ];
123 eval([’mkdir ’ dirname ]);
124 eval([’cd ’ dirname ]);
125
126 % normalization of electron density:
127 % mean electron density = 0 -> always fulfilled if F(0) = 0
128 % max electron density = 1 -> divide all values by max(rho)
129 disp(’Normalizing e- density to max(rho)=1, mean(rho)=0.’);
130 disp(’This step may require a few minutes , please wait’);
131 delta_norm = 0.2;
132 x_norm = 0: delta_norm:xlim;
133 y_norm = 0: delta_norm:ylim;
134 z_norm = -zlim:delta:zlim;
135 [X_norm ,Y_norm ,Z_norm] = meshgrid(x_norm ,y_norm ,z_norm);
136 rho_XYZ_norm = zeros(size(X_norm));
137 for j = 1: length(F);
138 rho_XYZ_norm = rho_XYZ_norm + F(j)*cos(2*pi *(...
139 h(j)/a*X_norm + ...
140 (2*k(j)+h(j))/(sqrt (3)*a)*Y_norm + ...
141 l(j)/(3*d)*( Z_norm +1.5*d)));
142 end;
143 c_norm = 1/max(max(max(rho_XYZ_norm))); % find maximum
144 F = c_norm*F; % perform normalization
145 clear rho_XYZ_norm X_norm Y_norm Z_norm x_norm y_norm z _norm;
146
147 % create 3d e-density for isosurface plotting with MATLAB commands %
148 if strcmp(choice_isosurf ,’Y’) == 1;
149 %create 3D electron density
150 [X_iso Y_iso Z_iso] = meshgrid(x,y,z);
151 rho_XYZ = zeros(size(X_iso));
152 for i = 1: num_terms;
153 rho_XYZ = rho_XYZ + F(i)*cos(2*pi*(h(i)/a*X_iso + ...
154 (2*k(i)+h(i))/(sqrt (3)*a)*Y_iso + l(i)/(3*d)*( Z_iso +1.5*d)));
155 end;
156 end;
157
158 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
159 % Numerical determination of isosurfaces to specified density values %
160 % and their curvature properties %
161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162
163 for r = 1: length(rho_iso);
164
165 tic;
166
167 rho_C = rho_iso(r);
168
169 disp([’Analyzing isosurface rho = ’ num2str(rho_iso(r)) ’. Please wait ...’]);
170 disp(’ ’ );
171
172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 % for test/control: plot isosurface by MATLAB function ’isosurf ’ %
174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
175
176 if strcmp(choice_isosurf ,’Y’) == 1;
177
178 % plot isosurface using MATLAB commands
179 figure;
180 hold on;
181 p1 = patch(isosurface(X_iso ,Y_iso ,Z_iso ,rho_XYZ ,rho_C) ,...
182 ’facecolor ’,’blue’);
183 isonormals(X_iso ,Y_iso ,Z_iso ,rho_XYZ ,p1);
184 daspect ([1,1,1]);
185 view (3); axis vis3d equal tight ,
186 camlight(’left’);
187 lighting phong;
188 xlabel(’$x$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,16);
189 ylabel(’$y$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,16);
190 zlabel(’$z$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,16);
191 title(’with MATLAB commands ’,’fontname ’,’arial’,’fontsize ’ ,20);
192
193 end;
194
195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196 % create mask for hexagonal area in xy corresponding to one stalk%
197 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
198
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199 x_mask = delta:delta:xlim;
200 y_mask = delta:delta:ylim;
201
202 [X_mask ,Y_mask] = meshgrid(x_mask ,y_mask);
203 mask = ones(size(X_mask));
204
205 border = sqrt (3)*( Y_mask (:,1) - Y_mask (1,1) );
206
207 m = 1;
208 while border(m) < 0.5*a;
209 num = round(border(m)/delta);
210 mask(m,:) = [ ones(1,num) zeros(1,length(X_mask (1,:))-num) ];
211 m = m + 1;
212 end;
213
214 mask = [fliplr(mask) ones(length(y_mask) ,1) mask];
215 mask = [mask; ones(1,length(mask (1,:))); flipud(mask)];
216
217 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
218 % determine z values corresponding to chosen isosurface rho = rho_C
219 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
220
221 disp(’Determination of isosurface using coarse grid in (x,y) ...’);
222
223 Z = zeros(size(X));
224 fval = zeros(size(X));
225 options = optimset(’TolX’,1e-8); % set tolerance for minimum search
226
227 % for each data pair (x,y): use function ’fzero ’ to find correspon -
228 % ding z value such that rho(x,y,z) = rho_C.
