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Curved x-ray multilayer mirrors focus synchrotron beams down to tens of 
nano metres. A wave-optical theory describing propagation of two waves 

in an elliptically curved focusing multilayer mirror is developed in this thesis.  
Using numerical integration, the layer shapes can be optimised for reflectivity 
and aberrations. Within this framework, performance of both existing and cur-
rently upgraded synchrotron beamlines is simulated. Using a more theoretical 
model case, limits of the theory are studied. A significant part of this work is 
dedicated to partial spatial coherence, modelled using the method of stocha-
stic superpositions. Coherence propagation and filtering by x-ray waveguides 
is shown analytically and numerically. This comprehensive model is put for-
ward that shall help in development and testing of new algorithms for a vari-
ety of imaging techniques using coherent x-ray beams. Advanced simulations 
accounting for real structure effects are compared to experimental data ob-
tained at the GINIX instrument at the coherence beamline P10 at PETRA III, DESY.  
This thesis presents results of a collaboration between the Georg-August-Uni-
versität Göttingen and the European Synchrotron Radiation Facility (ESRF) Gre-
noble.
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Chapter 1

Introduction

The primordinal object of this thesis was to obtain an analytical and numerical de-
scription of focusing multilayer (ML) mirrors, that are mainly used at the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France. ML mirrors provide high
quality x-ray beams for investigation on a large variety of specimens. A new analytical
treatment for curved ML mirrors will be given in chapter 4, together with numerical
results. As a natural and important prerequisite, I have started with simulations of to-
tal reflection mirrors, illuminated by point-sources (chapter 3). Seeking a comprehen-
sive model to account for partial coherence and finite source-sizes, I came up with a
stochastic model of ensemble averages, cf. chapter 2. Using this model, coherence fil-
tering by x-ray waveguides is shown in chapter 5.

Physics is the science that tries to understand how nature behaves. Optics is an im-
portant topic of fundamental research, but also provides us with tools to study other
systems. After Wilhelm Conrad Röntgen had discovered “eine neue Art von Strahlen”
[1], these x-rays soon were used as probes in medicine and science, long before their
true nature as light waves was unravelled [2]. Over the last few decades, large-scale fa-
cilities providing scientists from many different disciplines with synchrotron radiation
have emerged. Compared to laboratory sized laser sources, these beams are faint and
weak. Good optics are crucial, but hard to manufacture.

With this thesis, new theoretical insights and numerical tools are given to the sci-
entific community to further improve focusing optics based on curved focusing ML
mirrors. A comprehensive model for propagation of partial coherence is put forward
that shall help in development and testing of new algorithms for a variety of imaging
techniques using coherent x-ray beams.

This thesis presents results of a collaboration between the Institut für Röntgen-
physik, Georg-August-Universität Göttingen, and the ESRF Grenoble.
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Chapter 2

Partial Coherence

2.1 Introduction

In geometrical optics, intersecting light rays simply experience linearly enhanced in-
tensity. Wave optics, on the other hand, introduces the concepts of phase relations and
interference: Not intensities, but complex amplitudes are the protagonists for linear
additions1. Depending on the phase difference, light plus light can produce shadow in
some places and more light in other places. Of course the total energy of the fields does
not change [3].

In elementary courses, optical fields often are simplified to monochromatic plane
waves [4, 5]. In that case the addition of amplitudes is always correct. In less idealised
models the fields are made up of polychromatic wave-packets with short lifetimes, fi-
nite both in the temporal and the spatial domain. This results in stochastic fields where
the interference effects fluctuate in time [6, 7] and often are not detectable at all2.

Imagine the following gedankenexperiment: a “random plane wave” with a stochas-
tic direction illuminates a double-slit. Stochastic direction means that the wavevector
~k(t ) = |~k| k̂(t ) has a constant length |~k|, but changes randomly direction k̂(t ) on some
time-scale. These random directions imply varying phase relationships. The interfer-
ence fringes start to wiggle according to the random process. If the phase-relations
change faster than a typical detection time scale, the interference fringes start to wash
out. The “visibility” of the fringes, as defined later, will at some point tend to zero, so a
roughly constant intensity will be measured along the detection plane, if the phase-
relation at the two slits fluctuates within π or more. A more sophisticated analysis
would result in the functional description of the visibility for certain models, viz. for
a stochastic description of the phase-randomness.

1We do not consider any non-linear phenomena here.
2X-ray waves oscillate with & 1018 Hz; even relatively “slow” fluctuations of ∼ 1012 Hz are hard to detect

electronically.

3



4 Chapter 2. Partial Coherence

These phase fluctuations usually are explained by two causes: temporal coherence
deals with not-monochromatic waves, spatial coherence deals with not-point-like
sources which show randomly fluctuating phase-relations of waves emerging from dif-
ferent points. Monochromatic filtering enhances temporal coherence, while spatial fil-
tering (i.e. with pinholes) enhances spatial coherence. Well stabilised laser sources ex-
hibit full coherence over the whole beam size and time-scales of seconds. At present,
comparable sources do not exist in the x-ray regime, but envisioned at free electron
laser sources (FELs). “Monochromatic” filtering for x-rays is typically based on Bragg
reflections and achieves relative bandwidths of ∆λ/λ ∼ 10−4 . . .10−8 [8]. In the spatial
domain, modern synchrotron sources are different in horizontal and vertical direction.
This often is simplified by an elliptical distribution of electrons around their orbit [9,10].
At least in vertical direction “rather coherent” beams can be expected, while in the hor-
izontal direction the degree of coherence is well below one [11].

In the present treatment we will focus on spatial coherence and assume that the
light-field is quasi-monochromatic but fluctuating [6, 7].

Let us have a closer look at the typical coherence experiment which we will consider
later.

The basic set-up we will analyse is depicted in figure 2.1: an x-ray beam emitted from
a synchrotron source (bending magnet, undulator, etc.) impinges on a focusing mirror
and converges to the focus. In the focus or defocus, a double-slit is positioned, and
the diffraction pattern in the far-field zone is recorded. This will show either strong
or weak oscillations; the visibility3 can then be measured for different slit separation
distances and as a function of defocus. This simple picture stands as an example of
a great variety of more sophisticated and complex set-ups, including Talbot interfer-
ometry [12–16]. Also, these measurements are not limited to focusing mirrors, but can
be applied to multilayer mirrors, beams filtered by x-ray waveguides, refractive lenses,
multilayer Laue lenses, and to unfocused beams, as well.

Based on the double-slit experiment, an easy simulation scheme using the method
of stochastic fields is described in section 2.2. We will show how to model partial co-
herent intensity distributions in the near-field and far-field of an x-ray focusing mirror,
based on a very general approach which can be used for a large class of sources. Not
only the partially coherent intensity, but also the complex degree of coherence – and
hence the usually most interesting quantity, the visibility – can be calculated. Finally,
we give a generalisation of the Gouy phase anomaly [17] in focused fields for partially
spatial coherent illuminations.

The technique developed here will then be used in chapter 3 to simulate not only fo-
cusing, but also coherence properties of such optics. Later on we will use both this nu-
merical and an analytical approach to model coherence filtering effects of x-ray waveg-
uides (chapter 5).

3The visibility v only equals the modulus of the degree of coherence | j |, if the two pinholes are illuminated
with equal average intensities.
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Figure 2.1: Schematic illustration of the degree of coherence, | j |, defined as the visibility v of fringes. In (a), a
basic diffraction experiment of a double-slit, illuminated with a pre-focused synchrotron radiation
x-ray beam, is shown. The typical diffraction pattern I (q) of the double-slit in the far-field as a
function of reciprocal vector q is shown in (b); depending on the slit distance d, the diffraction
pattern is rather pronounced (c) or averaged out (d); from the “visibility of fringes”, the modulus of
the complex degree of coherence, | j (d)|, can be obtained.

2.2 Degree of coherence

In this section we put forward a numerical model to simulate the classical double-slit
experiment depicted in figure 2.1. This model is based on stationary stochastic opti-
cal fields [6] and we assume a fluctuating monochromatic – and spatially incoherent –
x-ray source. For our model we have a typical undulator source of 3rd generation syn-
chrotron facilities in mind; but the idea of the following considerations is common for
classical light sources and can in principle be applied to bending magnets, x-ray tubes,
and modern micro-focus lab sources as well.

2.2.1 Chaotic sources

Such chaotic light sources show intensity fluctuations on different time scales:

• The event that produces light is of short duration. An undulator only emits when
an electron beam passes through; x-ray tubes emit characteristic lines when a
vacancy of an electron shell is re-filled; thermal atoms in light bulbs or in a dis-
charge lamp only emit for a short time interval. In between, light might be emit-
ted from other points in the source; after some delay, the considered point may
emit again, but with a random phase relation.

• The light producing event is of quantum mechanical nature, hence intrinsically
random. Photons are distributed according to some probability density, depend-
ing on their state of quantum optical coherence (most commonly, Poissonian
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statistics, but also sub- or super-Poissonian are possible [18]).

• The “driving force” of the emission, i.e. an electric current, changes on different
time scales due to thermal noise (Johnson noise) [18], electron orbit variations
in synchrotrons, or large-scale envelopes (like decreasing ring currents or – most
dramatically – beam dumps).

• Focusing, beam path guiding, filtering, and detection are quantum mechanical
processes and hence introduce additional randomness.

There exist sources that diminish some of these variations; conventional lasers can pro-
duce stable beams on the seconds-scale, seeded free electron lasers are proposed as
sources with comparable properties. In this work we will not discuss such “perfect”
sources, but confine to “classical”, noisy sources. It can be expected that correlations
between these emitters can be incorporated using correlated random coefficients.

Since the phase-relations are subject to rapid and random changes on a time-scale
of the coherence time τc , interference effects might not be accessible if the detection
process integrates (in other words: averages) over larger time scales τmeas À τc . The

“strength” of the interference is then determined by the partial coherence.
Consider a synchrotron source with a manifold of electron bunches, even coming

up with independent sub-structures: These will emit billions of uncorrelated wave-
packets. Each one possesses a new random phase-relation with respect to the previous
one, introducing fluctuations on many time scales that are not accessible to detection.
More strictly, this idealisation of vanishing correlation only holds for so-called Lam-
bertian sources that emit uniformly in all directions. Since the electrons (or positrons)
circulate at ultra-relativistic speed (common relativistic energies are on the order of
6 GeV ∼ 104 me) [10], synchrotron sources mainly emit into a cone of small angular
spread, θ ∼ γ−1 ∼ 10−4 [8]. Here, γ is the relativistic Lorentz factor. Then a considerable
correlation is present already in the source plane.

Analytical calculations show that third generation synchrotron sources can be re-
garded as nearly coherent in the vertical direction, while only partially coherent in
the horizontal direction [11]. Beamlines with lengths of hundred to even one thou-
sand metres have been built (not only) to increase coherence properties by propaga-
tion [8, 19–21]. See figure 2.2 for an illustration.

2.2.2 Simple definitions

After these introductory remarks let us now describe light fields in terms of their co-
herence properties. Consider a monochromatic light wave (plane or spherical wave,
focused beam etc.) of frequency ω, described by its complex amplitude4

U (~r , t ) =U (~r )e−iωt .

Dealing with spatial coherence properties of quasi-monochromatic sources, we will
only use the spatially-dependent part U (~r ) now. For brevity let us simply write U1 :=

4The complex amplitude is defined as the analytical signal in [6].
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Figure 2.2: Coherence properties of modern synchrotron radiation sources, following the Gaussian-Schell
model [11, 22]. The circulating electrons often are approximated with an elliptic distribution
around their orbit; their relativistic velocity yields a directed radiation cone. On the right, the far-
field intensity (red lines) and degree of coherence (green dashed lines) is shown for the horizontal
and vertical direction.

U (~r1) and U2 := U (~r2). Then the “usual intensity” as a measure of energy flux density
may be defined by

I1 :=U∗
1 U1, I2 :=U∗

2 U2,

where U∗ denotes the complex conjugate of U . Different definitions involve a constant
factor depending on the units of measurements. Since such a factor would not lead
to different results in our treatment, we set it to unity. The intensity is the energy flux
density and related to the Poynting vector [3, 23].

This ordinary intensity is a function of one space-point. More generally, the equal
time mutual intensity is usually defined as

J1,2 :=U∗
1 U2.

Introducing this time-independent quantity we restrict the discussion to stationary
fields in the wide sense, where the mutual intensity only depends on t2 − t1; working
with the equal time mutual intensity, t2 − t1 ≡ 0.

Obviously, I (~r ) = J (~r ,~r ).
Now the complex degree of coherence j1,2 between the space-points ~r1 and ~r2 is

defined as the normalised mutual intensity J ,

j1,2 := J1,2 ×
(

J1,1 J2,2
)−1/2. (2.1)

It may be shown that for quasi-monochromatic fields (i.e. small-bandwidth waves
with a small spread ∆ω around a mean frequency ω̄, ∆ω¿ ω̄) the following relation
holds:

j1,2(t2 − t1) = j1,2 e−i ω̄(t2−t1).

Hence the visibility v = | j | is not affected by a small bandwidth [7]. This encourages us
to use this model for not-monochromatic beams as present in experiments.
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2.2.3 Modelling and simulation

Spatial incoherence is the result of a finite source size, or of a source emitting different
modes subject to fluctuations. We will mainly focus on the first aspect. Let us discretise
the finite source by a number of independent point-sources sn . These sources generate
optical fields un in a region of interest, perhaps behind focusing or filtering devices. If
all point sources would emit the light waves in perfect correlation, we could simply add
all fields un to get the resulting amplitude,

Ucoherent :=∑
n

wnun ,

where the real coefficients wn represent some envelope function for the point sources.
But in the case of a chaotic source, each virtual point-source independently emits

wave-trains of finite duration with arbitrary phase-relations to its own history and its
neighbours. If we could measure for a sufficiently short time interval, we could resolve
a rapidly oscillating speckle pattern.

In the cases we want to discuss in this thesis, the detector integrates over a rather
long time period (on the order of milli- to kilo-seconds). Then an incoherent sum of
many realisations of a coherent, but stochastic summation of the basic fields un is
measured. The coherent stochastic summation gives realisations U of the stochastic
optical field:

Uspeckle =
∑

wncrand
n un , cn = an e iϕn ,

an = rand(0,1), ϕn = rand(0,2π).

Again, the real coefficients wn are an envelope function for the point-sources, while
the complex random coefficients crand

n have a different amplitude and phase for each
realisation of the stochastic process. The amplitude are given by a flat distribution in
the interval [0,1), the phase by a flat distribution in [0,2π)5.

A source with intrinsic coherence properties could be modelled by random coeffi-
cients cn with a “coupling” to near-by point-sources, e.g. using a Gaussian distribution
centred around cn−1, similar to Markov chains. X-ray undulator sources show a finite,
but still very small coherence length already in the source plane [11] that is even longer
for FEL-sources (free electron lasers). But such correlations have not been used in the
following analyses.

The detector integrating over a long time interval is now modelled by an averaging
of many stochastic realisations:

Ustoch = 〈Uspeckle〉 =
〈∑

wncrand
n un

〉
.

So we assume an ergodic system where the time-average (detector) is the same as the
ensemble average (stochastic realisations). For convenience we restrict the discussion
to the complex degree of coherence between two points in a lateral plane; this plane
is assumed to be perpendicular to the optical axis, at a distance x from the focal plane.

5In computer codes, the GNU library function double drand48(void) (POSIX.1-2001) has been used to
obtain pseudo-random numbers based on linear congruentials.
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Figure 2.3: Illustration of the simulation model. In (a), the amplitude and phase relations of a single stochastic
realisation is shown, with a hypothetical interference pattern in (b). Part (c) shows a stochastic
ensemble of eight source realisations.

One reference point shall stay fixed on the optical axis at y = 0, whilst the “probe” point
is placed in a distance d . The complex degree of coherence, jx (d), as defined in equa-
tion (2.1), is then evaluated with J1,2 = 〈U∗

1 U2〉:

jx (d) =
〈(∑

wnc∗n u∗
n(x, y = 0)

)
·
(∑

wncnun(x, y = d)
)〉

√〈∣∣∑wncnun(x, y = 0)
∣∣2 ·

∣∣∑wncnun(x, y = d)
∣∣2

〉 . (2.2)

This stochastic method to model the coherence properties of optical fields is illus-
trated in figure 2.3. In part (a), individual point-sources, indexed by n, are shown; they
are weighted by an envelope wn . Each realisation of the random process is charac-
terised by a tuple of complex random amplitudes and phases cn = an exp(iϕn), illus-
trated the arrows. The lengths correspond to the instantaneous intensity, the direction
to the phase. The optical field originating from the point-sources is pre-calculated and
thence superposed using the tuple (cn), resulting in one “shot” of the fluctuating field,
see part (b). In (c), an ensemble of tuples (cn)e is shown.

Now we will look at the two limiting cases, j = 0 and j = 1.

Fully coherent field If j = 1, the stochastic realisations always show the same phase
relations, it is sufficient to just add the amplitudes:

j = 1 ⇒ U =∑
wncnun , I = |U |2.

This corresponds to a single speckle pattern emerging from a stochastic ensemble, that
consists only of one realisation.
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Fully incoherent field There is no correlation of the fields; so it is appropriate to just
add the intensities:

j = 0 ⇒ I =∑
w2

n |un |2.

Without any correlation no experiment can be thought of that shows interference;
hence, the complex amplitude U is not defined.

Van Cittert-Zernike theorem Fully coherent sources are approximated by mono-mo-
dal stabilised lasers; perfect incoherence is the limiting case of an infinitely large
and uncorrelated source. Due to propagation, even two perfectly uncorrelated point-
sources show partial coherence if observed under a small angle (i.e., from a distance
much larger than their separation). This is a result of the van Cittert-Zernike theo-
rem [6, 24, 25]; the complex (equal-time) degree of coherence jx (y1, y2) for a perfectly
uncorrelated source in a distance x is given as the normalised Fourier transform of the
source’s intensity distribution I :

jx (y1, y2) =
∫

Ix=0(y ′)e−i k(ŷ2−ŷ1)y ′
d y ′

/∫
Ix=0(y ′) d y ′.

2.2.4 Examples

Mono-modal laser A perfect, ideal laser produces a fully coherent wave field. This is
possible despite its finite source size, because “all atoms emit in phase” – or in other
words: they emit in the same mode – and thus are fully coherent:

j (d) ≡ 1.