229 % Use symmetry rho(x,y,z) = rho(-x,y,z)
230 for m = 1: length(X(:,1));
231 for n = 1:( find(x==0));
232 if mask(m,n) == 1;
233
234 f = @(z) ( sum(F.*cos(2*pi*( h/a*X(m,n) + ...
235 (2*k+h)/(sqrt (3)*a)*Y(m,n) + l/(3*d)*(z+1.5*d) ))) - rho_C);
236
237 % use MATLAB function ’fzero ’ to determine Z(X,Y)
238 [Z(m,n),fval(m,n),exitflag(m,n)] = fzero(f,z_0_coarse ,options);
239
240 end;
241 end;
242 end;
243
244 % add second half
245 Z = Z + fliplr(Z);
246 Z(:,find(x==0)) = 0.5*Z(:,find(x==0));
247
248 % set entries in Z to zero if they are outside interval [zmin ,0]
249 Z(find(Z < z_min_coarse)) = 0;
250 Z(find(Z > 0 )) = 0;
251
252 % show maximum of ’fval ’ to make sure that fzero always converged
253 disp([’Maximum error in z : ’ num2str(max(max(abs(fval))))]);
254 disp(’ ’);
255 clear fval exitflag;
256
257 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
258 % find patches (x,y) close to stalk neck and construct mask for %
259 % stalk neck region in coarse coordinates (entries 1 or 0) %
260 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261
262 mask_neck = zeros(size(X));
263 % definition: if 5x5 region around coordinate (m,n) contains both
264 % zero and non -zero entries , then (m,n) belongs to stalkneck region
265 for m = 3:1:( length(X(:,1)) -2);
266 for n = 3:1:( find(x==0));
267 ROI = Z((m-2):(m+2) ,(n-2):(n+2));
268 if min(min(abs(ROI))) == 0 && max(max(abs(ROI))) > 0;
269 mask_neck(m,n) = 1;
270 end;
271 % remove entries from unit cell edges
272 if sqrt(X(m,n).^2 + Y(m,n).^2) > (xlim - 5);
273 mask_neck(m,n) = 0;
274 end;
275 end;
276 end;
277
278 % use symmetry rho(x,y,z) = rho(-x,y,z)
279 mask_neck = mask_neck + fliplr(mask_neck);
280 mask_neck(:,find(x==0)) = 0.5* mask_neck(:,find(x==0));
281
282 % ratio of area elements in ’coarse ’ grid which are reconsidered
283 ratio_new = length(find(mask_neck == 1))/length(find(Z ~= 0));
284 dummy = num2str(round (100* ratio_new));
285 disp([ dummy ’% of stalk area is reconsidered with finer sampling ...’]);
286
287 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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288 % for neck region: determine isosurface using finer grid %
289 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290
291 disp(’Determination of isosurface using fine grid in (x,y) ...’);
292
293 % create ’finer ’ grid
294 delta_fine = delta /5;
295 x_fine = -xlim:delta_fine:xlim;
296 y_fine = -ylim:delta_fine:ylim;
297 z_fine = -zlim:delta_fine:zlim;
298 [X_fine ,Y_fine] = meshgrid(x_fine ,y_fine);
299 Z_fine = zeros(size(X_fine));
300
301 % linear indices of points in neck region in coarse and fine grids
302 ind_coarse = find(mask_neck == 1);
303 ind_fine = [];
304
305 % indices of x = 0 and y = 0 in fine grid
306 ind_x0 = find(x_fine == 0);
307 ind_y0 = find(y_fine == 0);
308
309 % find linear indices of all points in neck region in fine grid ,
310 % create mask for neck region in fine grid
311 for i = 1: length(ind_coarse);
312
313 ind_x = round(ind_x0 + X(ind_coarse(i))/delta_fine);
314 ind_y = round(ind_y0 + Y(ind_coarse(i))/delta_fine);
315 if X_fine(ind_y ,ind_x) ~= X(ind_coarse(i)) || ...
316 Y_fine(ind_y ,ind_x) ~= Y(ind_coarse(i));
317 disp(’Error in mapping from coarse to fine datapoints ’);
318 end;
319 % define region of 5x5 grid points
320 ind_x = (ind_x - 5):(ind_x + 5);
321 ind_y = (ind_y - 5):(ind_y + 5);
322 % convert corresponding subscripts to linear indices
323 for m = 1: length(ind_x);
324 for n = 1: length(ind_y);
325 dummy = sub2ind(size(Z_fine),ind_y(m),ind_x(n));
326 ind_fine = [ind_fine dummy];
327 end;
328 end;
329
330 end;
331
332 % reduce ind_fine to its unique entries
333 ind_fine = unique(ind_fine);
334
335 % determine Z coordin. of isosurface in neck region using fine grid
336 for m = 1: length(ind_fine);
337 n = ind_fine(m);
338
339 % find good starting value for search with fzero:
340 % determine f(x,y,z) = rho -rho_C as function of z in allowed
341 % interval [z_min_fine ;0] for fixed (x,y)
342 z_lin = z_min_fine :0.1:0;
343 x_lin = ones(size(z_lin))*X_fine(n);
344 y_lin = ones(size(z_lin))*Y_fine(n);
345 f_lin = zeros(size(z_lin));
346 for ind = 1: length(F);
347 f_lin = f_lin + (F(ind).*cos(2*pi*( h(ind)/a*x_lin + ...
348 (2*k(ind)+h(ind))/(sqrt (3)*a)*y_lin + ...
349 l(ind)/(3*d)*(z_lin +1.5*d))));
350 end;
351 f_lin = f_lin - rho_C;
352 f_lin = abs(f_lin);
353 % use z value for which f_lin is closest to zero
354 % as starting value for fzero
355 z_0_fine = z_lin(find(f_lin == min(f_lin)));
356
357 % search for z(x,y) so that rho(x,y,z(x,y))=rho_iso
358 f = @(z) ( sum(F.*cos(2*pi*( h/a*X_fine(n) + ...
359 (2*k+h)/(sqrt (3)*a)*Y_fine(n)+l/(3*d)*(z+1.5*d))))-rho_C);
360 [Z_fine(n),fval(m),exitflag(m)] = fzero(f,z_0_fine ,options);
361
362 end;
363
364 % set entries in Z_fine to zero if they are outside [zmin ,0]
365 Z_fine(find(Z_fine < z_min_fine)) = 0;
366 Z_fine(find(Z_fine > 0 )) = 0;
367
368 % show maximum of ’fval ’ to make sure that fzero always converged
369 disp([’Maximum error in z : ’ num2str(max(max(abs(fval))))]);
370 disp(’ ’);
371 clear fval exitflag;
372
373
374 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
375 % create masks for plotting and integration %
376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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377
378 % set entries in Z (coarse coordinates) to zero if they are in
379 % stalk -neck region -> avoid double integration
380 Z(ind_coarse) = 0;
381
382 % coarse sampling
383 mask_int = mask; % mask for integration (entries 1,0)
384 mask_int(find(Z==0)) = 0; % set values within stalk neck to 0
385 mask_plot = mask_int ./ mask_int;% mask for plots (entries 1,0,NaN)
386 %mask_plot_curv = mask_plot ./ mask_plot;
387
388 mask_norm = zeros(size(X)); % mask for surface normals
389 for m = 1: length(X(:,1));
390 for n = 1: length(X(1,:));
391 if mod(X(m,n) ,5) == 0 && mod(Y(m,n) ,5) == 0;
392 mask_norm(m,n) = 1;% show surf. normals on 5x5 \AA grid
393 end;
394 end;
395 end;
396 mask_norm = mask_norm .* mask_int;
397
398 % fine sampling
399 mask_int_fine = zeros(size(Z_fine));
400 mask_int_fine(ind_fine) = 1;
401 mask_int_fine(find(Z_fine == 0)) = 0;
402 mask_plot_fine = mask_int_fine ./ mask_int_fine;
403
404 mask_norm_fine = zeros(size(X_fine)); % mask for surface normals
405 for m = 1: length(X_fine (:,1));
406 for n = 1: length(X_fine (1,:));
407 if mod(X_fine(m,n) ,5) == 0 && mod(Y_fine(m,n) ,5) == 0;
408 mask_norm_fine(m,n) = 1; % normals on 5x5 \AA grid
409 end;
410 end;
411 end;
412 mask_norm_fine = mask_norm_fine .* mask_int_fine;
413
414 % curvature analysis of isosurface in coarse sampling
415 [k1,k2 ,H,K,dA,n_x ,n_y ,n_z] = ...