Multi-modal laser In a laser with several modes excited, one subset of the atoms emit
in phase with respect to each other, with a random phase relative to another subset of
atoms. These different modes then add incoherently, the degree of coherence is not
constant, but smaller than unity for large slit separations. The dependency has been
demonstrated experimentally for a multi-modal laser in [26, 27]. We come back to a
description of coherence in terms of modes when discussing x-ray waveguides in sub-
section 2.2.6.

Chaotic Light (light bulbs, x-ray tubes, stars, etc.) In the limiting case where every
atom emits in its own mode they are statistically independent and perfectly incoherent.
This is the regime of the van Cittert-Zernike theorem; partial coherence arises due to
propagation. In the special case of a one-dimensionally slit, the degree of coherence is
given by a sinc-function6 [28].

6sinc(x) := sin(x)/x
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2.2.5 Computational Methods

In this subsection we discuss useful techniques to numerically evaluate (2.2). The com-
plex degree of coherence j is given as the normalised ensemble average of the mu-
tual intensity J . Now J is the coherent sum of pre-calculated fields un , multiplied
with (pseudo) random numbers crand

n and envelope coefficients wn . Many summations
have to be carried out, if jx (d) is to be evaluated in a large number of defocus planes x
and for many pixels in distances d to the optical axis.

The computational time scales linearly in each of the following parameters. We list
useful ranges of important parameters, that can be well matched to analytical results
as discussed later.

1. Number of point-sources: Typically, we will use about 100 to too point-sources.
Note that as many basic fields un have to be pre-calculated by propagating x-
ray fields. This might take several seconds (for focusing mirrors) or minutes (for
multilayer mirrors or waveguides).

2. Size of ensemble: ensemble averages of less than 1000 evaluations have proven
to result in strong numerical noise; tests show that about 10 000 stochastic re-
alisations should be used. Together with (1), this results in about three million
complex additions per pixel.

3. Resolution, Nx ×Ny : the problem grows linearly with the number of pixels. The
full information, j (x1, y1, x2, y2), would even need (Nx×Ny )2 steps. Since we have
decided not to correlate different defocus planes with each other, and we assume
that the correlation does only depend on distance d = y2 − y1, not individual
points (y1, y2), complexity both in calculation and visualisation is reduced. De-
pending on resolution, 3·106(Nx ×Ny ) stochastic realisations are needed to give
useful estimations for the mutual intensity J .

4. Average of | j |: Numerical experiments have shown that a direct evaluation of (2.2)
still suffers from noise for distances d with small coherence, | j (d)|. 0.5. If cor-
relations are small, the ensemble average sums up complex numbers of similar
modulus but arbitrary phase. This proves to be just as difficult as adding up real
numbers of similar magnitude, but opposite signs; relative errors add up vastly.
To overcome this problem, an “outer average” of the modulus of j , each calcu-
lated by its own stochastic ensemble, is taken:

j̃x (d) = 〈
jx (d)

〉
.

About ten to twenty evaluations give considerable results, increasing the overall
computational costs by one order of magnitude.

In conclusion: with the proposed numbers, the evaluation of jx (d) of 105 pixels needs
about 102 . . .103 teraflops, plus the propagation of 100 to 300 point-sources to a ROI of
105 pixels.
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A direct propagation of the mutual intensity with generalised Fresnel-Kirchhoff inte-
grals is often even more expensive. Consider a source plane of 102 points which is to be
propagated to 100 defocus planes consisting of 103 points each. Hence the mutual in-
tensity needs the evaluation of 1013 complex exponentials for the phase terms, which
each typically need 10. . .100 flops, hence 103 . . .104 teraflops. For a two-dimensional
problem, this direct propagation of J1,2 is not worthwhile.

GPGPU programming – General-Purpose computation on Graphics Processing
Units – is a technique to use massive parallel computation capabilities of graphics
cards for physics simulations. Since the pixels in the ROI can be calculated inde-
pendently, this problem greatly benefits from massive parallelisation offered by such
graphics cards. A speed-up by a factor of approximately 250 has been achieved without
optimisation of memory layout.

2.2.6 Analytic function for x-ray waveguides

X-ray waveguides (WGs) are small holes in a cladding material; typical state-of-the-art
diameters are a few ten nanometres, while the length can be up to ten millimetres [29–
35]. Only a discrete set of lateral modes can propagate, while radiative modes suffer
strong absorption. But this takes some time, or length, and thus absorption effects play
a crucial role in terms of efficiency. The game is: “absorb as much incoherent, but as
little coherent energy, as possible.”

The typical set-up of WG based coherent diffraction or propagation imaging is illus-
trated in figure 2.4. The high-flux KB focus7 exhibits limited coherence; a WG placed in
the focal plane enhances the degree of coherence. This will be shown by analytical and
numerical propagation in chapter 5, using methods prepared in the current chapter. In
figure 2.4 (e) and (f) the experimental far-field of the KB mirror pair and two crossed
one-dimensional WGs are shown. While the KB beam shows a lot of stripes and impu-
rity, the WG filtered x-ray beam is much cleaner.

Discrete modes Waveguides have a critical guiding layer thickness Wc depending on
the cladding material. In the case of a silicon WG, this critical width is nearly 20 nm. A
silicon WG with a guiding layer of less than 19.96 nm supports only one lateral mode;
for each 20 nm it is broadened, one additional mode can propagate [31]. So one can
expect a similar behaviour of the degree of coherence as in the case of multi-model
lasers. A fraction of the guided modes’ energy resides as an evanescent wave inside the
cladding and is subject to absorption.

Analytical modes For “perfect” waveguides8, there exist even and odd modesψn with
respect to the optical axis. The electrical field in the guiding layer is given as either
a cosine or a sine of the position, while in the cladding it is exponentially decaying
(evanescent wave). Boundary conditions at the guiding layer–cladding-interface give

7The Kirkpatrick-Baez mirror geometry is introduced in chapter 3.
8“Perfect” means with sharp boundaries, the index of refraction given by a rectangular profile.
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Figure 2.4: The typical set-up of x-ray propagation imaging, using a simple KB mirror (a) or an x-ray wave-
guide (b) for filtering. In (c, linear colour map representing intensity), one realisation of the stochas-
tic KB focus is shown, while (d, logarithmic colour map) presents the propagation through a one-
dimensional WG. In (e) and (f), experimental far-fields of the KB and WG, obtained at the P10 co-
herence beamline at PETRA III, are shown. The WG not only enhances the degree of coherence, see
chapter 5, but also removes inhomogeneities of the KB beam. On the other hand, photon counting
statistics due to low transmittance enlarges measurement time and noise level. More information
about this particular KB mirror system is currently prepared in [36]; for information about waveg-
uides, cf. [37]. Shown in (f) is the far-field of a two-dimensional channel-WG in silicon cladding,
of length 1 mm and guiding core diameter 200 nm. The two dark stripes are due to the detector
(Pilatus).
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Figure 2.5: Sketch of the first two guided modes in a waveguide. Shown with the red line is the “ground state”
mode, while the “first excited mode” is indicated by the blue dashed line. The amplitude (a) can be
negative and odd, whilst the intensity (b) is non-negative and even, for our choice of coordinates.

the discrete spectrum and the constants k,κ are determined by a transcendental equa-
tion [38]. In the following, D denotes the guiding layer thickness, ρ is proportional to
the electron density, m is an eigenvalue of the Helmholtz equation and N is a normali-
sation constant. See figure 2.5 for an illustration of the modes in a particular WG.

ψn(y) = Nn



{
cos(κn y) , |y | < D

2

+Ane−kn |y | , |y | > D
2

n even,{
sin(κn y) , |y | < D

2

±Ane−kn |y | , |y | > D
2

n odd;

kn =p
mn , κn =p

ρ−mn ;

kn =
{
+κn tan(κnD/2) , n even,

−κn cot(κnD/2) , n odd;
An =

{
cos(κnD/2)ekn D/2 , n even,

sin(κnD/2)ekn D/2 , n odd.

Since the independent modes mix incoherently, one can write the average optical in-
tensity inside the waveguide as

I =∑
λnψ

∗
nψn ,

where the λn are the occupation numbers of the corresponding modes. More generally
we are interested in the mutual intensity

Jn(x, y1, y2) =λn(x)ψ∗
n(y1)ψn(y2).

We will explore further properties of this analytical model for coherence inside x-ray
waveguides in chapter 5 and compare it to numerically obtained data. Up until now, we
have not given a method for calculating the occupation numbersλn . This is postponed
to chapter 5.
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2.3 Stochastic phase

In the previous sections we have defined the degree of coherence and mutual intensity
of optical fields; let us now take a closer look at the phase in partially coherent fields.
If phase relations between point-sources fluctuate with time, the propagated phase is
also a random process. Considering a relative phase with respect to a reference point
(we will use the focus), the time-harmonic phase exp(iωt ) and a “random global phase”
due to the random superposition is not of concern here.

We define the stochastic phase φ(x) as

φ(x) = arg
(∑

wncrand
n un(x)

)
.

The relative phase φr (x) with respect to the focus point F is

φr (x) = arg
(∑

wncrand
n un(x)

)
−φ(F),

where the reference phase φ(F) is to be calculated by the same tuple of random coeffi-
cients. Now we define the average relative phase ϕ(x) in the stochastic ensemble as

ϕ(x) = 〈
φr (x)

〉= 〈
arg

(∑
wncrand

n un(x)
)
−φ(F)

〉
.

The relative phase ϕ(x) itself constitutes a random process; its spread is connected to
the degree of coherence. In case of a rather coherent illumination one expects a tight
distribution of φr around ϕ, while rather incoherent illuminations yield a widespread
distribution. In other words, the “phase” in an incoherent beam is undefined on rea-
sonable observation time scales. Since we are simply adding intensities in that case,
the phase is of no concern; actually the word “phase” does not even occur in this de-
scription. Partial coherence preserves the phase to some extend. As a quantitative mea-
sure we use the root-mean-square∆ϕ(x) of the fluctuating (relative) phaseφr (x) in the
stochastic ensemble:

∆ϕ(x) =
√〈

φr (x)2
〉−〈

φr (x)
〉2.

In evaluatingφr (x), one has to keep in mind that phases are periodic in 2π. The used
computer codes have a domain of [−π,π]. This leads to “phase jumps” that would ren-
der the rms-value useless. Instead, “unwrapped” values have to be used; this is possible
by scanning the optical axis for such phase jumps, and correcting sequential values by
the number of detected jumps (possibly negative), multiplied by 2π. Care has to be
taken to sample with at least the Nyquist frequency to avoid aliasing.

Using this concept, a partially coherent generalisation of the Gouy phase shift will
be studied in subsection 3.4.3.

A numerical scheme to simulate propagation of spatial coherence
based on stochastic pre-calculated fields has been proposed. This
scheme will be used in the following chapters to simulate focused
fields for extended sources. A comparison with analytical
expressions given for x-ray waveguides follows in section 5.3.





Chapter 3

Simple Mirrors

3.1 Introduction

Beam shaping optics are key components in x-ray experiments. Apart from monochro-
mators or simple collimating tools like slits, focusing devices are a helpful, often nec-
essary part of the set-up. In direct imaging they are used as illumination and objective
lenses to form the image, while in coherent (or “indirect”) imaging they increase nu-
merical aperture and hence resolution compared to the nearly parallel synchrotron
beam. Sometimes focusing is just used to enhance flux density or to illuminate only
part of the sample.

Depending on the experimental needs (bandwidth, photon energy, efficiency, coher-
ence properties), scientists nowadays can choose between different focusing devices
for their x-ray experiment. Apart from collimators and x-ray waveguides which con-
fine x-rays, basically three optical concepts are used for focusing: refraction (lenses),
diffraction (Fresnel zone plates), and reflection (mirrors). This chapter is devoted to
the latter; multilayer mirrors are described and modelled in chapter 4. Chapter 5 deals
with x-ray waveguides used as coherence filters.

Refraction. In visible optics, lenses are the primary device both for focusing and
imaging. But in the x-ray regime where the index of refraction is close to unity, focal
lengths of up to hundred metres made the use of lenses impractical. Some twenty years
ago it was realised that sequential arrays of, say hundred lenses in a row, along with the
corresponding fabrication technology can lead to reduced focal lengths well adapted
to the needed demagnification [39,40]. In the beginning, cylindrical holes of diameters
in the sub-millimetre range were drilled; with improved fabrication techniques includ-
ing nano-lithography, better layouts to overcome aberration are being used. Computer
simulations of 1166 “adiabatic” lenses in a row promise ultra-short focal distances and
small spot sizes [40]. Assembling modules allowing to change the number of lenses “on-
line”, so-called “transfocators”, have been built that allow for “zooming”, i.e. customiz-
ing the focal length [41].

17
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p+q = const

(a) (b) Synchrotron orbit

VFM

HFM

KB

Figure 3.1: Typical set-up of elliptical mirrors used at synchrotron radiation sources for focusing. In (a), the
one-dimensional focusing principle based on the elliptical shape is illustrated; in (b) the stages
of Kirkpatrick-Baez (KB-)focusing of independent vertical and horizontal focusing mirrors (VFM,
HFM) are illustrated. The effective electron distribution in a synchrotron often is approximated by
an ellipse around the orbit with an excentricity of about 0.1; the diverging x-ray beam can be fo-
cused in one dimension by an elliptically shaped mirror. In using the KB geometry of two sequential
mirrors, decoupling of the two dimensions is assumed.

Diffraction. Focusing optics based on diffraction make use of quasi-periodic struc-
tures to scatter the incoming wave in such a way these scattered waves interfere con-
structively in the focus. A typical example are Fresnel zone plates [42]; sometimes, mul-
tilayer Laue lenses [43–45] are also sorted into this category. Multilayer mirrors [46, 47]
can be considered diffractive, too – but usually they are called reflective optics. We will
see in chapter 4 that constructive interference is important.

Reflection. The topic of the current chapter is elliptically shaped (total) reflective mir-
rors. Since the distance from source point S via the surface to the focal point F is con-
stant, a spherical wave emerging from S interferes constructively in F , see figure 3.1
(a). For highest intensity, total reflection mirrors are being used. As critical angle of
total reflection and hence numerical aperture are very small, multilayer mirrors with
reflectivity at higher angles of gracing incidence are often used.

Apart from special set-ups, two-dimensional focusing is needed. At first sight, this
requires mirrors of three-dimensional, ellipsoidal shape. In the year 1948, Paul Kirk-
patrick and Albert V. Baez proposed a sequential set-up of two elliptical mirrors, each
focusing in a different direction [48]. The assumption of this set-up is that the two di-
mensions (usually vertical and horizontal) decouple and the system can be described
by a tensor product; see figure 3.1 (b). Since a typical synchrotron source shows an el-
liptical source size with aspect ratios of 0.2 or smaller, different focal distances – but
a common focal plane – offer the possibility of a (nearly) circular focus. In this case,
the divergence of the beam is case different in the two dimensions, and the far-field is
rectangular.

Advances in fabrication and polishing allow for shapes very close to the desired el-
liptical profile. With elastic emission machining (EEM) [49] and other polishing tech-
niques, roughness of less than 0.1 nm and figure errors (i.e., deviation from the ideal
profile) well below 1 nm are achievable. Anyway, real structure effects are important
to deal with, both in planning of an optical set-up and in analysis of images. Some of
the presented simulation results have been obtained with model or real (measured)
deviation profiles taken into account.

Since x-rays’ index of refraction n = 1−δ+ iβ is smaller than unity, (external) total
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Figure 3.2: Definition of coordinates and parameters for focusing mirrors. The geometry is determined by the
distance source–centre of the mirror S1, the distance centre of mirror–focus S2, and the angle of
incidence at the mirror’s centre, θ (measured against the surface). Furthermore, the mirror has
a length L, here measured projected on the semi major-axis A of the ellipse. The illumination is
assumed to be monochromatic with a wavelength λ.

reflection occurs. For example, the index of refraction of bulk silicon at a photon energy
of E = 12 keV is n = 1−3.164×10−6+3.134×10−8i . The critical gracing angle of reflection
is 2.5 mrad; the evanescent wave reduces reflectivity to about 96 per cent at an angle
of 2.2 mrad. In addition, the evanescent wave effectively yields a complex coefficient,
making the reflected wave suffer of phase-shift depending on angle of incidence [50].
This phenomenon is known from visual optics as the Goos-von Hänchen effect [51]
and will be discussed in subsection 3.2.2.

For a definition of coordinates and parameters used throughout this chapter and
the accompanying simulation programme, see figure 3.2.

In the next section we will briefly address Fresnel’s coefficients, the Goos-von
Hänchen effect and the Fresnel-Kirchhoff integral of diffraction. We continue with the
Gouy phase shift of focusing optics and a brief introduction of the simulation pro-
gramme. More details of the implementation can be found in appendix C. In section
3.3, results of partially coherent focus simulations (see chapter 2) are presented for
extended sources, including a discussion of figure errors. Section 3.4 adds results ob-
tained for the defocus region.

A similar simulation programme has been written by Cameron Kewish [50]. Software
to predict performance of focusing devices is common at synchrotron radiation facilities,
for example SHADOW, IMD, and XOP. Some of these tools rely on geometrical optics
and (phase-)ray-tracing; none allows for easy integration of wave-optical theory for
curved multilayer mirrors. IMD [52] uses a fast analytical approach based on the Par-
ratt algorithm [8], suitable for flat and infinitely long multilayers. Our new tool, x-ray
multilayer mirror simulations (XMLS), is capable of wave-optical simulations of mir-
rors and multilayer mirrors (see chapter 4). In combination, XMLS and the approach
of stochastic optical fields from chapter 2 allow for partially coherent beam x-ray fo-
cusing with typical CPU run-times on the order of minutes or hours (depending on
number of pixels in region of interest and Monte Carlo noise).

In this chapter we will use several abbreviations and definitions. P10 is the coher-
ence beamline at the PETRA III synchrotron (Positronen-Elektronen-Ringanlage), part
of HASYLAB (Hamburger Synchrotronstrahlungslabor) at DESY (Deutsches Elektronen-
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synchrotron) in Hamburg, Germany. The Institut für Röntgenphysik operates an own
set-up dedicated to propagation imaging and waveguide-based imaging (see chapter
5), which is composed of two elliptically curved mirrors in Kirkpatrick-Baez geome-
try. These mirrors will be labelled P10-HFM (for the horizontally focusing mirror) and
P10-VFM (vertically focusing mirror). Their geometrical parameters are summarised in
table 3.1; for much more details of this set-up, the reader is referred to [12,53], and [36].
Despite state of the art polishing, the mirrors show small deviations from the perfect
ellipse, as shown in figure 3.5. Simulations using measured profiles are marked with
HFMr and VFMr, while the calculations with the “ideal” elliptical shape are marked
with HFMi and VFMi.