416 curvanalysis(X,Y,Z,delta ,h,k,l,F,a,d,mask_int ,mask_norm);
417 S_1_coarse(r) = 4*sum(sum( (H.^2).*dA ));
418 S_2_coarse(r) = -4*sum(sum( H.*dA ));
419 area_coarse(r) = 2*sum(sum( dA ));
420 int_K_coarse(r) = 2*sum(sum( K.*dA ));
421
422 % plot and save isosurface figures
423 % (to save time , only for SOME datasets)
424 if mod(rho_C ,0.1) == 0 || rho_C == 0.1;
425
426 % plot isosurface (coarse sampling)
427 disp(’Plotting isosurface ... ’);
428 figure (1);
429 hold on;
430 surf(+X,+Y,+ mask_plot .*Z,H);
431 surf(-X,-Y,-mask_plot .*Z,fliplr(H));
432 quiver3(X,Y,Z,n_x ,n_y ,n_z ,2/delta ,’k’); % add surface normals
433 quiver3(-X,-Y,-Z,-n_x ,-n_y ,-n_z ,2/delta ,’k’);
434 shading interp; % for ’flat ’ or ’faceted ’, H values will not be
435 % displayed correctly (see also help on ’surf ’)
436 xlabel(’$x$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
437 ylabel(’$y$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
438 zlabel(’$z$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
439 headline {1} = [sample ’, d=’ num2str(d,’%.02f’) ’Å’];
440 headline {2} = [’\Delta\rho=’ num2str(rho_C)];
441 title(headline ,’fontsize ’ ,14);
442 colorbar;
443
444 % add lines indicating volume corresponding to cis monolayer
445 x_hex = 0.5*a*[1 1 0 -1 -1 0 1];
446 y_hex = 1/(2* sqrt (3))*a*[1 -1 -2 -1 1 2 1];
447 z_hex = 0.5*d*ones (1,7);
448 line(x_hex ,y_hex ,-z_hex ,’color’,’black’); % lower hexagon
449 line(x_hex ,y_hex ,+z_hex ,’color’,’black’); % upper hexagon
450 for i = 1:6;
451 line([x_hex(i) x_hex(i)],[y_hex(i) y_hex(i)],...
452 [-0.5*d 0.5*d],’color’,’black’);
453 end;
454 axis equal tight;
455 view (3);
456
457 % plot c1 ,c2 ,H,K projected onto xy -plane (coarse sampling)
458
459 % use the same colormap for k1 ,k2 and H = 0.5(k1+k2):
460 % -> Determine minimum and maximum curvature values in k1 & k2
461 % and set a pair of pixels in k1,k2 ,H to these values
462
463 extr = [min(min(mask_plot .*k1)) max(max(mask_plot .*k1)) ...