3.2 Theory

In this section we remind ourselves of necessary theoretical methods and equations
to simulate (total) reflection mirrors. We start with a brief reminder of Fresnel’s coeffi-
cients of reflection, formulated for gracing angles denoted θ; in most textbooks, they
are given for the “optical” angles ϑ = π/2−θ. Subsection 3.2.2 explains the Goos-von
Hänchen effect as a result of phase gradients due to evanescent waves. Subsection 3.2.3
introduces the integral of Fresnel and Kirchhoff in “1+1 dimension” for free-space prop-
agation from the mirror’s surface to some region of interest. In subsection 3.2.4 the
Gouy phase shift present in the defocus region is described. Afterwards, the simula-
tion programme is briefly described; more implementation details can be found in ap-
pendix C. The theory follows closely [50].

3.2.1 Fresnel’s coefficients in the x-ray regime

Classical optics are described by the well-known Maxwell equations. The most impor-
tant solution in vacuum is the set of plane waves. These are fully defined by their wave
vector~k and the dispersion relation k =ω/c. In isotropic, homogeneous media, this is
generalised using the index of refraction to k =ω/n(ω)c.

In x-ray optics, the index of refraction n = 1−δ+iβ is a complex number; its real part
1−δ is slightly smaller than unity. By this, the phase velocity is greater than the speed
of light. N.B., however, that information is transmitted with the group velocity, defined
as dk/dω [8]; this turns out to be less than c. Due to the imaginary part β, waves in
media suffer absorption, hence loss of energy and intensity. Often the linear absorption
coefficient µ = 2kβ is used to describe absorption; the intensity after propagation of a
distance d in such a medium is reduced by a factor of e−dµ.

At interfaces of media with different n1,2, beams are reflected and refracted. The
refracted angles θ2 (measured against surface, see figure 3.3) or ϑ2 (measured against
surface normal) are given by Snell’s law,

ϑ2 = sin-1
(
n1/n2 sinϑ1

)
, θ2 = cos-1

(
n1/n2 cosθ1

)
. (3.1)

The reflected amplitude depends on polarisation; Fresnel’s coefficient for the σ-
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Figure 3.3: Definition of “optical” and “x-ray optical” angles, ϑ and θ. In x-ray optics, the real part of the index
of refraction is usually smaller than unity, |n| = 1−δ< 1, with δ∼ 3×10−6 for silicon at a photon
energy of E = 12.4 keV. This means that a transmitted ray is refracted towards the surface; for small
angles, θ. 2.5 mrad, total reflection occurs.

component (component perpendicular to the plane of incidence) of the amplitude is

rσ =−sin(ϑ1 −ϑ2)

sin(ϑ1 +ϑ2)
= sin(θ1 −θ2)

sin(θ1 +θ2)
, (3.2)

while the π-component (parallel component) is

rπ = tan(ϑ1 −ϑ2)

tan(ϑ1 +ϑ2)
= tan(θ1 −θ2)

tan(θ1 +θ2)
. (3.3)

The reflected intensities are given as |r |2. Note that under the condition of total reflec-
tion (where due to β> 0 the reflectivity is not strictly 1.0), a phase jump of

∆φ= 2 tan-1

(
−

√
2δ− sin2θ1

sinθ1

)
(3.4)

occurs [8, 23, 50, 54]. Using complex numbers in calculating r , this phase shift is au-
tomatically accounted for. In the following, we will drop the index and call θ := θ1

the gracing angle of incidence. The phase shift determines the structure of standing
waves [55].

3.2.2 Goos-von Hänchen effect

The aforementioned phase shift ∆φ(θ) depends on the angle of incidence θ and ap-
proaches zero at the critical angle. Since the local angle of incidence, θ(s), changes
along the mirror’s surface s, a phase gradient is introduced. In a thin-lens approxima-
tion, a constant phase gradient in the mirror’s plane corresponds to a lateral shift in the
focal plane (which can be seen as the Fourier plane in first approximation).

This shift of the focus can be interpreted as a Goos-von Hänchen effect known from
experiments in the visible regime of optics: Beams impinging at total reflection at a
boundary seem to be reflected at a laterally shifted point. Goos and von Hänchen
measured this shift to be on the scale of a wavelength, hence for an accurate measure-
ment many reflections and a very confined beam had to be used in their experiment in
1943 [51, 56].



22 Chapter 3. Simple Mirrors

(a) (b)

-40    0   40

local angle, θ in m
rad

4.5

4.0

3.5

2.0

1.5

1.0

mirror’s surface, s in mm
-100     0   100

intensity

1.0

0.5

0.0

lateral axis, y in nm

Simulated focus
real n
complex n

Figure 3.4: Goos-von Hänchen shift, simulated for the P10-HFM. In (a), local angle θ(s) (blue line) and phase
shift (green dashed line) along the surface are shown, while in (b) the intensity in the focal plane
has been calculated. The red line is a simulation result using only the real part of the index of
refraction, n = 1−δ, while the orange dashed line has been calculated with n = 1−δ+ iβ.

In terms of wave optics, the phase shift ∆φ is attributed to the evanescent wave:
Although totally reflected, the wave penetrates the second medium, but exponentially
decaying. The evanescent wave propagates parallel to the surface, accumulating phase
due to n ≈ 1−δ. The evanescent wave is the optical analogue of quantum mechanic’s
tunnel effect.

In figure 3.4 (a), both the local angle of incidence θ(s) (blue line) and the result-
ing phase-shift ∆φ(θ) (green dashed line) are shown as a function of the surface co-
ordinate s for the P10-HFM mirror1. At λ = 0.1 nm, the average phase gradient of
−0.49 rad/320 µm along the projected aperture corresponds to a deflection angle of
24.4 nrad, hence the focus point should be displaced by ∆y ≈ −4.88 nm, as estimated
by a simple formula:

∆y ≈ f ×α= f × ∂φ ·λ

∂(Lθ) ·2π
, (3.5)

with focus length f , wavelength λ, and phase shift gradient ∂φ/∂(Lθ), were L denotes
mirror length and θ the average angle of incidence. Numerical propagation yields a
shift of −4.78 nm, see figure 3.4 (b). The red line has been simulated for a Pd mirror,
using the respective real valued index of refraction. For the orange dashed line, the
complex valued index of refraction that includes absorption has been used. This yields
an additional phase shift of opposite sign, but roughly twice as large. The resulting
focus shift is +4.79 nm, negligible compared to the focus size of ∆= 54(1) nm (FWHM)
in both cases.

The data are consistent with no impact on focus size of 54 nm.
The simple estimation (3.5) assumes a constant propagation distance f , whilst the

actual distance from the curved mirror to the focus changes. The numerical propaga-
tion, on the other hand, accounts both for this effect and ∆φ’s dependence on surface
position.

1See table 3.1 for geometrical and physical parameters.
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3.2.3 Fresnel-Kirchhoff integral

Propagation of a complex valued coherent monochromatic optical field in free space
can be modelled with the Fresnel-Kirchhoff diffraction integral (FKI) [54, 57]. For each
point in the target region, the amplitudes of the source are multiplied by a spherical
wave term and added up; this scheme is an implementation of Huygens’ elementary
sources. Arnold Sommerfeld discussed subtle mathematical limits and improvements
[58].

For convenience propagation in “1+1 dimensions” is used in this thesis, i.e. source
and target plane are one-dimensional arcs or lines; to propagate from source points ~r ′
to target points~r , we write

ψ(~r ) = 1

iλ

∫
ψ(~r ′)

exp(i k∆~r )p
∆~r L

d A. (3.6)

In this form, an obliquity factor has been dropped, which usually is unity in the geome-
try of total reflection mirrors; in the simulations, it is included. In our 1+1 dimensional
approach we propagate cylindrical waves; the length L in the denominator represents
the height of such a cylinder, whilst d A integrates over the cylinder barrel.

3.2.4 Gouy phase shift

Following a light wave along the optical axis through the focal plane, a phase shift
of π/2 (for one-dimensional foci, π for two-dimensional ones) is accumulated [17]. A
Gaussian beam is defined as

ψ(x, y) =ψ0
w0

w(z)
exp

(− r 2/w(z)2)exp
(− i kr /2R(z)

)
exp

(
iζ− i kz

)
,

with minimum beam waist w0, beam waist w(z) along the optical axis z, phase cur-
vature R(z) and wave number k = 2π/λ. This beam exhibits a phase term e iζ, ζ =
tan-1(z/z0). Propagating along the optical axis, this evaluates to −π/2 at −∞ and π/2 at
+∞, continuously incrementing with steepest derivative in the focus. In case of fields
focused by lenses, a similar phase is obtained, with some oscillatory behaviour due to
diffraction effects. Corresponding phenomena will be encountered in our numerical
analysis of x-ray reflection mirrors. Although the scalar Gaussian beam is an important
model system in optics, and often used to describe i.e. laser light, it does not satisfy the
wave equation [59], but the parabolic wave equation.

3.2.5 The programme

As a prerequisite for the multilayer simulation code, a modular programme has been
written in C++ that models focusing of cylindrical waves emerging from a point-source
by a “simple mirror”. The mirror itself is described by the Fresnel coefficient of reflec-
tion. Propagation is modelled by a numerical summation of the Fresnel-Kirchhoff inte-
gral. The computer code is organised in interacting classes that each simulate different
parts of the physical set-up, like the source, the mirror and an array of line detectors.
Currently, mirrors cannot be “switched” online, the programme has to be recompiled
after a simple change to the source code.
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XMS & XMLS For development and first testing purposes, a programme called XMS
for x-ray mirror simulations has been written; later it was migrated into a more mod-
ularised code base, the x-ray multilayer mirror simulations. In the latter, physical ob-
jects are modelled as C++-classes. This enables for easy change and adoption of dif-
ferent models. The main user interface (UI) of XMLS is based on the readline2 library
featuring a command line interface for interactive changing of parameters and starting
the calculation. For remote access and as a graphical UI, essential functions are avail-
able via HTTP (hypertext transportation protocol): simple calculations can easily be
controlled via a web browser; more elaborated remote control from other programmes
(like Matlab, gnuplot etc.) is possible by directly sending HTTP commands to the XMLS
kernel. A detailed reference with example codes can be found in appendix G. The basic
class design of XMLS was re-used for other projects.

Draft overview of classes Here we give a small overview of the different classes used
in XMLS. For details, see appendix C. XMLS is composed of three parts: A “kernel” with
its interface classes (CInterface, CIReadline, and CIWebserver) that store the cur-
rent parameters and can start the simulation. For each simulation run, an instance of
type CKernel is created, along with physical and non-physical classes. The former are
abstract notions that model different “devices” like a point-source, the mirror, and a
detector. Non-physical classes contribute helper functions for data management, anal-
ysis, and plotting.

Techniques: MPI, SSE & openMP For reasonable performance, different optimisa-
tion techniques have been used to numerically evaluate the FKI. In first tests, mes-
sage passing interface (MPI) has been used to share the computational load amongst a
large number of computers. With the advent of multi-core processors, now good perfor-
mance is available through single computers; thus the MPI approach was abandoned
and replaced by openMP to schedule parallelizable computations amongst different
CPUs or CPU cores. Additional speed-up could be achieved using Streaming SIMD3

Extensions (SSE). The illumination of the mirror surface by a distant point-source (typ-
ical distances are on the order of tens or even hundreds of metres) has to be calculated
with sub-wavelength accuracy; hardware precision of floating point numbers turned
out to be unreliable. To overcome this problem, two solutions exist. The critical equa-
tions could be replaced by Taylor approximations; but then the validity and number of
terms has to be checked for different set-ups. Instead, precision has been raised using
the GNU library for multiple precision calculations4. Whilst floating point arithmetic
based on double precision numbers uses a mantissa of 52 bit, GMP allows arbitrary
lengths. For typical beamline parameters, floating point operations should be carried
out with about 100 bit. The current implementation uses 256 bit. Computational im-
pact is very low for the affected part of the code. See [60] for a complete and exhaustive
discussion of such techniques.

2GNU readline: http://www.gnu.org/s/readline/
3Single instruction, multiple data
4GMP, see http://gmplib.org.

http://www.gnu.org/s/readline/
http://gmplib.org
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Figure 3.5: Measured figure errors of the HFM and VFM at P10 coherence beamline’s nano-focus and hologra-
phy end-station. Data have been measured by Frank Siewert, BESSY (HFM, blue, dashed line), and
WinlightX (VFM, red line), cf. [36, 62].

Tests We only give a brief summary of plausibility and analytical tests that have been
carried out with XMLS. Most important are basic focus properties: constructive inter-
ference in the focal spot, a nearly sinc2-pattern fulfilling the diffraction limit. Also the
Gouy-phase and Goos-von Hänchen shift could be observed as predicted by analytical
theory. See also subsection 3.3.1.

A computer code to simulate one-dimensional elliptically shaped
focusing mirrors has been written and tested. In the following
sections results will be presented to predict focused x-ray fields. In
combination with the scheme from chapter 2, focusing of extended
sources is carried out and compared to experimental data.

3.3 Partially coherent focus simulations

Theory and simulation code having been summarised, this section presents our results
of partially coherent focus simulations for x-ray total reflection mirrors. We start with
the focus of a point-source and distortions due to figure errors, before generalizing
towards partially coherent sources. Subsection 3.3.4 shows results on how to improve
coherence properties with slits in front of the mirror (on the source side). In section 3.4,
results for the defocus region, e.g. along the optical axis, are shown. While the simula-
tion code was prepared, the Institut für Röntgenphysik installed a set of KB mirrors for
a nano-focus and holography end-station at the coherence beamline P10 at PETRA III
in the framework of BMBF projects 05KS7MGA and 05K10MGA. Most of the following
results have been obtained for these two mirrors. The parameters of the horizontally
focusing mirror (HFM) and vertically focusing mirror (VFM) can be found in table 3.1
and in [53]. A more verbose description of the beamline is also given in [53]. Some of
the results shown below have already been published in [12,46,53,61]. Figure 3.5 shows
measured height deviation profiles of the two mirrors.
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Quantity HFM VFM Unit
distance from source 87.7 87.6 metre

distance to focus 200.0 305.0 millimetre
angle of incidence 4.0 4.0 milliradian

length 80.0 90.0 millimetre
coating Pd Pd

Table 3.1: Geometrical parameters of the considered total reflection mirror KB system, part of the nano-focus
and holography end-station at the coherence beamline P10 at PETRA III.

3.3.1 Focus of a point-source

Most tests of XMLS have been done for a mirror of Fresnel reflectivity, illuminated by
a point-source. This is the simplest set-up. Because the real undulator source has a fi-
nite spatial extent and is not perfectly coherent, experimental comparison is not easily
possible. The following simulations are valuable as a help in experiment design, partic-
ularly for geometrical mirror parameters and surface quality requirements.

The diffraction limited focus properties of the HFM and VFM have been calculated
for a photon energy of E = 12.4 keV and are summarised in figure 3.6 (HFM) and in
figure 3.7 (VFM). The focus size and coherence length in the focal plane are given in
table 3.2. Due to the finite source size and possible misalignments actual focus sizes
on the order of 120. . .380 nm are obtained [45]. In figures 3.6 and 3.7, the left column
shows results for the ideal mirror, while for the right column measured height devia-
tion profiles have been included into the simulation. Sub-figure (a) shows the intensity
distribution in the focal region; in (b) the phase of the focused x-ray beam is shown. In
this data, the harmonic plane wave has been subtracted. Lateral line cuts right in the
(best) focal plane are shown in (c).

According to the diffraction limit – see also (4.1) –,

∆= 0.88λ

NA
,

the theoretical lower bound for the spot size depends on the numerical aperture (NA),
and thus on several geometrical parameters. Here, ∆ is the full width at half maximum
(FWHM) for an assumed sinc2-distribution of intensity, which is the case within the
thin-lens approximation. By scaling the following quantities, the spot size should de-
crease: photon energy E , mirror length L, angle of incidence θ; focus length S2 (this

Focus size
Mirror point-source extended source Coherence length

P10-VFM 84(1) nm 99(1) nm 243(13) nm
P10-HFM 54(1) nm 212(1) nm 85(2) nm

Table 3.2: Simulated focus sizes for P10-HFM and P10-VFM, calculated for a photon energy of 12.4 keV and in
low beta operation. All values are given as full width at half maximum (FWHM) and are obtained
by a Gaussian fit. Uncertainties have been obtained from this fit. Coherence length will be defined
further below.
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scales inversely). A numerical simulation allows for more rigorous treatment including
the curved geometry and Fresnel reflectivity (limited effective numerical aperture NA).
In figure 3.8, the simulated spot size (FWHM) of the ideal HFM is shown as a function
of parameter scaling. The reference values are given by the “default geometry” and a
photon energy of 12.4 keV.

3.3.2 Influence of figure errors

The intensity and phase distribution in the focal region of the HFM (figure 3.6) and the
VFM (figure 3.7) have been simulated for an illumination of a point-source, both for
the ideal mirror (perfect ellipse, left column in the figures) and the real mirror (right
column; see figure 3.5 for the measured height deviation profile). In part (a), the inten-
sity distribution is shown on a linear scale. The ideal mirrors show the typical shape
expected from analytical and numerical calculations carried out e.g. by Emil Wolf and
Edward Hubert Linfoort in the 1950s [63]. They have generalised prior calculations
by Zernike and Nijboer in 1949 [64] and included the phase distribution as well. In
these impressive and elaborate calculations using Lommel variables [65], the three-
dimensional focus of aberration free two-dimensional lenses have been studied; here
we deal with one-dimensional reflecting mirrors with gradients both in reflectivity and
phase. The one-dimensional problem itself considered here yields slightly different re-
sults, but agrees well from a qualitative point of view. This is also the case for the phase
distribution, shown in part (b).

Precisely polished mirrors have already been simulated and thoroughly analysed
elsewhere [50, 66]. The results presented in this chapter have proven to be of signifi-
cance in interpreting the measurements at the P10 beamline.

Real structure’s influence in case of the superiorly polished HFM (see figure 3.5)
is negligible. The “best focal plane” with smallest spot is shifted towards the mirror
by about 150 µm; the focal size itself does not change within the uncertainty of e.g. a
sinc2-fit; see table 3.2. Figure 3.6 (c) shows a line cut of intensity and phase in the (best)
focal plane. In case of the ideal mirror (left column), intensity agrees well with a sinc2-
function. The phase is rather flat (except for some small angle mismatch with the op-
tical axis and characteristic phase jumps of π between side lobes). Including the mea-
sured height deviation profile, the central spot is hardly influenced; it is only higher or-
der side lobes that are significantly distorted. The phase distribution gets rather curved,
the phase jumps are washed out.