464 min(min(mask_plot .*k2)) max(max(mask_plot .*k2))];
465 curv_min_coarse = min(extr);
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466 curv_max_coarse = max(extr);
467
468 figure (2);
469 plotdata = [{k1} {k2} {H} {K}];
470 titles = [{’$c_1$’} {’$c_2$’} {’$H$’} {’$K$’}];
471 for i = 1:4;
472 subplot (2,2,i);
473 hold on;
474 pcolor(x,y,real(mask_plot .* plotdata{i}));
475 %(if imagesc is used , NaN entries are also shown in color)
476 daspect ([1 1 1]);
477 axis tight;
478 shading flat;
479 xlabel(’$x$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
480 ylabel(’$y$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
481 set(gca ,’xtick’ ,[-20 0 20]);
482 set(gca ,’ytick’ ,[-20 0 20]);
483 title(titles(i),’interpreter ’,’latex’,’fontsize ’ ,16);
484 colorbar;
485 end;
486
487 end;
488
489 % curvature analysis of isosurface in fine sampling
490 [k1_fine ,k2_fine ,H_fine ,K_fine ,dA_fine ,n_x ,n_y ,n_z] = ...
491 curvanalysis(X_fine ,Y_fine ,Z_fine ,delta_fine ,h,k,l,F,a,d,...
492 mask_int_fine ,mask_norm_fine);
493 S_1_fine(r) = 4*sum(sum( (H_fine .^2).* dA_fine ));
494 S_2_fine(r) = -4*sum(sum( H_fine .* dA_fine ));
495 area_fine(r) = 2*sum(sum( dA_fine ));
496 int_K_fine(r) = 2*sum(sum( K_fine .* dA_fine ));
497
498
499 if mod(rho_C ,0.1) == 0 || rho_C == 0.1;
500
501 % add isosurface (fine sampling) to isosurface (coarse sampling)
502 figure (1);
503 surf(+X_fine ,+Y_fine ,+ mask_plot_fine .*Z_fine ,H_fine);
504 surf(-X_fine ,-Y_fine ,-mask_plot_fine .*Z_fine ,fliplr(H_fine));
505 quiver3 (+X_fine ,+Y_fine ,+Z_fine ,n_x ,n_y ,n_z ,2/ delta_fine ,’k’);
506 quiver3(-X_fine ,-Y_fine ,-Z_fine ,-n_x ,-n_y ,-n_z ,2/ delta_fine ,’k’);
507 shading interp;
508
509 % add c1,c2,H,K projected onto xy-plane (fine sampling)
510
511 % use the same colormap for k1 ,k2 and H = 0.5(k1+k2):
512 % -> Determine minimum and maximum curvature values in k1 and k2
513 % and set a pair of pixels in k1 ,k2 ,H to these values
514
515 extr = [min(min(mask_plot_fine .* k1_fine)) ...
516 max(max(mask_plot_fine .* k1_fine)) ...
517 min(min(mask_plot_fine .* k2_fine)) ...