In case of the VFM, height deviations introduce significant distortions of intensity
and phase distribution, see figure 3.7 (right column). The best focal plane (defined by
highest peak intensity) is shifted by about 800 µm towards the mirror; the side lobe
structure is changed strongly. The phase distribution is affected significantly.

These simulations have been carried out using the measured height deviation pro-
files for the two mirrors. A more quantitative study of figure errors’ influence on focus
sizes would be possible, but is beyond the scope of this thesis.

An extension of the work in view of further upgrades or similar beamline concepts
as P10 could address the following issues:

Instead of measured profiles, consider an ensemble of parametrised (like wave-
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Focus simulations for a point-source – P10-HFM
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Figure 3.6: Simulation results for a single point-source, here for the P10-HFM. The left column has been ob-
tained for a perfect mirror, while in the calculations shown in the right column, a measured height
deviation profile has been included. In (a), the intensity distribution in the focal region is shown,
while (b) shows the phase, divided by a plane-wave; a lateral cut of intensity and phase is shown
in (c).
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Focus simulations for a point-source – P10-VFM
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Figure 3.7: Simulation results for a single point-source, here for the P10-VFM. The left column has been ob-
tained for a perfect mirror, while in the calculations shown in the right column, a measured height
deviation profile has been included. In (a), the intensity distribution in the focal region is shown,
while (b) shows the phase, divided by a plane-wave; a lateral cut of intensity and phase is shown
in (c).
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Figure 3.8: Simulated diffraction limit for the ideal P10-HFM as a function of parameter scaling. The abscissa
shows a scaling factor, where 1 is the default geometry (at a photon energy of 12.4 keV). The different
curves show the simulated focus sizes for scaling of the indicated parameters.

operation mode σv σh ∆v ∆h ξ1(v×h) ξ2(v×h) unit
low beta 6.0 36 320 2455 233×39 250×39 µm

high beta 5.5 141 336 702 254×10 275×10 µm

Table 3.3: Source and beam sizes at PETRA III, P10 beamline. The values σv,h are the root mean square (rms)
sizes of the undulator source, in the vertical and horizontal direction, respectively. Beam sizes ∆v,h
are calculated for a propagation distance of 87.7 m and a photon energy of 12 keV. Coherence
lengths ξ1 are calculated for incoherent sources, ξ2 account for emittance effects [11].

lengths, amplitudes, and correlation lengths) of random profiles; simulate the complex
amplitude for each profile in the ensemble, and study, for example, the following quan-
tities as a function of the parameters: focus size, focus position along the optical axis,
fraction of energy in the side lobes, curvature of the phase front within the central spot,
to name a few.

3.3.3 Focus of extended source

In this section we present results obtained using the partially coherent propagation
scheme introduced in chapter 2. The spatially extended, assumed quasi-monochroma-
tic, source is modelled by a large number of independent point-sources. These virtual
point-sources are placed along the semi minor-axis of the ellipse and weighted by a
Gaussian distribution of width σ. The beamline can be operated either in low beta
mode or high beta mode; in table 3.3, the respective source sizes in both dimensions
are given for both operational modes. The data are taken from the technical design
report of PETRA III [10].

Note that the actual coherence properties of undulator sources are not only given
by the source size, but also affected by the divergence of the beam. Within the Gaussian-
Schell model (GSM), such sources are described by two quantities: source sizeσs and a
coherence length in the source plane, σc [6]. In the horizontal direction, usually σc ¿
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Figure 3.9: Intensity distribution of HFM (left) and VFM (right) at the coherence beamline P10, simulated for
a photon energy of 7.9 keV. Red lines show partially coherent intensity in low beta mode, whilst
blue dashed curves are intensity of the central point-source only. Green dotted lines show degree of
coherence with respect to the optical axis. Height deviation (figure 3.5) is respected.

σs, and the coherence properties are mainly given by the source size. But in the vertical
direction, oftenσc &σs is achieved [11]. In this thesis, the limit of an incoherent source
is assumed.

The following results thus underestimate the vertical coherence properties. In table
3.3, the expected coherence lengths in the mirror plane are calculated. The values ξ1

are given in the limit σc → 0, while ξ2 account for a coherent source given by the GSM
and the parameters in [11]. Clearly, ξ1 and ξ2 agree well for the horizontal direction,
while the GSM-value ξ2 gives a slightly longer coherence length in the vertical direc-
tion. These values have to be compared with the geometrical acceptance of the KB
mirror pair, which is on the order of 320 µm. Hence the HFM will be illuminated with a
partially coherent beam, while a degree of coherence close to unity is expected for the
VFM.

Numerical results for the two mirrors are shown in figure 3.9. The simulations have
been carried out for a photon energy of 7.9 keV and the nominal source sizes of ta-
ble 3.3, low beta mode. The geometrical parameters of the set-up can be found in
table 3.1, together with a plot of the used height deviation error profiles. The source
has been modelled using 601 (HFM) or 401 (VFM) non-correlated point-sources and
10,000 stochastic realisations using the scheme described in chapter 2. The red lines in
figure 3.9 show the partially coherent intensity in the best focal plane, while the blue
dashed curves show the intensity of the central point-source only. The green dotted
lines show the degree of coherence with respect to the optical axis. As expected from
the parameters, the HFM produces a partially coherent field, while the VFM focuses
nearly fully coherently.

These data have been obtained for the “fully illuminated” mirrors. In the following
subsection we will study the influence of slits in front of the KB box.
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3.3.4 Improving coherence with slits

As specified in table 3.3, the large horizontal source size yields coherence lengths in the
mirror plane of 39 µm (low beta) and 10 µm (high beta, rms values); the HFM’s aperture,
though, accepts 320 µm. Hence the illumination is only partially coherent, resulting in
low contrast for diffraction experiments. The experimental set-up allows for a reduc-
tion of the effective aperture: a pair of slits in front of the KB box can be closed to con-
fine the incoming beam width. In this subsection we estimate the coherence properties
and compare results with experimental data for different slit gap widths.

The data shown here have been measured in April 2011 by scanning a two-
dimensional waveguide through the focus. The beamline was operated in low beta
mode at a photon energy of 13.8 keV. We will use a rather naïve and an improved slit
model:

Naïve slit model First we consider the case of “perfect slits”, that just cut the beam
without any diffraction. In the simulation the mirror has been shortened appropriately.
For a gap width of 50 µm, this corresponds to an effective mirror length of 12.5 mm.
The slit model is illustrated in figure 3.10 (a), while 3.10 (b) shows the simulated curve
(red line) and the experimental data (blue, dashed line). Clearly, the main features of
the central spot are in good agreement; but the experimental data show two additional
peaks at approximately ±2 µm. Similar scans for different gap widths show that these
peaks have a nearly constant intensity and vanish at large gap widths.

Improved slit model The experimental set-up consists of “scatterless slits” [67] that
are specifically designed to reduce stray radiation using tilted Germanium brackets. In
an improved slit mode, we will study triangular brackets as shown in figure 3.11 (a). The
incoming beam is not fully absorbed by the slit; in fact, at a photon energy of 13.8 keV
the first 30 µm of the slit bracket show an integrated transmission of roughly 10−3. Due
to oblique incidence, refraction occurs. From the peak position at ≈ ±2 µm and the
focal distance of 200 mm, a refraction angle φ≈ 10 µrad can be estimated. The index of

(a)

-3.0 -1.5  0.0  1.5  3.0

intensity

100

10-1

10-2

10-3

lateral axis, y in μm

Naïve slit model Measured / simulated focus

gap

width

(b)
experimental WG scan

original mirror
ellipse

used mirror

“perfect” slits

Figure 3.10: Naïve slit model, illustrated in (a), and the simulated intensity in the focal plane (b, red), together
with experimental data (blue, dashed).
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refraction for Germanium at this photon energy is n ≈ 1−5.06×10−6. Following figure
3.11 (a),

α=−φ/δ.

Putting in the numbers, the tapering angle can be estimated to be α≈ 65◦.
The simulation has been enhanced using this slit model in the following way:

• The incoming illumination is projected on the slit,

• and multiplied by a transmission function depending on the local thickness.

• This modulated illumination on the mirror surface is conventionally propagated
to the focal plane.

Using the scheme from chapter 2, a partially coherent propagation including this im-
proved slit model has been carried out. Figure 3.11 (b) compares the same experimen-
tal WG scan from figure 3.10 with a simulation of the more realistic slit mode; the hor-
izontal gap width is 50 µm. Again the prediction based on simulation is shown with
red lines, the experimental WG scan with blue dashed lines. The simulated degree of
coherence with respect to the optical axis is shown as a green dotted line.

A large defocus-region of the set-up in figure 3.11 is shown in figure 3.12, with the
optical axis x ranging from −3 mm to 3 mm around the focal plane. The small aperture
enlarges the depth of focus to one millimetre. The additional peaks are clearly visible
as two rays that interfere with the central beam just in front of the focus.

For a small gap of only 8 µm, figure 3.12 (b), the central beam is very weak and a
focus about 3 mm in front of the nominal focus plane appears due to interference of
the refracted beams. At 100 µm, the relative intensity in the side lobes is weak.

Using this improved slit model, simulation and experimental data are now in good
agreement along the full width. A quantitative comparison is shown in table 3.4 based
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Figure 3.11: The same as in figure 3.10, but for the improved slit model of scatterless slits. Simulated and ex-
perimental data are in good agreement. A quantitative statement is given in the text and in table
3.4. The green dotted line shows the computed degree of coherence with respect to the optical axis.
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Figure 3.12: Two-dimensional intensity distribution of the set-up shown in figure 3.11, in a large defocus re-
gion of x ∈ {±3 mm}. The two side lobes in the focal plane can be distinguished as individual
“rays”. Slit gaps are (a) 50 µm, (b) 8 µm, and (c) 100 µm. Illumination of a low beta source has been
assumed.

on the Kullback-Leibler divergence (KLd), known from information theory. For two dis-
crete probability distributions p(x) and q(x), the KLd(p, q) is defined as [68]

KLd(p, q) :=∑
x

p(x) log
p(x)

q(x)
.

Intensity distributions can be interpreted as the probability distribution of finding a
photon at a specific location. Hence after normalisation5, we can use the KLd to com-
pare simulation and experiment. Note that the KLd is not symmetric in p(x) and q(x).
We will highlight the meaning of this value using basic concepts from the field of infor-
mation theory, cf. [68]. The KLd is used as an alternative to the χ2 test; this is advan-
tageous because the KLd is related to the maximum likelihood estimator for Poisson
processes. However, the experimentally measured diode current is not fully Poisson
distributed. Essential definitions are given now.

Entropy in information theory Given a finite alphabet Σ of symbols (“pixels”), a ran-
dom variable X on the alphabet and a probability mass function (“normalised inten-
sity”) p(x) = Pr{X = x}, x ∈Σ. Then the entropy H(X ) of this random process is defined
as

H(X ) =−∑
x

p(x) log p(x). (3.7)

5∑
p(x) = 1
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Gap width Defocus Backg. G. Amp. G. σ H(exp.) KLd(naïve) KLd(imp.)
8 µm 0.2 mm 0.0007 0.008 3.1 µm 3.98 0.60 0.0356

50 µm 1.2 mm 0.0020 0.014 2.5 µm 3.48 0.22 0.0279
100 µm 1.1 mm 0.0005 0.021 3.1 µm 3.38 0.41 0.0409

Table 3.4: Kullback-Leibler divergence and fit parameters for the two slit models at different gap widths; see
figures 3.10 and 3.11 for the 50 µm-entry. Parameters are explained in the text.

Optimal code Given now a “sentence on this alphabet” (corresponding to a “scan of
intensity in the focal plane”), we seek an optimal (i.e. shortest) description. In informa-
tion theory it is shown that there exists an optimal code with length L such that

H(X ) ≤ L < H(X )+1,

so the entropy of the stochastic process is a lower bound on the description length.
How such codes can be constructed has been shown by Huffman [69].

Kullback-Leibler divergence in information theory The KLd is also known as the
relative entropy between two probability distributions p(x) and q(x). Given one dis-
tribution, KLd is a measure of how good we can predict the other distribution. “It is
the reduction in the uncertainty of one random variable due to the knowledge of the
other” [68]. Assume a random process X over an alphabetΣ and a Huffman code based
on q(x). If the actual source is described by the distribution p(x) 6= q(x), the code is not
optimal. The Kullback-Leibler divergence KLd(p, q) is a measure of the non-optimality,
i.e. quantifies how many additional bits are needed to describe p(x) with the wrong
model based on q(x).

Kullback-Leibler divergence in the focal plane Suppose we want to detect individ-
ual photons with a one-dimensional pixel detector in the focal plane and store the
position (i.e. pixel number) of each “click”, using an optimal code. Based on the simu-
lated intensity distribution, we have a model q(x) of the photons’ distribution on the
pixels and can construct a Huffman code. But in reality, the photons will be distributed
by (the unknown, but experimentally observed) p(x)6. So the KLd values given in table
3.4 quantify how many additional bits of storage are needed to record the photons’ po-
sition, distributed according to p(x), if we assume they are distributed according to the
model q(x). The smaller the KLd, the better our model intensity distribution describes
reality. These values have to be compared with p(x)’s entropy that gives the average
description length in Bits.

Using the improved slit model, a KLd of 0.0279 is achieved for the gap width of 50 µm,
while the naïve model would “waste about 0.2 bits per photon”. Table 3.4 shows KLd val-
ues for similar measurements at gap widths of 8 µm (0.04 vs. 0.60) and 100 µm (0.04 vs.
0.41). In addition to the improved slit model, a constant background (given in the col-
umn “Backg.”) and a Gaussian of height “G. Amp” and width “G. σ” has been added to

6“Experimentally observed” means that we treat the data as the truth, while “unknown” reminds us of
uncertainties like noise.
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the simulated intensities to further reduce the KLd, and hence describe experimental
data better. Best accordance has not been found in the simulated focal plane, but in a
small defocus of 0.1. . .1.2 mm, as stated in the table.

This might be explained considering additional uncertainties in the experimental
set-up: the slit gap could be slightly off-centre, so the mirror might be illuminated
asymmetrically. Also the focal plane is not known with highest accuracy; alignment
of the whole KB set-up is uncertain in several degrees of freedom.

Table 3.4 also gives the entropy H of the experimental data, according to (3.7), which
has been evaluated after normalisation of the 101 data points (

∑
I = 1). The two side

lobes receive nearly the same intensity for all gap widths, since they are illuminated
by finite transmission in the slit brackets. The central peak is illuminated by the gap –
and thus scales with the gap width. So at large gaps, the intensity distribution is peaked
in the centre, the side lobes’ relative contribution becomes negligible. But this simply
means that one can more easily “predict where the photon hits the focal plane” – the
entropy drops, as calculated from the data and shown in the column “H(exp.)”.

Degree of coherence In figure 3.11 (b), the degree of coherence with respect to the
focal point is shown by the green, dotted line. Indeed, closing the slits improves co-
herence properties. Figure 3.13 shows experimental far-fields of a multilayer Laue lens,
illuminated with two different slit gaps. At a large gap width of 380 µm in (a, top), the
pattern is washed out; a more coherent illumination, gap width of 80 µm in (a, bottom),
shows significantly higher visibility of very small periodicity in reciprocal space. In part
(b), intensity has been integrated vertically and plotted horizontally. With reduced aper-
ture, a fine structure becomes apparent. Its periodicity of roughly seven pixels suggests
a diffracting structure of about 380 nm, which corresponds to the whole MLL size. A
visibility of about 0.5 can be expected.

The MLL has been designed by Aike Ruhlandt for his Bachelor’s thesis [70] and has
been built by Tobias Liese [44]. Further analysis is beyond this thesis [45].

Focus simulations for point-sources as well as extended sources
have been analysed, including real structure effects. The mirror
simulations, combined with the scheme from chapter 2, allow for
quantitative predictions of the partially coherent intensity
distribution in the focal region. Using the improved slit model, we
can better understand and exploit experimental data. Simulation
and experiment have been compared quantitatively.
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3.4 Defocus properties

The described KB mirror system at the P10 coherence beamline at PETRA III is part of a
dedicated set-up for propagation and waveguide based imaging. In such experiments,
the specimen is placed in the divergent beam in defocus, usually several millimetres
behind the focal plane; thus it is illuminated by a diverging beam. The detector in the
far-field then measures a highly magnified “image”; but the measured intensity pattern
encodes both amplitude (absorption contrast) and phase (phase contrast) of the sam-
ple. Only with numerical means is it possible to reconstruct interesting information.

A rich literature about reconstruction algorithms, their applications, and limitations
has been published in the recent past – [30, 66, 71–74], to list a few.

In the following sections we present experimental and numerical results regarding
the KB system’s defocus properties. Some open questions under active research are
summarised at the end of this section.

(a) Experimental diffraction pattern of ML Laue lens

(b) Vertically integrated intensity
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Figure 3.13: Experimental far-fields of a multilayer Laue lens in the KB focus, illuminated with a KB gap width
of 380 µm (a, top) and 80 µm (a, bottom). In (b), intensity has been integrated vertically and plot-
ted horizontally for the two slit gap widths. Increasing the degree of coherence, smaller interfer-
ence structures become visible.
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(a) Simulation (b) Experiment 1.0

0.5

0.0

Figure 3.14: Simulated (left) and experimental (right) near-field of the P10 KB mirror set-up; intensity shown
on a linear grey-scale.

3.4.1 Crossed KB geometry

So far we have treated only one mirror of the Kirkpatrick-Baez focusing set-up. Now we
generalise to the three-dimensional case, combining independently focused fields in
horizontal and vertical direction. Whilst in the experimental set-up the incoming beam
hits both mirrors sequentially, the “KB assumption” is that the two dimensions decou-
ple. The simulation is carried out twice, for each mirror separately; the two line-cuts
of intensity (e.g. in the focal plane or some defocus) then are crossed and multiplied.
Mathematically, this is a tensor product of two vectors, each holding the complex val-
ued amplitude of the independent line cuts.

An example is shown in figure 3.14. In part (a), the two-dimensional intensity distri-
bution is shown as a linear grey-scaled image. In the simulation, both height deviation
profiles and partial coherence effects have been included. An experimental near-field
measurement is shown in figure 3.14 (b). The parameters are shown in table 3.5. Note
that defocus distances differ to overcome numerical noise in the simulation. The inten-
sity distribution is comparable, nonetheless.