518 max(max(mask_plot_fine .* k2_fine))];
519 curv_min_fine = min(extr);
520 curv_max_fine = max(extr);
521 curv_min = min([ curv_min_coarse curv_min_fine]);
522 curv_max = max([ curv_max_coarse curv_max_fine]);
523
524 k1_fine(find(k1_fine ==min(min(mask_plot_fine .* k1_fine)))) = curv_min;
525 k1_fine(find(k1_fine ==max(max(mask_plot_fine .* k1_fine)))) = curv_max;
526 k2_fine(find(k2_fine ==min(min(mask_plot_fine .* k2_fine)))) = curv_min;
527 k2_fine(find(k2_fine ==max(max(mask_plot_fine .* k2_fine)))) = curv_max;
528 H_fine(find(H_fine ==min(min(mask_plot_fine .* H_fine)))) = curv_min;
529 H_fine(find(H_fine ==max(max(mask_plot_fine .* H_fine)))) = curv_max;
530
531 figure (2);
532 plotdata = [{ k1_fine} {k2_fine} {H_fine} {K_fine }];
533 titles = [{’$c_1$’} {’$c_2$’} {’$H$’} {’$K$’}];
534
535 for i = 1:4;
536 subplot (2,2,i);
537 hold on;
538 pcolor(x_fine ,y_fine ,real(mask_plot_fine .* plotdata{i}));
539 %(if imagesc is used here , NaN entries are also shown in color)
540 daspect ([1 1 1]);
541 axis tight;
542 shading flat;
543 xlabel(’$x$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
544 ylabel(’$y$ [\AA]’,’interpreter ’,’latex’,’fontsize ’ ,12);
545 set(gca ,’xtick’ ,[-20 0 20]);
546 set(gca ,’ytick’ ,[-20 0 20]);
547 title(titles(i),’interpreter ’,’latex’,’fontsize ’ ,16);
548 colorbar;
549 end;
550 disp(’Plotting curvatures ... ’);
551
552 rho_string = [num2str (0) ’p’ num2str(round (100* abs(rho_C)), ’%02d’)];
553 if sign(rho_C) == -1;
554 rho_string = [’-’ rho_string ];
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555 end;
556
557 figure (1);
558 figurename = [sample ’_’ dtag ’_isosurface_ ’ rho_string ’.fig’];
559 saveas(gcf ,figurename);
560 disp([’Isosurface plot saved as ’ figurename ]);
561 figure (2);
562 figurename = [sample ’_’ dtag ’_curvatures_ ’ rho_string ’.fig’];
563 saveas(gcf ,figurename);
564 disp([’Curvature plot saved as ’ figurename ]);
565
566 end;
567
568 % add results from ’coarse ’ and ’fine ’ parts of the isosurface
569 % and show results on screen
570 S_1(r) = S_1_coarse(r) + S_1_fine(r);
571 S_2(r) = S_2_coarse(r) + S_2_fine(r);
572 area(r) = area_coarse(r) + area_fine(r);
573 int_K(r) = int_K_coarse(r) + int_K_fine(r);
574
575 disp(’Integration of area , H and K ... done’);
576 disp(’ ’);
577 disp([’Results for isosurface rho = ’ num2str(rho_C) ’:’]);
578 disp(’ ’);
579 disp([’Sigma_1 = ’ num2str(S_1_coarse(r)) ’ + ’ num2str(S_1_fine(r)) ’ = ’

num2str(S_1(r)) ]);
580 disp([’Sigma_2 = ’ num2str(S_2_coarse(r)) ’ + ’ num2str(S_2_fine(r)) ’ = ’

num2str(S_2(r)) ]);
581 disp([’area = ’ num2str(area_coarse(r)) ’ + ’ num2str(area_fine(r)) ’ = ’

num2str(area(r)) ]);
582 disp([’int_K = ’ num2str(int_K_coarse(r)) ’ + ’ num2str(int_K_fine(r)) ’ = ’

num2str(int_K(r))]);
583 disp(’ ’);
584 disp(’Time required for isosurface: ’);
585 toc;
586 disp(’ ’);
587 disp(’----------------------------------------------------------’);
588 disp(’ ’);
589
590 % close figures (otherwise memory problems will occur)
591 close all;
592
593 end;
594
595 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
596 % data output and saving %
597 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
598
599 % plot numerical results and save figure
600 figure;
601 plotdata = [{S_1} {S_2} {area} {int_K }];
602 titles = [{’$\Sigma_1$ ’} {’$\Sigma_2$ ’} {’$A$’} {’$\int_{A} \! K\,dA$’}];
603
604 for i = 1:4;
605
606 subplot (2,2,i);
607 plot(rho_iso ,plotdata{i},’-o’);
608 xlabel(’$\rho_{iso}$’,’interpreter ’,’Latex’,’Fontsize ’ ,16);
609 title(titles{i},’interpreter ’,’Latex’,’Fontsize ’ ,16);
610
611 end;
612
613 figurename = [ date ’_’ sample ’_’ dtag ’_isocurv_results ’];
614 saveas(gcf ,figurename);
615 disp([’Plot with results saved as ’ figurename ]);
616
617 % save results
618 savename = [ date ’_’ sample ’_’ dtag ’_isocurv_results ’];
619 save(savename ,’rho_iso ’,’S_1’,’S_2’,’area’,’int_K’);
620 disp([’Curvature data saved as ’ savename ’.’]);
621 disp(’ ’);
622 disp(’==============================================================’);
623 disp([’Analysis complete for d = ’ num2str(d)]);
624 disp(’==============================================================’);
625
626 cd ..;
627
628 close all;
629
630 end;
631
632 disp(’================================================================== ’);
633 disp([’Analysis of ’ sample ’ dataset complete!’]);
634 disp(’================================================================== ’);
635 disp(’ ’);
636
637 %%%%%%%%%%%%%%%%%%%%%%%%%%%% end of isocurv.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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curvanalysis.m

1 function [k1 ,k2,H,K,dA ,n_x ,n_y ,n_z] ...