3.4.2 Figure errors and Fresnel fringes

The numerical simulation allows for a distinction of artefacts due to figure errors and
propagation. The horizontal lines are present also for different defocus distances and
can be attributed to the figure errors. A direct comparison to derivatives of the height

Quantity Value Quantity Value
photon energy 7.9 keV operational mode low beta
defocus (sim.) 32 mm defocus (exp.) 500 mm

field of view (sim) 60×40 µm field of view (exp) 1.0×0.8 mm

Table 3.5: Parameters for the simulation and experiment shown in figure 3.14. Simulated defocus distance is
smaller to overcome numerical problems.
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deviation profile has not been carried out. Vertical stripes at the left and right border
are mainly Fresnel fringes due to propagation, that get weaker for larger propagation
distances; some of the faint vertical stripes in the centre can be attributed to HFM’s
figure errors.

Isolated two-dimensional features in the experiment can be attributed to dust and
other small impurities. This effect could be modelled if both mirrors are treated as two-
dimensional surfaces, which is not possible with the used simulation code.

3.4.3 Gouy’s phase shift

Using the stochastic approach of partial coherence presented in chapter 2, not only the
averaged intensity and the degree of coherence, but also the phases of all realisations
in an ensemble can be analysed. In this subsection we present findings concerning the

“stochastic Gouy phase”, viz. the phase of the focused wave field along the optical axis.
The Gouy phase has already been introduced in subsection 3.2.4, then for a coherent
point-source.

Due to stochastic illumination, the “phase” in each point in space is random; there-
fore we use the average relative phase ϕ(x) of the stochastic ensemble, defined in sec-
tion 2.3:

ϕ(x) = 〈
φr (x)

〉= 〈
arg

(∑
wncrand

n un(x)
)
−φ(F)

〉
,

where φ(F) means the instantaneous phase in the focus point. It can be shown that the
phase in the focus of a point-source has a value of −π/2 [17], relative to a focusing lens.

After phase unwrapping (see section 2.3), the individual relative phases of an ensem-
ble consisting of 104 realisations have been sorted into histograms; these are shown as
a grey-shade on a logarithmic scale in figure 3.15 (a-d). The histograms have bin sizes
of 4 µm along the optical axis and 0.1 rad in the relative phase. The first three simula-
tions are based on the P10-HFM geometry for source-sizes of σh = {1,12,36} µm, while
(d) is calculated for the P10-VFM mirror at the nominal source size of σv = 6 µm. The
coloured lines are representative “trajectories” of selected relative phase realisations of
the ensemble. The calculations have been carried out using ideal mirror profiles.

For the small, nearly fully coherent source, only small fluctuations of the stochastic
Gouy phase along the optical axis are present; that means that the phase relations be-
tween different points on the optical axis are nearly deterministic and follow the Gouy
phase of a point-source. The intermediate source size ofσh = 12 µm shows some fluctu-
ations on the order of up to 2π; a minor fraction of the realisations show purely random
phase relations that reduce visibility in an interference experiment. At the nominal hor-
izontal source size, the relative phase has a large variance; some realisations show a
phase randomness of more than 3π in the considered region. In the vertical geometry,
the nominal source size gives rather clean phase distributions with low randomness.

To quantify the randomness of the relative phases φr(x), its standard deviation
∆ϕ(x), defined as

∆ϕ(x) =
√〈

φr (x)2
〉−〈

φr (x)
〉2,
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can be used. This gives the variance of the random phase along the optical axis. The
evaluation of ∆ϕ(x) for the two geometries and the different source sizes is shown in
figure 3.15 (e). Near the focus, the randomness of the phase vanishes by design.

The Gouy phase phenomenon has been generalised to the case of
spatially partial coherence. Random phase relation fluctuations have
been quantified as the standard deviation of the relative phase along
the optical axis and studied for two focusing mirror set-ups.

Open questions

Here we summarise some topics regarding propagation based imaging using focused
synchrotron radiation that are open questions of research.

At present, the perhaps most important questions deal with the influence of figure
errors and partial coherence. Experimental intensity data have to be preprocessed due
to imperfections of the detector and set-up. But it is not clear how to correct for figure
errors of the KB mirror system in propagation based imaging.

Currently, the standard-procedure used at the P10 beamline includes a division of
the measured intensity image (with sample) by an empty (image without sample). But
the Fresnel number of propagating defects depend on the defects’ size (spatial fre-
quency); experimental experience strongly suggests that a simple empty correction is
not applicable, cf. [75]. For large magnifications and hence small z1 (see figure 2.4),
Fresnel fringes dominate and might shift significantly due to small vibrations in the
set-up. In addition, the illumination function may not be sufficiently constant (an im-
portant assumption of ptychographic methods) due to fluctuations of the particle orbit
in the synchrotron and vibrations upstream (optics like monochromators etc.).

Furthermore, phase retrieval methods rely on a deterministic phase of a coherent
source. Just recently, a “polyCDI” method has been used to reconstruct a test image
[76], illuminated with a broadband spectrum. This allowed for significant reduction in
exposure time. The incorporation of spatial coherence properties is under discussion.
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Figure 3.15: Gouy phase predicted at partial coherent illumination. In (a-d), histograms of relative phase
along the optical axis are shown for different illumination parameters, on a logarithmic grey-
scale, and some exemplary trajectories; (e) shows the standard deviation of Gouy phase along the
optical axis, for the configurations (a-d). Colours in (a-d) are only to distinguish exemplary tra-
jectories.





Chapter 4

Multilayer Mirrors

4.1 Introduction

Total reflection mirrors (TRMs) show high reflectivity for small gracing angles of inci-
dence θ < θc only; in a focusing set-up (see chapter 3), the local angle of incidence θ(s)
changes with surface coordinate s. The geometrical numerical aperture (NA) can be
approximated by the projected length sinθ ·L of the mirror, for some average θ. But the
reflectivity decreases rapidly beyond the critical angle; therefore the effective NA is lim-
ited. The vanishing reflectivity of a TRM is illustrated in figure 4.1 for an experimental
set-up.

This limit may be overcome by using a multilayer mirror (ML mirror), consisting of
up to hundreds of small bilayers of two materials with spacings of order few nanome-

(a) KB mirror far-field (b) Fresnel reflectivity
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reflectivity
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reflectivity
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Figure 4.1: Limited reflectivity of a total reflection mirror, operated above critical energy. (a) Experimental far-
field distribution, measured at a photon energy of 15 keV; (b) vertically integrated horizontal line-
cut of the reflectivity (red line) and calculated Fresnel reflectivity along the mirror surface (blue,
dashed line). The set-up is the horizontal focusing mirror at the P10 beamline, PETRA III.
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(a) (b) Ray-tracing (c) Dynamical theory

Figure 4.2: Functional principle of reflective multilayers: (a) In kinematical or Born approximation, each of
the confocal layers contribute to the overall reflectivity, since the angle of incidence is large com-
pared to the critical angle. Multiple reflections are neglected. (b) Using ray-tracing techniques, mul-
tiple reflections are taken into account. (c) Dynamical theory respects multiple diffraction of wave
fields.

tres. If the layer spacing Λ matches the Bragg condition, Λ(s) = λ/2sinθ(s), greatly en-
hanced reflectivity as known from crystals can be expected. However, the local layer
spacing has to match the local angle of incidence. Furthermore, due to refraction, the
Bragg condition has to be modified. The principle of ML mirrors is illustrated in figure
4.2. One distinguishes the kinematical or Born approximation (a) of single reflectivity
at each layer from ray-tracing techniques (b), where multiple reflections up to an up-
per bound are considered. In this work, an approach based on dynamical theory (c) is
used, where two wave fields are coupled by volume diffraction of the ML medium.

Multilayer deposition at the ESRF As we will see, many bilayer spacings on the or-
der of 2 nm have to be deposited on substrates several centimetres in length. For opti-
mal performance of the reflective focusing optics, the layers have to be uniform, with
allowed tolerances well below an ångström (0.1 nm). The most common deposition
technique for high aspect ML mirrors is magnetron sputtering. This method combines
a stable operation with high deposition rates. The sputtered particles possess high ki-
netic energies which helps to achieve both smooth and dense thin layers [47]. The mul-
tilayer laboratory at the ESRF was upgraded in recent years. The new magnetron sput-
tering set-up allows for uniform depositions of thin films with layer thickness in the
nanometre range. Using masks and programmable velocity variations of the sliding
carriage carrying the mirror substrate, gradients in lateral direction and depth are pos-
sible [77,78]. The deposition machine holds four targets that can be used for sputtering.
Most multilayers are built using alternating layers of tungsten (W) and boron carbide
(B4C), with typical single-layer thicknesses around 2 nm, and 25 to 100 bilayers in total.
Substrates of sizes up to 1 m×0.15 m can be treated. An image of the machine can be
found in figure 4.3.

In this chapter we will first derive a theoretical description based on two-beam ap-
proximation analogue to the Takagi-Taupin (TT) theory [79–82] well known for crystals;
this is carried out in section 4.2. An analogue set of coupled differential equations has
been used for nearly half a century in x-ray topography and related fields. Using ellip-
tical coordinates, a convenient description will be derived that is of similar form as
the theory known for flat crystals. The refraction correction [46, 47, 83] described by
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Figure 4.3: Photograph of the magnetron sputtering machine in the multilayer laboratory of the ESRF. Visible
are the four cathodes and the long vacuum chamber.

a modified Bragg condition will be incorporated within this wave-optical approach in
subsection 4.3.2, after some generalisations of the TT equations have been introduced.

Our method of solving the TT system is described and discussed in section 4.4. A
tabular description of the approach, and especially the algorithm, can be found in ap-
pendices A and D. A comparison of our approach with analytical results from the flat
case are summarised in section 4.5. Results for curved multilayer mirrors then follow
in section 4.6.

4.2 Takagi-Taupin equations in curved ML geometry

As a theoretical model to describe focusing ML mirrors a framework well known from
dynamical theory of x-ray diffraction in crystals has been chosen. It is based on the
Takagi-Taupin theory and the two-beam approximation. The incoming wave envelope
is denoted by ψ0, while the reflected wave envelope is called ψ1. The incoming wave
ψ0 is determined on the mirror’s surface by the illumination function. The reflected
wave is propagated from the surface to the focus.

These ψ0 and ψ1 are complex valued envelope functions, to be multiplied by cylin-
drical waves diverging from the source or converging to the focus. They interact with
the layer lattice, described by (pseudo) Fourier coefficients χ±1.

As a first step we will consider confocal elliptical layers and then include deviations
from this default profile. Such deviations are necessary to account for refraction, and
are described by a modified Bragg condition [46, 47, 83]. Now we look at different de-
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scriptions of x-ray diffraction in crystals and multilayers.

Diffraction limit The diffraction limited spot size ∆ in linear optics is given as

∆= 0.88·λ/NA, (4.1)

where NA = n sinε is the numerical aperture, n the index of refraction and ε the angle of
collimation. The factor 0.88 gives ∆ as a full width at half maximum (FWHM) for a one-
dimensional focus, in thin-lens approximation a sinc2-function. The Rayleigh criterion,
the distance of first minimum from the central spot, gives a prefactor of 1.00 in one
dimension; a circular aperture results in an Airy disk, with a prefactor of 1.22 (Rayleigh
criterion). For curved ML mirrors, the angle of collimation ε can be approximated as
the difference of the local angles of incidence at the left and right edge, ε = θ2 − θ1

1.
Bragg’s law gives the layer spacingΛ as a function of (vacuum) wavelength λ and angle
of incidence θ,

Λ=λ/2 sinθ,

the diffraction limit can be estimated by the layer spacing gradient [46]:

∆= 0.88

Λ−1
2 −Λ−1

1

. (4.2)

Hence, the lower limit of the spot size is related to the smallest structure in the ML. A
similar criterion is known from ML Laue lenses [8].

Kinematic theory, Born approximation As a first approximation, one can treat all
surfaces independently and add up reflectivity coefficients. Since reflected waves in-
terfere with each other, one would add amplitudes. Neglecting multiple diffraction is
known as the (first) Born approximation and the basis for kinematical diffraction de-
veloped about one hundred years ago.

Ray-tracing techniques follow geometrical beams through the ML structure, ac-
counting for refraction and reflection at each interface. More sophisticated methods
known as phase-ray-tracing include phase jumps and optical path lengths. Consider
the family of all ray paths of discrete length 2n −2,n ≥ 1, that enter the ML structure
and are transmitted or reflected 2n−1 times, and leave the ML at the surface after these
2n−1 steps. The number of rays in this family is then given as the nth Catalan number
cn [84–86]. A recursive algorithm to generate such families of rays is given in appendix
B.

Dynamical theory of x-ray diffraction Allowing the reflected wave to re-reflect, in
the end allowing multiple reflection and thus coupling of wave fields results in the dy-
namical theory of x-ray diffraction. Basically we treat a set of excited wave fields and

1This neglects curvature, however.



4.2. Takagi-Taupin equations in curved ML geometry 47

their interaction with a (discrete) diffracting structure. Modelling this structure as a
continuous diffractive volume, the wave fields are coupled to each other at every point
in space. Intensity is exchanged between all excited fields. The dynamical theory of x-
ray diffraction was mainly shaped by works of Charles Galton Darwin [87], Max von
Laue, Paul Peter Ewald and others [88]; historical notes and further references can be
found in [89,90]. Early reviews are listed in [91]. For an exhaustive discussion of several
approximations, read [92].

Two-beam approximation Instead of “many” excited fields, only two are considered,
namely the incoming wave and the reflected wave (or diffracted wave). This approach
is justified if only one point is sufficiently close to the Ewald sphere [90].

Takagi and Taupin The basic assumptions and simplifications of the TT theory are
(i) the two-beam approximation and (ii) the representation of the periodic structure
by its first Fourier series expansion coefficient; sharp surfaces properly described by
a rectangular wave are treated as a sine wave. The sine wave expansion then couples
the two wave fields. As we will see later, in the Takagi-Taupin approach it is easy and
natural to include distortions of the lattice.

History of TT-theory The Takagi-Taupin theory was developed by Daniel Taupin and
Satio Takagi in the 1960s [79–81]. Since then, numerical implementations [93–96] have
been developed to study x-ray diffraction of e.g. dislocations and other real-structure
effects in crystals. For a more complete review of the last four decades of dynamical
diffraction theory, cf. [90]. Recently, the TT theory was used in [43] to optimise ML Laue
lenses.

Methods for solving Analytical solutions only exist for very special and “easy” geome-
tries. In the last decades, most numerical simulations have been calculated with finite
difference methods [93, 96], i.e. by a simple point-to-point integration of the differen-
tial equations on a regular grid. To increase accuracy while decreasing run time, non-
regular grids have been proposed and used. Here, we will use a regular grid in elliptical
coordinates; in “real-space”, this also corresponds to a non-regular grid. Numerical so-
lutions based on the finite element method which is most convenient for non-regular
grids have been proposed [97], too.

In the following subsection we will derive the fundamental set of coupled differen-
tial equations using Takagi-Taupin formalism, but in elliptical coordinates.

Our nomenclature and the steps in the derivation are based on [43]; the choice of ellip-
tical coordinates has been developed together with Jean-Pierre Guigay in lots of fruitful
discussions. Claudio Ferrero is thanked for his advice in numerical treatment. Christian
Morawe contributed additional insights and developed the modified Bragg equation.

In subsection 4.2.2, deviations from the confocal geometry will be included in the
theory. Such deviations may stem from inaccuracies, but here we consider intended
deviations for optimisation.
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(a) Confocal ellipses (b) Elliptical coordinates
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Figure 4.4: Definition of elliptical coordinates (b) describing multilayers designed from nearly confocal ellipses
(a) conveniently.

4.2.1 Fundamental equations

In this subsection we will derive the Takagi-Taupin equations in the two-beam case in
elliptically curved multilayer structures. As in chapter 3 we consider 1+1 dimensions
for convenience; the elliptical ML is considered to be infinitely extended in the perpen-
dicular direction. A line-source emits cylindrical waves which look like circular waves
emitted by a point-source in the considered plane.

For further simplifications, we only consider scalar wave theory here, so neglect
any polarisation effects2. As the fundamental equation of scalar diffraction theory, one
component ψ of the electromagnetic field obeys the scalar wave equation

∇2ψ+k2(1+χ)ψ= 0. (4.3)

Here k = 2π/λ is the wavenumber and λ the wavelength in vacuum and χ is the sus-
ceptibility of the medium, which is related to the index of refraction n and the critical
angle of total reflection θc via

(1+χ) = n2 = (1−δ+ iβ)2 ≈ 1−2δ= 1−θ2
c .

In the calculations, numerical values for n(λ) are taken from databases [52].
In a first approximation, the surfaces of focusing multilayer mirrors represent con-

focal ellipses, see figure 4.4 (a) for an illustration. Thus we will introduce a system of
adequate coordinates: ellipses with s = const. and hyperbolas with t = const., as shown
in figure 4.4 (b). These two kinds of curves form an orthogonal basis in two dimensions.

With the distances r0 from the source to a point inside the ML structure, and r1 from
this point to the focus, we define (s, t ) via3

r0 + r1 = 2t , r0 − r1 = 2s;

by virtue of this definition, we get

r0 = t + s,
r1 = t − s;

∇ f (s, t ) =
(
α∂s

β∂t

)
f (s, t );

α(s, t ) = cosθ(s, t ),
β(s, t ) = sinθ(s, t ).

2In fact, polarisation dependent scattering often is included by an appropriate factor, often denoted as C ,
in literature.

3cf. [98], equations (21.1.1,21.4.1,21.4.2).
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The function f (s, t ) is arbitrary, but sufficiently smooth. The coefficients α and β are
the inverse scale factors of this choice of coordinates and are represented by

α2 = c2 − s2

t 2 − s2 , β2 = t 2 − c2

t 2 − s2 , (4.4)

with c being half of the (direct) distance between source and focus. The Laplacian op-
erator ∇2 can be expressed as

∇2 f =αβ
[
∂s

(
α

β
(∂s f )

)
+∂t

(
β

α
(∂t f )

)]
=α2(∂2

s f )+β2(∂2
t f )+ α2s

s2 − c2 (∂s f )+ β2t

t 2 − c2 (∂t f ).

Within the two-beam approximation, the scalar wave field ψ is considered to be
the superposition of two components. These components are modelled as cylindrical
waves P0 = e i kr0 (diverging from the source) and P1 = e−i kr1 (converging to the focus)
with slowly varying envelopes ψ0 and ψ1:

ψ=∑
h′
ψh′Ph′ ≈ψ0P0 +ψ1P1 =ψ0P0 +ψ1P0Φ1̄

= P0
(
ψ0 +ψ1Φ1̄

)
.

The gradient of the phase inΦ1̄ can be interpreted as a local lattice vector that diffracts
the incoming cylindrical wave into the outgoing, reflected, wave.Φ1 on the other hand
re-diffracts energy back from ψ1 to ψ0; the two beams thus are coupled. The strength
of the coupling depends on the achieved resonance.

For convenience we have defined phase factorsΦh , where the index 1̄ means −1:

Φ0 = 1, Φ1̄ = e−2i kt , Φ1 = e2i kt , Φ2̄ = e−4i kt .

With this ansatz we favour solutions to the wave equation that comply with our a
priori knowledge – there is exactly one point-source – and the requirement that there
shall be one focus. All possible solutions that do not fit into this model are not of inter-
est and thus discarded by design.

Up until now we have considered two waves propagating in vacuum. The ML struc-
ture is now described by its susceptibility function χ(s, t ). Since the layers are built in
a quasi-periodic manner, we will describe χ by its Fourier series expansion. In the two-
beam approximation, only terms of zeroth and first order are considered, hence

χ=χ0 +
∑

h 6=0
χhe i h̃t ≈χ0 +χ1̄e−i h̃t +χ1e i h̃t . (4.5)

For a definition of the Fourier components χ0, χ1̄, and χ1, see appendix I. Here, h̃ is
related to the reciprocal lattice vector in the elliptical coordinates and given by the
transformed layer thickness Λ̃. The transformation of coordinates gives an additional
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factor of sinθ(s, t ) that depends on position:

h̃ = 2π

Λ̃
,

Λ̃= Λ̃B ≈ΛB × sinθ = λ

2sinθ
× sinθ = λ

2
,

⇒ h̃ = 4π

λ
= 2k,

where we have used Bragg’s law; optimised ML structures are built by use of a modified
Bragg equation [46, 47, 83] resulting in a layer thickness ΛmB, which in the framework
of this theory is regarded as a distortion of the Bragg lattice. We will introduce the modi-
fied Bragg equation further below as an additional phase factor in a pseudo-Fourier se-
ries. Neglecting refraction and phase shifts, the Bragg law is fulfilled everywhere, since
the confocal ellipses follow the geometrical path condition.

Using Bragg’s law we have derived the Fourier expansion phase factor exp(i 2kt ),
which is constant for constant t . But these are just the ellipses in figure 4.4. Hence the
“Bragg layers” of a focusing ML mirror are confocal ellipses.

With the phase terms Φh defined above we can write the Fourier expansion of
the susceptibility χ as χ = χ0Φ0 +χ1̄Φ1̄ +χ1Φ1. The product χψ appears in the wave-
equation; this would consist of 2× 3 = 6 terms. But we neglect those proportional to
either Φ2̄ or Φ1; these phase factors are not associated with the two beams P0 and
P1 = P0Φ1̄. Using this approximation, we write

P0(ψ0Φ0 +ψ1Φ1̄) · (χ0Φ0 +χ1̄Φ1̄ +χ1Φ1)

=P0Φ0(χ0ψ0 +χ1ψ1)+P0Φ1̄(χ0ψ1 +χ1̄ψ0)+P0Φ2̄χ1̄ψ1 +P0Φ1χ1ψ0

≈P0(χ0ψ0 +χ1ψ1)+P0Φ1̄(χ0ψ1 +χ1̄ψ0).

The index of Φ is the difference of the indexes of χ and ψ. Within this two-beam ap-
proximation, the scalar wave equation (4.3) reads

0 = (∇2 +k2)ψ+k2χψ

= (∇2 +k2)(ψ0P0 +ψ1P1
)

+k2P0
(
χ0ψ0 +χ1ψ1

)+k2P1
(
χ0ψ1 +χ1̄ψ0

)
.

This sum of the form f0P0 + f1P1 with oscillating P ’s vanishes if both f0 = 0 and f1 = 0,
so we split the sum into two equations and obtain(∇2 +k2

)(
ψ0P0

)+k2χ0ψ0P0 +k2χ1ψ1P0(∇2 +k2
)(
ψ1P1

)+k2χ0ψ1P1 +k2χ1̄ψ0P1

}
= 0.

With the transformation law for the Laplacian, we get

∇2(ψ0P0) =α2
(
∂2

s (ψ0P0)
)
+β2

(
∂2

t (ψ0P0)
)

+ α2s

s2 − c2

(
∂s (ψ0P0)

)
+ β2t

t 2 − c2

(
∂t (ψ0P0)

)
.
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For clarity, we will only derive the terms ∝α2P0 here:

α2
[

(∂2
sψ0)P0 +2(∂sψ0)(∂s P0)+ψ0(∂2

s P0)+ s

s2 − c2

(
(∂sψ0)P0 +ψ0(∂s P0)

)]
≈α2P0

[
2(∂sψ0)i k −ψ0k2 + s

s2 −c2

(
(∂sψ0)+ψ0i k

)]
≈α2P0

[
2i k(∂sψ0)−k2ψ0 + s

s2 −c2 i kψ0

]
; (4.6)

the analogue expression ∝β2P0 is

β2P0

[
2i k(∂tψ0)−k2ψ0 + t

t 2 − c2 i kψ0

]
.

The term ∂2
sψ0 has been neglected since we postulate slowly varying envelopes; fur-

thermore a term ∂sψ0 is considered small since all other terms have a factor of k or
k2, which is of order 1010. Re-combining both expressions, the Laplacian of P0 can be
written as

∇2(ψ0P0) =α2P0

[
2i k(∂sψ0)−k2ψ0 + s

s2 − c2 i kψ0

]
+β2P0

[
2i k(∂tψ0)−k2ψ0 + t

t 2 − c2 i kψ0

]
.

The Laplacian for the second wave field, P1, is

∇2(ψ1P1) =α2P1

[
2i k(∂sψ1)−k2ψ1 + s

s2 − c2 i kψ1

]
+β2P1

[
−2i k(∂tψ1)−k2ψ1 − t

t 2 − c2 i kψ1

]
.

A parallel derivation of∇2(ψhPh) can be found in appendix A, both for confocal ellipses
and for those with arbitrary distortions.

It can be shown that

α2s

s2 − c2 ± β2t

t 2 − c2 = 1

t ± s
=: ±2γ±.

Qua definitione, the complete Laplacian of the incoming wave field’s envelope, P0, can
be approximated by

∇2(ψ0P0) ≈ 2i kP0

[
α2∂sψ0 +β2∂tψ0 + i k

2
ψ0 +γ+ψ0

]
.

Operating with (∇2 +k2) on both ψ0P0 and ψ1P1, we get

(∇2 +k2)(ψ0P0) ≈ 2i kP0
[
α2∂sψ0 +β2∂tψ0 +γ+ψ0

]
,

(∇2 +k2)(ψ1P1) ≈ 2i kP1
[
α2∂sψ1 −β2∂tψ1 −γ−ψ1

]
.
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The scalar wave equation now can be written as

2i kP0(α2∂sψ0 +β2∂tψ0 +γ+ψ0)+k2χ0ψ0P0 +k2χ1ψ1P0

2i kP1(α2∂sψ1 −β2∂tψ1 −γ−ψ1)+k2χ0ψ1P1 +k2χ1̄ψ0P1

}
= 0.

Reordering, we get the Takagi-Taupin equations in elliptical
geometry for focusing Bragg-multilayer mirrors:(

α2∂s +β2∂t
)
ψ0 = i

(
u0ψ0 +u1ψ1

)−γ+ψ0,(
α2∂s −β2∂t

)
ψ1 = i

(
u0ψ1 +u1̄ψ0

)+γ−ψ1, (4.7)

with uh = kχh/2. These equations have a similar form as in the flat case, except that
the coefficients α and β depend on coordinates, see (4.4).

The terms γ± originate from our choice of cylindrical waves: Since energy is con-
served, the intensity (energy flux density) of the diverging ψ0P0 has to decrease, while
the converging ψ1P1 gains intensity. From a mathematical point of view, these terms
γ± are a result of our space-dependent coefficients α,β. So ∂s and αβ−1 in the Lapla-
cian do not commutate and result in an additional term s(s2 − c2)−1ψ0∂s P0, plus a
similar term with t instead of s for ∂t .

For typical geometries the terms γ± are small. Let us neglect this commutator and
simply use the following gradients and Laplacians:

P0 = e i k(t+s)

∇P0 =
(
α∂s

β∂t

)
e i k(t+s) = i k

(
α

β

)
P0

∇2P0 =−k2(α2 +β2)P0 =−k2 P0;

P1 = P0e−2i kt

∇P1 = i k

( +α
−β

)
P1

∇2P1 =−k2 P1;

the resulting Takagi-Taupin equations then read(
α2∂s +β2∂t

)
ψ0 = i

(
u0ψ0 +u1ψ1

)
,(

α2∂s −β2∂t
)
ψ1 = i

(
u0ψ1 +u1̄ψ0

)
. (4.8)

In the flat ML case, the coefficients would be α2 = cosθ and β2 = sinθ. The squares
in (4.4) stem from the transformation of coordinates, that give additional factors of
cosθ in s-direction and sinθ in t-direction.

In a more cartoonish form this system of coupled first order differential equations
can be interpreted and illustrated as in figure 4.5.

To summarise our findings:

• The term iχ0ψ0,1 describes propagation of the two fields inside a homogeneous
medium; χ0 is the mean susceptibility of the ML structure and results a phase
shift and absorption.

• The terms iχ±1ψ0,1 accounts for coupling: energy is exchanged between ψ0 and
ψ1.
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u 0
 ψ 0 u+1 ψ1

u
0  ψ

1

u-1 ψ0

Figure 4.5: Cartoon interpreting the terms in (4.8). The incoming beam ψ0, shown in red, propagates through
the ML structure; phase shifts and absorption are described by the coefficient u0. In a ML of Bragg
type, the reflected beam ψ1 (blue arrow) is influenced by the same propagation constant. Energy is
exchanged back and forth between the two wave fields by virtue of the coefficients u±1, which are
Fourier coefficients of the pseudo periodic susceptibility function χ(s, t ).

Note that although a ML mirror consists of individual layers with (more or less) sharp
boundaries, in the Takagi-Taupin theory the whole volume is capable of diffraction.
Hence even a structure composed of an infinitely thin layer will emit a Bragg peak.

The Takagi-Taupin equations in curved elliptically shaped focusing
multilayer mirrors have been derived in this subsection; they
possess a form well known from the flat crystal case. But due to
refraction, perfect ellipses do not yield perfect interference; in the
next subsection we will use a generalised Fourier expansion of the
susceptibility to describe optimised shapes.
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4.2.2 Pseudo Bragg conditions

In this subsection we generalise the Fourier expansion of the susceptibility by intro-
ducing a variable phase-factor. In the elliptical coordinate system, confocal elliptical
shapes are described by constant values of the coordinate t . So in the previous deriva-
tion of the Takagi-Taupin equations, the susceptibility was assumed to be a periodic
function with respect to t , with a layer thickness given by Bragg’s law. In the Fourier
expansion, this was represented by the phase factor e i 2kt , which we will now replace
by a more general factor,

χ=χ0 +χ1̄e−i k (2t−ϕ) +χ1e i k (2t−ϕ).

The undisturbed phase term 2i k t corresponds to the simple Bragg law, while the term
i kϕ(s, t ) represents some (smooth) distortion function.

To form Takagi-Taupin equations for quasi-periodic, distorted, curved ML mirrors,
the derivatives of this generalised phase exponential are needed. For the sake of sim-
plicity, we will neglect the commutator term in the Laplacian, ∂s (αβ−1)∂sΦ, but intro-
duce the spherical wave term γ′± at the end. More comments will be given in appendix
A.

Since we need to combine the phase factors of our trial field functions and the sus-
ceptibility expansion, we also need to transform

P ′
1 = P1 e i kϕ(s,t ).

Physically speaking, the deformed ML structure possesses different local lattice vectors,
and hence the diffracted wave changes its direction.

Following appendix A, the simplified gradients and Laplacians of P0 and P ′
1 read

∇P0 = i k

(
α

β

)
P0, ∇2P0 =−k2 P0; ∇P ′

1 = i k

(
α(1+ϕ,s )
β(1−ϕ,t )

)
P ′

1,

∇2P ′
1 =−k2 [

α2 (
1+2ϕ,s +ϕ2

,s − i k−1ϕ,ss
)+β2 (

1−2ϕ,t +ϕ2
,t − i k−1ϕ,t t

)]
P ′

1,

where ϕ,s and ϕ,t represent the derivatives of the distortion function ϕ(s, t ) with re-
spect to the elliptical coordinates s and t .

Putting everything together, the Takagi-Taupin equations of non-elliptical ML mir-
rors, described by a distortion function ϕ(s, t ), can be written as(

α2∂s +β2∂t
)
ψ0 = i

(
u0ψ0 +u1ψ1

)−γ+ψ0,(
α′2∂s −β′2∂t

)
ψ1 = i

(
(u0 −ε′)ψ1 +u1̄ψ0

)+γ′−ψ1, (4.9)

with

α′2 =α2(1+ϕ,s ), β′2 =β2(1−ϕ,t ), γ′− = 1

2

(
β′2t

t 2 − c2 − α′2s

s2 − c2

)
,

ε′ = k ε/2, ε≈α2(2ϕ,s +ϕ2
,s )+β2(−2ϕ,t +ϕ2

,t ).

The Takagi-Taupin equations have been generalised to non-elliptical
shapes by use of a pseudo Fourier expansion. In the next section, we
will use this framework and introduce two deviation functions ϕ(s, t )
that describe optimised ML structures.
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4.3 Generalised Bragg conditions

With generalised Takagi-Taupin equations for non-elliptical ML mirrors we will now
discuss several model deviation functions ϕ(s, t ). We start with a global rotation of the
lattice and then use a local rotation, or strain, that is derived from the modified Bragg
equation correcting for refraction.

an subsection 4.3.1 we will use the generalised Fourier expansion of the previous
subsection to introduce a model deviation function ϕ(s, t ) that describes a rotated
Bragg lattice. Due to such a rotation, the effective layer spacing is changed: as can be
seen in figure 4.6 (a), the geometrical path length of a ray under gracing incidence an-
gle θ−∆θ is longer than for the original ray of angle θ. Since the optical path length,
lopt = nlgeo < lgeo, is not resonant at the nominal Bragg angle, a slight deviation might
increase reflectivity.

A modified Bragg equation incorporating a correction term for effects of refraction
is being used to build optimised ML mirrors; in subsection 4.3.2 we will show that this
correction is equivalent to a local rotation, i.e. a deformation of the ML structure. The
angle of rotation is proportional to the refraction strength δ.

The general procedure is as follows:

1. the ML is designed as before, fulfilling the Bragg condition,

2. but then the lattice is distorted by a deviation function ϕ(s, t );

3. by changing parameters {p} in the deviation modelϕ(s, t , {p}), the ML mirror can
be tuned with respect to phase flatness, improved reflectivity, or broad-band re-
flectivity.

4.3.1 Rotated Bragg condition

By a rotation of the ML structure, the geometrical path and hence the effective layer
spacing can be adjusted to overcome refraction. Figure 4.6 (a,b) illustrates that a ray
penetrating the structure under a grazing incidence angle θ−∆θ is equivalent to the
original ray in a structure with changed layer thickness Λ′. We will now set up a model
deviation function ϕ(s, t ,∆θ) that describes such (global) rotations.

We work directly in the system of elliptical coordinates (s, t ). Then the confocal el-
lipses – our first guess of an appropriate structure – are described by straight lines with
t = const. With the transformation

t 7→ t +∆t (s, t ) = t + (t − t0) sin∆θ/sinθ(s, t ), (4.10)

where t0 denotes the entrance surface, a rotation of the lattice around the centre of the
surface, by a constant angle ∆θ, is modelled. The angle θ(s) is the local angle of inci-
dence, which varies slightly along the entrance surface. See figure 4.6 for the following
derivation of this transformation. A more complete discussion of this transformation
can be found in appendix D.3.2.

In the initial situation, given by the angle of incidence θ and the layer spacing ΛB,
the projected path length inside the ML mirror is given by l1 from figure 4.6 (a). A rota-
tion of the ML can be described by a change of the angle of incidence θ 7→ θ+∆θ, with
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the new path length l2. But this new path length can also be achieved for the original
angle θ, if the layer spacingΛB 7→ΛmB is changed appropriately, as shown in figure 4.6
(b). Following figure 4.6 (c), the modified layer spacing can be expressed by its old value
after scaling of the t-coordinate.

So a rotation of the ML is equivalent to a change of layer spacing; and a change of
layer spacing can be described by a transformation of coordinates. We will describe
this transformation using a distortion function ϕ(s, t ); following subsection 4.2.2, this
yields a pseudo Fourier series expansion of χ and at last the modified TT equations
(4.9).

The transformation of t-coordinate is (4.10); for simplicity, let us first neglect θ’s
dependence on coordinates. Then the distortion function ϕ(s, t ) is given as

ϕ(t ) = 2(t − t0)∆θ/sinθ; (4.11)

with the constant angle of rotation ∆θ and the “constant” angle of incidence θ. The
factor of 2 is introduced because the susceptibility has an inverse thickness of 2k. This
is related to the 1/2 in Bragg’s law.

Within the current approximations, the derivatives of this distortion function are
simply

ϕ,t = 2∆θ/sinθ, ϕ,t t =ϕ,s =ϕ,ss = 0.

A variant including more terms is given in appendix D.3.2.
The modified Takagi-Taupin equations for a rotated ML mirror read(

α2∂s +β2∂t
)
ψ0 = i

(
u0ψ0 +u1̄ψ1

)−γ+ψ0,(
α′2∂s −β′2∂t

)
ψ1 = i

(
u′

0ψ1 +u1ψ0
)+γ′−ψ1,

u′
0 = u0 −ε′, ε′ =−4∆θ sinθk/2,

with

α′2 =α2, β′2 =β2(1−2∆θ/sinθ),

and the appropriate γ′ as given below (4.9).
Results using this approach and comparisons with analytical solutions based on Par-

ratt’s algorithm are presented in section 4.5.