2 = curvanalysis(X,Y,Z,delta ,h,k,l,F,a,d,mask_int ,mask_norm)
3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 % determine first and second partial derivatives %
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 % first partial derivatives of surface rho = rho_C
9 f_x = zeros(size(X));

10 f_y = zeros(size(X));
11 f_z = zeros(size(X));
12
13 % second partial derivatives of surface rho = rho_C
14 f_xx = zeros(size(X));
15 f_xy = zeros(size(X));
16 f_xz = zeros(size(X));
17 f_yy = zeros(size(X));
18 f_yz = zeros(size(X));
19 f_zz = zeros(size(X));
20
21 for i = 1: length(F);
22
23 arg = 2*pi*( (h(i)/a)*X + (2*k(i)+h(i))/(sqrt (3)*a)*Y + ...
24 l(i)/(3*d)*(Z+1.5*d) );
25
26 C_1 = -2*pi *F(i)*sin(arg);
27 C_2 = -4*pi^2*F(i)*cos(arg);
28
29 % first partial derivatives
30 f_x = f_x + ( C_1 * (h(i)/a) );
31 f_y = f_y + ( C_1 * (2*k(i)+h(i))/(sqrt (3)*a) );
32 f_z = f_z + ( C_1 * l(i)/(3*d) );
33
34 % second partial derivatives
35 f_xx = f_xx + ( C_2 * (h(i)/a)^2 );
36 f_xy = f_xy + ( C_2 * (h(i)*(2*k(i)+h(i)))/(sqrt (3)*a^2) );
37 f_xz = f_xz + ( C_2 * (h(i)*l(i)/(3*a*d)) );
38 f_yy = f_yy + ( C_2 * ((2*k(i)+h(i))/(sqrt (3)*a))^2 );
39 f_yz = f_yz + ( C_2 * (2*k(i)+h(i))*l(i)/(3* sqrt (3)*a*d) );
40 f_zz = f_zz + ( C_2 * (l(i)/(3*d))^2 );
41
42 end;
43
44
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 % surface normals %
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48
49 % components of surface normals (pointing towards HG/H20 region)
50 n_x = mask_norm .* ( f_x ./ sqrt(f_x.^2 + f_y.^2 + f_z .^2) );
51 n_y = mask_norm .* ( f_y ./ sqrt(f_x.^2 + f_y.^2 + f_z .^2) );
52 n_z = mask_norm .* ( f_z ./ sqrt(f_x.^2 + f_y.^2 + f_z .^2) );
53
54
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 % area elements %
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58
59 dA = mask_int .* abs( sqrt(f_x.^2 + f_y.^2 + f_z .^2)./f_z ) * delta ^2;
60
61
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 % mean , Gaussian and principle curvature %
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65
66 H = zeros(size(X)); % array for mean curvature H
67 K = zeros(size(X)); % array for Gaussian curvature K
68
69 % Loops are not nice , I know , but it works
70 for m = 1: length(X(:,1));
71 for n = 1: length(X(1,:));
72
73 % gradient
74 grad = [ f_x(m,n) f_y(m,n) f_z(m,n) ]’;
75
76 % Hessian
77 Hess = [f_xx(m,n) f_xy(m,n) f_xz(m,n);
78 f_xy(m,n) f_yy(m,n) f_yz(m,n);
79 f_xz(m,n) f_yz(m,n) f_zz(m,n)];
80
81 % mean curvature
82 H(m,n) = -(grad ’*( Hess*grad) - norm(grad).^2* trace(Hess))./...
83 (2*( norm(grad)).^3);
84
85 % adjoint of Hessian
86 Hess_ad = [...
87 +det(Hess ([2 3],[2 3])) -det(Hess ([2 3],[1 3])) +det(Hess ([2 3],[1 2]));...