ΛB l1

l2 l3

ΛmB

θ θ

∆θ

(a) (b) (c)

∆t ∆t’
t

Figure 4.6: Relationship between changed angle of incidence (a), changed layer thickness (b) and a transfor-
mation of t coordinate (c). For details see the text.
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Figure 4.7: The Bragg condition: (a) without refraction, (b) with refraction due to n < 1 in the medium. Here,
the modified Bragg condition is derived for the planar case of two parallel layers; in elliptically
curved ML, the refraction correction distorts the structure.

4.3.2 Modified Bragg condition

The Bragg equation gives the (bi-)layer spacing ΛB as a function of wavelength λ and
gracing angle of incidence θ as

ΛB =λ/2sinθ. (4.12)

In the derivation, the length l in figure 4.7 shall be a multiple of half the wavelength, or
2l = mλ, for diffraction in the mth order. We will set m = 1 and only treat the first order
of diffraction now. From the definition of the sine, we have l =Λ sinθ and hence (4.12).

The ML mirror consists of multiple bilayers; as an approximation, these can be de-
scribed by an average index of refraction n = Γn1+(1−Γ)n2. Here, Γ is the ratio of layer
thickness of both materials. The incoming beam is then refracted by Snell’s law, (3.1),
resulting in the distance l ′ and experiences in propagating an optical path length of n l ′
in the (average) medium. Rewriting Snell’s law to

1 = sin2θ′+cos2θ′ = sin2θ′+cos2θ/n2,

n2 sin2θ′ = n2 −cos2θ,

the modified Bragg condition gives the modified layer spacing ΛmB(s), see figure 4.7
(b) [47]:

ΛmB(s) = λ

2
√

n2 −cos2θ(s)
. (4.13)

Example Consider a ML mirror made of tungsten (W) and Boron-carbide (B4C), with
equal thickness of both materials. The average index of refraction at an x-ray wave-
length of 0.1 nm is

navg = (nW +nB4C)/2

≈ (1−1.95·10−5 +3.31·10−6i +1−3.23·10−6 +1.19·10−9i )/2

= 1−1.14·10−5 −1.65·10−6i ;

δavg ≈ 1.14·10−5.
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At a grazing angle of θ = 10 mrad, the simple and modified Bragg equation result in
layer spacings of

ΛB = λ

2sinθ
≈ 5 nm, ΛmB = λ

2
p

n2 −cos2θ
≈ 5.688 nm,

which is almost 14 % larger. A very large effect in view of the rather small decrement
δavg = 1.14·10−5.

Application to elliptical multilayers Now let us find a distortion function ϕ(s, t ) that
describes this modification which is needed to correct for refraction and propagation.
Using the definitions of Bragg’s law and the modified Bragg condition, the ratio R of
the layer spacingsΛmB andΛB is

R :=ΛmB/ΛB = sinθp
n2 −cos2θ

≈ sinθ√
(1−2δ)−1+ sin2θ

=
(
1−2

δ

sin2θ

)−1/2

.

A Taylor series expansion yields

R =∑
n

Rn ≈ 1+ δ

sin2θ
+ 3

2

(
δ

sin2θ

)2

+ . . . ;

this results in a stretching of the ML structure. In accordance with subsection 4.3.1, the
transformation of the t-coordinate may be described by a distortion function ϕ(s, t ).
In the case of the modified Bragg condition, this turns out to have the form

ϕ(s, t ) ≈ 2(t − t0)δ/sin2θ. (4.14)

Comparing with (4.11), this expression can be interpreted as a “local rotation” of angle
∆θ = δ/sinθ(s, t ). As a first approximation, we again neglect the fact that θ depends on
coordinates; then the derivatives of ϕ are

ϕ,t = 2δ/sin2θ, ϕ,t t =ϕ,s =ϕ,ss = 0.

The new expression for ε is

ε=β2(−2ϕ,t +ϕ2
,t ) =−4β2δ/sin2θ+4β2δ2/sin4θ ≈ 2χ0, (4.15)

because χ0 =−2δ and β2 = sin2θ. But then χ′0 =χ0 −ε=−χ0.
The Takagi-Taupin equations for nearly elliptical multilayer mirrors,
fulfilling the modified Bragg condition, read(

α2∂s +β2∂t
)
ψ0 = i

(+u0ψ0 +u1̄ψ1
)−γ+ψ0,(

α′2∂s −β′2∂t
)
ψ1 = i

(−u0ψ1 +u1ψ0
)+γ′−ψ1, (4.16)

with

α′2 =α2, β′2 =β2(1−2δ/sin2θ). (4.17)
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This change of sign in u0 for the reflected wave can be interpreted as follows: The in-
coming beam suffers phase shift upon propagation; thus for “ideal” ellipses the Bragg
condition is not fulfilled exactly. By changing the layer spacing appropriately, the opti-
cal path difference is adjusted to resonance.

In other, more abstract, words, we allow the incoming beam ψ0 to
accumulate phase shift, but this is corrected by an “anti-phase shift”
of the reflected beam, ψ1.

In (4.17), the directional derivative is corrected by the factor 1 − 2δ/sin2θ. For a
W/B4C-ML at a photon energy of 12.4 keV and an angle of incidence of 10 mrad, this
correction is about 1−0.23 and thus significant. This correction represents the fact that
the deformed layer reflects the beam in a different direction.

The anti-phase shift reflected in the sign of u0 in (4.16) is not the
ideal solution. Soon we will introduce a modification factor f for
numerical optimisation.

In the derivation of the modified Bragg condition, only the planar case has been
considered; then, the modified layers are still parallel, preserving angles. In the ellipti-
cal case, the modified layer shapes reflect in a different direction. Since the local angle
of rotation, δ/sinθ, depends on coordinates, the once confocal ellipses are strained
and are described by more complicated shapes in cartesian coordinates. But in the
transformed coordinates (s, t∗) = (s, t +ϕ(s, t ), these non-conformal non-ellipses are
described as straight lines.

Let us restate the approximations. The ratio R of modified Bragg condition and
Bragg’s law is treated linearly in δ and quadratically in θ. The distortion function ϕ

is correct as long as sinθ ≈ θ, see appendix D.3.2. The derivativesϕ,s andϕ,t have been
stated assuming θ = const. The validity of this assumption is discussed briefly in ap-
pendix H. For the final form of the TT equations, again terms of order δ2 have been
neglected.

It has to be noted that the linear approximation of the layer thickness ratio R ≈
(1 + δ/sin2θ) is not valid if the higher-order terms starting with R2 = (δ/sin2θ)2 do
contribute significantly. Since θc ≈

p
2δ, this happens near the critical angle. But then

the concept of ML mirrors is not of interest.

Modification factor The modified Bragg condition (4.13) was derived from geometri-
cal principles in planar MLs. Analytical theory gives confidence that it indeed is supe-
rior to Bragg’s law, since it corrects for refraction. To make further optimisation possi-
ble, we now introduce an open parameter f :

Λ( f , s) :=ΛB(s)+ f ×∆Λ(s), ∆Λ(s) =ΛmB(s)−ΛB(s). (4.18)

Obviously, for f = 0 we have Bragg’s law, whilst f = 1 gives the modified Bragg condi-
tion. In between, f interpolates linearly. An “anti-correction” can be modelled using
negative values, while f > 1 corresponds to “overcompensating”. We will use this scal-
ing factor f later for numerical optimisation of focus properties.
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Example At a photon energy of 12.4 keV, a ML mirror made of W/B4C has an average
δ∼ 1.14·10−5; at an angle of incidence of θ ∼ 10 mrad we get R1 ∼ 0.1,R2 ∼ 0.01. In addi-
tion, ε has a contribution ofϕ2

,t likewise neglected so far. In the next subsection we will
present more accurate calculations that will mainly confirm these first considerations.

The modification of β′2 = β2(1−2δ/sin2θ) is on the order of a few percent for rea-
sonable values. So the reflected wave propagates in a slightly different direction. This
has to be the case since the “locally rotated” layers reflect in a different direction. But
hence the geometrical path of the reflected beam changes, and it can be expected that
the modified Bragg condition still might not be optimal. This can be anticipated for
the modified Bragg condition has been derived in planar geometry; but in the elliptical
case, the modified layers are no longer confocal ellipses.

4.4 Solving the Takagi-Taupin equations

In the previous sections we have derived a system of coupled differential equations,
(4.7), following the Takagi-Taupin formalism, for ML mirrors constructed from confo-
cal ellipses. This approach has then been generalised for optimised shapes correcting
for refraction (subsection 4.3.2). As shown in (4.16), the modified Bragg condition (4.13)
results in a sign change of the propagation term u0, interpreted as an “anti-phase shift”.
After these analytical considerations we now seek for numerical techniques to integrate
(4.7), to gain more quantitative insights.

In the following subsections, we first consider the boundary conditions (subsection
4.4.1) imposed by the physical set-up, develop a numerical scheme for the direct inte-
gration (subsection 4.4.2), and discuss assumptions and limitations of this model (sub-
section 4.4.3). Closing this section, we summarise applied tests to the implementation.
Comparison with analytical results is given in section 4.5.

4.4.1 Boundary conditions

Actual solutions of the Takagi-Taupin system of equations (4.7) depend on boundary
conditions, which are given by the incoming radiation field. In elliptical coordinates,
the ML structure is given as a “rectangular” region having four “flat” boundaries. So
we need eight boundary values for the two wave fields ψ0 and ψ1. But only half of
them are known; the other half is to be determined by the simulation. On the “left”
boundary, both the incoming field ψ0 and the reflected field ψ1 vanish; furthermore,
ψ1 is zero along the “top” surface, assuming no reflection the vacuum or substrate. The
incoming radiation field determines ψ0 at the “bottom” layer. Here, ψ1 is the wanted
solution and hence not known. The “incoming” ψ0 on the “top” surface corresponds
to a transmitted beam that can be calculated by the simulation. In addition, both fields
ψ0,1 leave the structure through the “right” boundary; the field there is not of interest
to us. See also figure 4.8.
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So the known boundary conditions are

• ψ0,1(left) = 0,

• ψ1(top) = 0,

• ψ0(bottom) = illumination;

while the calculated field quantities are

• ψ1(bottom) = reflected field,

• ψ0(top) = transmitted field.

• ψ0,1(right) = not of interest,

The reflected fieldψ1(bottom) then can be propagated to the focal region, using the
mirror simulation from chapter 3.

4.4.2 Numerical methods

Now that the boundary conditions for (4.7) are known, we need a numerical scheme for
the actual integration of the system. To solve differential equations, two main methods
exist. Finite difference (FD) schemes approximate infinitesimal derivatives by fractions
with finite, but small grid spacing h. The grid spacing h (in two dimensions hs 6= ht in
general) has to be small enough to give accurate approximations, but not too small
that numerical errors dominate. Traditionally, this is the method of choice for solv-
ing Takagi-Taupin equations [79–81, 90, 91]. Usually, the grid parameters hs and ht

are constant in the (two-dimensional) volume, although adaptive grids have been pro-
posed [95]. In the present work constant ht =ΛB/2 and an appropriate constant hs are
used; although this choice is not optimal for ML mirrors with strong gradients.

The second famous technique is the finite element method (FEM). The domain of
interest is covered by a mesh of points; these points can be arranged nearly arbitrarily.
The FEM thus allows for a local density of mesh points that is optimised for the ge-
ometry and function gradients. Although the FEM often is superior to FDs in arbitrary
geometries, a solution scheme has not been found. Boundary conditions have to be
given for all boundaries; since especially the values of the reflected amplitude at the

“bottom” surface are not known, this is not directly possible. Instead, weak conditions
determining the derivative ofψ1 may be given; but a scheme to solve the TT equations
could not be found within reasonable time.

ψ0 = 0

ψ1 = 0

ψ0 = illumination

ψ1 = 0
ψ0 = ?

ψ1 = ?

Figure 4.8: Boundary conditions for the incoming fieldψ0 and the reflected fieldψ1. Coloured lines are known,
dashed lines are to be determined by the TT simulation.
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System of coupled PDE The Takagi-Taupin system of coupled differential equations
(4.7) we are about to solve is of the form

∇0ψ0 = c00ψ0 + c01ψ1, ∇1ψ1 = c11ψ1 +c10ψ0; (4.19)

in this symbolic notation, ∇0 and ∇1 represent the directional derivatives, and all co-
efficients are collected in the ci j . Both ∇ and c depend on (s, t ). The known boundary
values are

ψ0(s = 0) = 0, ψ0(t = 0) = illumination,

ψ1(s = 0) = 0, ψ1(t =∞) = 0,

denoting the “upper” boundary as t =∞. Our a priori information thus is asymmetric:
ψ0 is known on the entrance surface, whereψ1 is to be determined;ψ1 is known on the
substrate surface, whereψ0 shall be calculated. This is a manifestation of the nature of
Bragg reflection; in Laue geometry, both ψ0,1 would be known on the entrance.

The usual approach in PDE solving expresses the differentials in (4.19) as finite dif-
ferences on a regular grid. The equation is written as a matrix–vector product and
solved for ψ(sn+1) by inverting the matrix. Efforts in implementing such a scheme for
(4.19) in Bragg geometry did not succeed; therefore, a more naïve approach has been
chosen, that directly propagates ψ in s and t direction.

Solving Takagi-Taupin in Bragg geometry The “rectangular” domain (in elliptical co-
ordinates) is discretised on a regular grid of spacings∆s×∆t . Then the partial derivative
∇0ψ0 can be approximated by

∇′
0ψ0 = (∂s +∂t )ψ0 ≈ ∆sψ0

∆s
+ ∆tψ0

∆t
. (4.20)

(The factors α2,β2 have not been written for sake of simplicity.) The differences ∆sψ0

and ∆tψ0 are given by forward and backward differences,

∆sψ0 =ψ0(sn+1)−ψ0(sn), ∆tψ0 =ψ0(tn)−ψ0(tn−1);

∆sψ1 =ψ1(sn+1)−ψ1(sn), ∆tψ1 =ψ1(tn+1)−ψ1(tn).

The four-point stencil used is shown in appendix D.2, figure D.1 (b). Also a five-point
stencil using a central difference approximation for ∆t – as shown in figure D.1 (c) –
was implemented, but it had to be discarded since energy was not conserved, see the
discussion in appendix D.2.

Grid size In pure mathematics, (4.20) becomes an equality in the limit ∆s,∆t → 0.
But in numerical mathematics, this limit cannot be made: this would require infinite
amount of time and memory. Finite representation of real numbers with a precision
of 53 bit4, a relative precision of roughly 10−16 is achieved. It is common practice that

4This is the effective mantissa size of an IEEE 754 double precision variable usually used in present day’s
computers. The actual mantissa in normalised form stores 52 bit, where a leading 1 is omitted.
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the differences in the approximation of (4.20) should not be smaller than 10−8, setting
a lower bound for the approximation. An upper bound usually has to be found by trial
and error: the grid spacings ∆s,∆t are increased up to values where the “solution” is
obviously invalid, typically diverging.

It has been found that for reasonable grid spacings the number of discretisation
points in the t-direction should be about twice the number of bilayers. For the ratio of
the grid spacings, ∆s/∆t , the following gridratio has shown to be of use:

GR = gridratio := θ×∆s/∆t , (4.21)

with the gracing angle of incidence θ at the centre of the mirror. Tests have shown that
a value of GR . 100 should be used; for ML mirrors with a strong gradient of the local
angle of incidence GR . 10 may be needed. This is due to the fact that the local angle
of incidence enters (4.7) in the factor α2 and β2.

Computational complexity The computational complexity is directly proportional
to the number of grid points in both directions. The number of points along t , #T , is
suggested to be twice the number of layers #L; with #S, the number of points along s,
proportional to θ at constant GR, and to the length L of the mirror, the overall complex-
ity C can be expected to be

C = #S #T ∝ L ·#L ·θ(s =∞);

with s =∞ denoting the value of the s-coordinate at the “right” edge of the ML mirror,
so θ(s =∞) is just the maximum local angle of incidence.

The memory consumption M of the current implementation is roughly

M ∼ m1 #S #T +m2 #S +m3 #T ;

m1 = 16 B, m2 = 40 B, m3 = 120 B.

To store the propagated field envelopes ψ0 and ψ1, memory of size as given by the
first term is needed. The envelopes can be written to file. The second term is needed
to store the illumination and the reflected amplitudes; furthermore, several arrays of
size #S are used to hold pre-calculated values of the local angle of incidence. The third
term, usually the smallest, is given by the need to store the previous and current slices
of ψ(sn),ψ(sn+1), plus pre-calculated values like α2 and β2.

Via the command line argument --maxmem=<value>, a memory limit in megabytes
may be activated; virtually all memory allocations then are checked to respect this limit
prior to the call of malloc; in addition, a limit using the setrlimit system call is set.

A small GR implies a small∆s and hence a large number of discretisation points; typ-
ically, a high density along s is only needed where the local angle of incidence is large.
So a lot of computational resources are wasted on the regular grid with constant ∆s.
The results shown further below have been calculated on the ten second- to minutes
scale per ML simulation. It might be wise to implement a local grid spacing ∆s(s). This
would, however, be a formidable task of programming.
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4.4.3 Limitations and model assumptions

In this subsection we describe several limitations, assumptions, and open questions
concerning the “correctness” of the described theory and its implementation into nu-
merical code.

Finite differences, numerical precision

Whilst analytical expressions are “correct” (usually within some approximations of
the underlying theory), numerical solutions suffer from finite precision, commonly re-
ferred to as rounding or truncation errors. Within this work, care has to be taken to use
reasonable grid spacings∆s and∆t . Grid sizes of∆t ∼Λ/2 are suggested, although this
has not been tested thoroughly.

To estimate errors, the TT theory can be compared with analytical results like Par-
ratt’s algorithm, cf. section 4.5. The latter describes reflectivity of plane waves at planar
ML mirrors of infinite length. If a parameter is scanned for optimisations, this should
be done for fixed ∆s and ∆t , so the approximate “incorrectness” remains comparable.

Scalar wave theory

Within this work, we do not deal with the vector equations first given by Maxwell, but
only with the scalar wave equation (4.3); this is a common simplification of the Takagi-
Taupin theory [92]; a derivation of TT equations for ML Laue lenses has been given
in [43]. At typical geometries considered here, gracing angle of incidence is small com-
pared to the Brewster angle; then polarisation effects can be neglected. This is, however,
under discussion [99].

Two-beam approximation

Only considering one incoming and one reflected beam is highly encouraged by a pri-
ori knowledge, focusing by an elliptical mirror. Nevertheless, higher order diffraction is
possible due to neglected terms in the Fourier expansion of the susceptibility.