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88 -det(Hess ([1 3],[2 3])) +det(Hess ([1 3],[1 3])) -det(Hess ([1 3],[1 2]));...
89 +det(Hess ([1 2],[2 3])) -det(Hess ([1 2],[1 3])) +det(Hess ([1 2],[1 2]))];
90
91 % %another possibility:
92 % Hess_ad (1,1) = f_yy(m,n)*f_zz(m,n) - (f_yz(m,n)^2);
93 % Hess_ad (1,2) = f_yz(m,n)*f_xz(m,n) - (f_xy(m,n)*f_zz(m,n));
94 % Hess_ad (1,3) = f_xy(m,n)*f_yz(m,n) - (f_yy(m,n)*f_xz(m,n));
95 % Hess_ad (2,1) = Hess_ad (1,2);
96 % Hess_ad (2,2) = f_xx(m,n)*f_zz(m,n) - (f_xz(m,n)^2);
97 % Hess_ad (2,3) = f_xy(m,n)*f_xz(m,n) - (f_xx(m,n)*f_yz(m,n));
98 % Hess_ad (3,1) = Hess_ad (1,3);
99 % Hess_ad (3,2) = Hess_ad (2,3);

100 % Hess_ad (3,3) = f_xx(m,n)*f_yy(m,n) - (f_xy(m,n).^2);
101
102 % Gaussian curvature
103 K(m,n) = (grad ’*( Hess_ad*grad))./(( norm(grad)).^4);
104
105 end;
106 end;
107
108 k1 = real(H + sqrt( H.^2 - K ));
109 k2 = real(H - sqrt( H.^2 - K ));
110
111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112 % set entries outside stalk area to zero , get rid of "NaN" entries %
113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114
115 dA = mask_int .* dA;
116 H = mask_int .* H;
117 K = mask_int .* K;
118 k1 = mask_int .* k1;
119 k2 = mask_int .* k2;
120
121 dA(find(isnan(dA) == 1)) = 0;
122 H(find(isnan(H) == 1)) = 0;
123 K(find(isnan(K) == 1)) = 0;
124 k1(find(isnan(k1) == 1)) = 0;
125 k2(find(isnan(k2) == 1)) = 0;
126
127 end
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The fusion of two biological membranes is an important step in many pro-
cesses on the cellular and sub-cellular level. Understanding the involved in-

terplay of different lipid species, a specialized protein machinery and water on 
length scales of few nanometers poses a significant challenge to current structu-
ral biology. Among several complementary approaches, one strategy is to study 
the structural rearrangements of the lipid matrix. As the initial step, lipid bilayers 
must be forced into close contact to form a non-bilayer intermediate termed a 
stalk. This has been the subject of numerous theoretical studies and simulations, 
but experimental data on stalks are largely lacking. Currently, the only way to 
obtain structural information at the required sub-nanometer resolution is x-ray 
diffraction on the recently discovered “stalk phase” formed by certain lipids. We 
apply this method to elucidate the effect of lipid composition on stalk geometry 
and the repulsive forces between lipid bilayers prior to stalk formation. An ap-
proach based on differential geometry of electron density isosurfaces is introdu-
ced to analyze the curvatures and bending energies of the lipid monolayers. For 
the first time, this connects experiment-based structures of stalks and the as-
sociated bending and hydration energies. In addition, this thesis aims to provide 
a self-contained introduction to the required background in x-ray diffraction on 
lipid mesophases and electron density reconstruction.
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