Interface to vacuum

The boundary conditions of the incoming beam, ψ0 at the surface, are somehow ar-
tificial. For simplicity, we just assume that the fields on the inside of the surface are
given by the illumination on the vacuum side. However, a correction due to the Fresnel
coefficient of transmission would be appropriate. But that coefficient depends on the
index of refraction – and it is not clear if the first mono-layer or an averaged value of
the bilayer would be the right choice.

In addition to the Fresnel coefficient of transmission (and a correction term of the
“refracted Poynting vector”), one could also argue that one additional Fresnel reflection
at the vacuum–first layer interface should be included separately; but this contribution
would be rather small for θÀ θc. Also the coefficient of transmission is expected to be
nearly unity.
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Idealised structure

Within this thesis, the ML structure is assumed to be “perfect”, we assume that the
index of refraction is given by a square wave, although approximated by a first or-
der Fourier expansion, hence sine wave. In reality, roughness is present at the inter-
faces, diffusion and chemical reactions take place. The deposition process introduces
another source of deviations; the actual thickness of a layer is randomly distributed,
maybe correlated to neighboured layers. Some of these real-structure effects may be
included using the Takagi-Taupin formalism by introducing additional phase factors
to describe deviations from the design profile (like the scaled modified Bragg condi-
tion).

It is desirable to model distorted layers using some measured deviation profile that
describes an appropriate modification function ϕ(s, t ) as introduced in subsection
4.2.2. However, its derivativesϕ,s andϕ,t are needed in (4.9). It can be expected that the
deviation profile has to be filtered before finite differences approximate these deriva-
tives.

As a first approximation the following model might be used: The height deviation
profile is projected onto the surface and used as a modulation of the illumination func-
tion. This distorted field is propagated through the ideal structure, and the reflected
field is modulated, too.

Tabulated optical constants

The susceptibility χ of the two layer materials is obtained from tabulated values of the
optical index n. It is questionable if these values are appropriate for very thin films
of Λ/2 ∼ 1 nm. Furthermore, the deposition process and its parameters (e.g. gas pres-
sure, voltage of the anodes, etc.) show influence on the optical properties. It is com-
mon practice to scale the optical parameters to obtain a best fit of Parratt-like cal-
culations with measured rocking curves [100]. Therefore, command line arguments
--factordelta=<value> and --factorbeta=<value> have been implemented.

Energy conservation

In appendix D.2 we summarise that using a central difference approximation of the par-
tial derivatives violates energy conservation. The current implementation gives more
reasonable results, although due to numerical problems energy may not be conserved
(apart from absorption, which can be “disabled” using the command line argument
--factorbeta=0.). If such problems occur, it might be helpful to use the following
correction method:

1. calculate a single propagation step including absorption,

2. calculate the same propagation step with absorption disabled;

3. from the latter, obtain a correction factor for the intensities,

4. and apply it to the fields ψ0,1 propagated with absorption.
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Very few layers

The chosen formalism does not describe reflection at discrete interfaces within the ML
structure, but treats the whole volume as one diffracting entity; thus it is possible to
simulate a Bragg reflection of an infinitely thin volume – this is obviously nonsense.
The applicability of this continuum model is questionable in case of few layers.

4.4.4 Tests of the implementation

We report very briefly about tests of the implementation that have been carried out.
These tests have been performed to make sure that the integration scheme for (4.7)
is correct. Regarding physical correctness, see the following section 4.5, where Takagi-
Taupin results are compared with Parratt’s algorithm.

• Propagation of ψ0: this has been tested
setting the coupling u±1 = 0 and applying
the usual boundary conditions.

• propagation of ψ1: again, we set u±1 = 0, but
set ψ0 = 0 on the entrance surface, ψ1 = 1 on
the substrate surface.

• Coupling ψ0 →ψ1: setting u1 = 0, no
back-refraction occurs. Energy is exchanged
from the incoming wave field to the
reflected wave.

• Coupling ψ1 →ψ0: u1̄ = 0, while
illuminating the substrate surface and ψ1.

• Illumination of the entrance surface with
Gaussian envelopes of different widths,
testing for anomalies like non-linearities.

• Testing for energy conservation. The stencil
for the finite differences had to be adjusted,
see appendix D.2.

• Searching for reasonable grid spacings ∆s
and ∆t : the latter was decreased until

“convergence” was achieved, while ∆s was
increased until the integration scheme
diverges. Q.v. (4.21) and the discussion there.

4.5 Integrated reflectivity

In this section we calculate the integrated reflectivity, i.e.

R =
∫

surface |ψ1(s)|2 ds∫
surface |ψ0(s)|2 ds

,

for different set-ups. This allows for a quick characterisation of the reflectivity perfor-
mance. Different parameters can be changed, like the mirror length L, the number of
layers N , or the layer shape. In the following we will have a closer look at R(∆θ): This is
basically the reflectivity curve while changing the actual angle of incidence. As stated
earlier, in the Takagi-Taupin approach of curved ML mirrors, the angle ∆θ is a param-
eter for the deformation of the ML structure. This parameter allows for comparison to
well-established techniques known from the theory of flat crystals.

The next subsections present comparisons in terms of R(∆θ) obtained from Parratt’s
algorithm and our Takagi-Taupin approach; while Parratt uses a flat structure of infi-
nite length, the computations with Takagi-Taupin have been carried out for flat mul-
tilayers, elliptically shaped multilayers (Bragg condition), and optimised multilayers
(modified Bragg condition) of finite lengths.
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The geometrical parameters of the test systems are shown in table 4.1. Photon en-
ergy is 12.4 keV in most cases; some simulations have been carried out with 24.8 keV
and 49.6 keV.

Quantity Value Quantity Value

distance from source † 50.0 m number of bilayers 20, 50, 200
distance to focus † 0.1 m material 1 W

length of mirror 4.0. . .120 mm material 2 B4C
angle at mirror’s centre 10.0 mrad Γ-ratio 0.5

Table 4.1: Geometrical parameters of the test systems simulated throughout this section. Parameters marked
with a dagger (†) are not applicable in case of flat ML. The Fourier coefficients of the susceptibility χ
can be found in appendix I.

4.5.1 Flat multilayers

We compare the reflectivity curve R(∆θ) for flat multilayers, as obtained by Parratt’s
algorithm and using the Takagi-Taupin formalism.

Parratt’s algorithm Parratt’s iterative approach for flat multilayers models infinitely
long layers by their Fresnel coefficients of transmission and reflectivity for illumina-
tion with a plane wave under a given angle θ. If the Fresnel reflectivity of the surface
between layers i and j is ri j , the net reflection ri at layer i = j −1 is given by [52, 54]

ri =
ri j + r j exp(2iβi )

1+ ri j r j exp(2iβi )
,

r j being the net reflection at layer j and βi = 2πdi ni cosθi /λ the optical thickness of
the i -th layer with thickness di , optical index ni , and refracted angle of incidence θi .
The well-established IMD software by David Windt has been used for our comparison
calculations [52].

Takagi-Taupin for flat multilayers In our derivation of the Takagi-Taupin equations
we have assumed cylindrical waves and elliptically shaped layers; for the flat ML case
with plane waves, we simply set all coefficients α and β constant to their value at the
centre of the respective curved MLs. Illuminating with plane waves, the terms γ± do
not contribute. The simulation code comes with a command line argument --flat
that uses these specialisation. Reflectivity curves can be obtained by scanning the pa-
rameter --rot.theta, see appendix D.3.1.

Simulation Exemplary plots comparing Parratt’s algorithm as implemented in IMD
[52] and the Takagi-Taupin implementation developed for this thesis are shown in fig-
ure 4.9. In the top row, the photon energy has been set to 12.4 keV, while the bottom
row shows calculations at 49.6 keV. Left plots are for MLs with 20 layers, the plots on
the right hand side with 50 layers. The nominal Bragg angle is θB = 10 mrad ≈ 0.57◦ in
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(a) 12.4 keV, 20 layers
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(c) 49.6 keV, 50 layers
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Figure 4.9: Comparison of Takagi-Taupin (red line) and Parratt’s algorithm (IMD [52], blue dotted line), for
indicated energies and layer numbers. Note the different axis scales. In the TT simulation, the mir-
ror length has been set to 4 mm, while the Parratt algorithm assumes an infinitely long mirror. The
Bragg angle is θB = 10 mrad. Optical constants are for a W/B4C-ML mirror.

(a) 12.4 keV, 20 layers
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Figure 4.10: Comparison of reflectivity curves of elliptical ML mirrors of different lengths, obtained with the
Takagi-Taupin formalism. Parameters are the same as in figure 4.9 (a,b). Red lines are calculated
for the flat case and a mirror length of 4 mm. Curved mirrors have lengths of 4 mm (blue dashed),
40 mm (green dotted), and 120 mm (orange, thin).

all cases. Whilst Parratt’s algorithm assumes an infinite mirror length, the TT simula-
tion has been carried out for a mirror length of L = 4 mm. The number of discretisation
points in t-direction (into the ML structure) has been set equal to the number of lay-
ers; see appendix D.4 for a short summary of studies concerned with grid discretisation
parameters.
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Quantity Value Quantity Value
distance from source 50.0 m number of bilayers 100

distance to focus 10.0 mm material 1 W
length of mirror 10.0 mm material 2 B4C

angle at mirror’s centre 10.0 mrad Γ-ratio 0.5
photon energy 49.6 keV angular spectrum 8.2. . .14.1 mrad

Table 4.2: Geometrical parameters for the simulation shown in figure 4.11.

Comparison According to these and similar calculations, Parratt’s algorithm (blue
dotted lines) predicts higher reflectivities below, and slightly smaller reflectivities
above the Bragg peak, than the TT simulation (red lines). Both methods show character-
istic oscillations below the Bragg peak for few layers, that are known from experiments.
All in all, both theories give similar results. Since they are based on different model
assumptions, small differences are expected.

4.5.2 Curved multilayers (Bragg type)

In this subsection we compare reflectivity curves R(∆θ) for elliptically shaped multilay-
ers (eML), viz., according to Bragg’s law, with flat multilayers (fML) (also according to
Bragg’s law, but for plane waves), as described in the previous subsection.

Simulation The simulations shown in figure 4.10 have been obtained for the same pa-
rameters as those in figure 4.9. The red lines are the ones from figure 4.9, hence Takagi-
Taupin solutions for a flat mirror of length L = 4 mm. All other lines have been obtained
for elliptical ML mirrors. Blue dashed curve is for L = 4 mm, green dots for L = 40 mm,
and the thin orange line is calculated for L = 120 mm.

Comparison Reflectivity curves of the short L = 4 mm mirror are nearly the same as
in the flat case; the curvature is negligible. In case of the medium L = 40 mm mirror, the
oscillations below the Bragg peak begin to wash out. Here the local angle of incidence
varies significantly along the mirror’s surface; the reflectivity for “one angle” (namely at
the centre of the mirror) is an average of those for a large angular spread. For the long
L = 120 mm mirror, hardly any oscillations are visible.

Reflected wave The intensity of the reflected wave inside the ML structure is shown in
figure 4.11, for two rocking angles∆θ = {−50,400} µrad and the geometrical parameters
given in table 4.2. The intensity maxima correspond to the Pendellösung effect known
from dynamical diffraction. Here they follow the elliptical shape of the layers, since
the Pendellösung periodicity depends on the local angle of incidence. This varies from
about 8.2 mrad on the left side to 14.1 mrad on the right.

4.5.3 Optimised curved multilayers (modified Bragg’s law)

Due to refraction, the Bragg peak occurs at a slightly different angle than expected. Us-
ing the modified Bragg condition (4.13) [46,47,83], the individual layers in an optimised
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Figure 4.11: Intensity of reflected wave inside the multilayer, simulated for the parameters of table 4.2. Rocking
angle ∆θ is (a) −50 µrad and (b) 400 µrad.

ML structure are not elliptic any longer. The derivation of (4.13) is based on ray optics
and planar geometry; as discussed earlier, (4.16) supports this derivation in first order
based on wave optics. For numerical optimisation, an open parameter f has been in-
troduced in (4.18). Here we sketch briefly how such an optimisation may look like.

Simulation As a model system the pseudo-rocking curve of the same ML mirrors as
in figure 4.10 has been simulated. We call this a pseudo-rocking curve since not the
deviation angle ∆θ, but the modification factor f is scanned. The resulting reflectivity
curve shows similar features, since the refraction correction can be regarded as a local
rotation, q.v. (4.14).
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Figure 4.12: “Modified rocking curve”: simulated reflectivity of curved multilayer mirrors, built using the mod-
ified Bragg condition (4.13), as a function of modification factor f , see (4.18). For this particular
choice of parameters (given in table 4.1), mirror’s length hardly influences the reflectivity.
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Figure 4.13: Reflectivity along multilayer surface for different modification factors f = {0.0, 0.71.0} (green dots,
blue dashes, red line). As a model system, the L = 120 mm ML of figure 4.12 (b) with 50 layers has
been chosen.
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Figure 4.14: Reflected phase along multilayer surface, for the same set-up as in figure 4.13. The phase at the
mirror’s centre has been set to zero for clarity.



72 Chapter 4. Multilayer Mirrors

Comparison Opposed to figure 4.10, the influence of the mirror length L on the re-
flectivity curve of figure 4.12, simulated following the modified Bragg condition (4.13),
is strongly reduced. The L = 120 mm mirror of figure 4.10, thin orange line, shows re-
duced reflectivity, since only the very centre fulfils the Bragg condition at a specific an-
gle ∆θ. Using (4.13), the reflectivity is nearly independent of L. The oscillations below
the “Bragg peak” have vanished.

Reflectivity and reflected phase along the mirror’s surface are plotted in figure 4.13
and 4.14, for three different modification factors f = {1.0, 0.7, 0.0} (red line, blue dashes,
green dots), for a L = 120 mm-ML with 50 bilayers – corresponding to the green dotted
line of figure 4.12 (b). The reflectivity curves of full correction and “optimised correc-
tion”, f = {0.7, 1.0}, are nearly flat, despite some falling-off along the surface. This can
be attributed to the fact that towards the “right” side of the ML, local angle of incidence
increases recuding reflectivity. But in case of the “uncorrected” ML (green dots, f = 0.0),
some waviness occurs on the “right”. This is because the ML’s surface cuts through the
oscillations that are visible below the Bragg peaks in figures 4.9 and 4.10. Looking at
4.14, the reflected phase gets distorted, too.

4.6 Results

In this section, results of the presented multilayer simulation scheme are shown, cov-
ering both reflectivity and phase at the ML surface as well as focus properties. First we
show results dealing with actual ML mirrors as used at the ID22NI beamline at the ESRF
(subsection 4.6.1), and design parameters envisaged for a future ML KB system to be
used at UPBL045 (subsection 4.6.2). In subsection 4.6.3, the physical limits of curved
ML mirrors focusing are explored using parameters posing a challenge to current fab-
rication techniques. All results presented below are calculated for a W/B4C-multilayer
of layer thickness ration Γ= 0.5; optical constants have been taken from tabulations of
bulk material [52]. See table 4.3 for geometrical parameters.

4.6.1 ID22NI

As first practical results simulate focusing properties of a Kirkpatrick-Baez (KB) ML mir-
ror set-up, at present used for nano-focusing at the undulator beamline ID22NI at the
ESRF has been simulated. The actual mirrors for horizontal (ML-ID22NIh) and verti-
cal (ML-ID22NIv) focusing are adaptive mirrors on a bender, as shown in figure 4.15.
The curvature of flexible mirrors can be adapted to current experimental parameters:
depending on wavelength λ, the angle θ and curvature can be adjusted [101]. Source
distances for the horizontally and vertically focusing mirrors differ. At the ID22NI, a
horizontal slit at 27 m downstream from the undulator can be closed, yielding a “vir-
tual source”.

For sake of clarity, we show results calculated for only one photon energy of E =
17.5 keV or correspondingly a wavelength of λ = 0.0709 nm; the respective angles of

5Upgrade Programme Beamline 04
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incidence at the two mirrors’ centre are then θ = 8 mrad. For further geometrical pa-
rameters, see table 4.3. The results obtained for these two set-ups are shown in the

ID22NI UPBL04 (planned)
Quantity HFM VFM HFM VFM

distance from source 36 m 63 m 144.6 m 183.5 m
distance to focus 83 mm 180 mm 43 mm 100 mm

length of the mirror 76 mm 112 mm 36 mm 70 mm
angle at mirror’s centre 8 mrad 8 mrad 14.4 mrad 14.4 mrad

Λ1 5.35 nm 5.07 nm 2.93 nm 2.86 nm
Λ2 3.27 nm 3.68 nm 1.88 nm 1.99 nm

Table 4.3: Overview of the geometrical parameters for the current ID22NI beamline at the ESRF and a planned
set-up within the ESRF upgrade programme. The angle of incidence can be changed to fit the cur-
rent wavelength; the values here are stated for a photon energy of E = 17.5 keV used for the shown
simulations. Bilayer thicknesses Λ1,2 are extreme values along the surfaces, assuming Bragg’s law.
Number of bilayers is 25 for all set-ups.

Figure 4.15: Photography of one of the two KB multilayer mirrors on top of a bender currently in use at the
ID22NI beamline. Image courtesy: ESRF, Grenoble.

following figures.

Focus sizes

In figure 4.16, simulated focus sizes for the horizontal (a) and vertical (b) mirror are
shown, as a function of Bragg modification factor f , q.v. (4.18). The red curve shows
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the full width at half maximum of a sinc2-fit (cf. the following Discussion) to the propa-
gated intensity; the reddish error band indicates the error interval of the fit. The green
dashed line is the standard deviation of the reflected phase envelope ψ1 on a logarith-
mic scale; the blue dotted line is the peak reflectivity in the focal spot. As expected,
highest reflectivity occurs for modification factors f ∼ 1. Also, the phase flatness is en-
hanced by an order of magnitude or so. The fitted focus sizes are slightly above the
diffraction limit (dotted constant line), given by the gradient formula (4.2).

Discussion

What is the focus size? To quantify the intensity distribution in the focal plane, three
different definitions have been used; unfortunately, none seemed to give a “reasonable”
answer. Different definitions of a “focus size” exist, like the Rayleigh criterion (distance
between first minima), the full (half) width at half maximum, the root mean square
(the 1σ-value of a Gaussian), and more. For simplicity, let us take the full width at half
maximum.

A simple search for fifty percent of the maximum has not proved satisfactory. For
experimental data, usually a model function is fitted, and the “focus size” determined
from the fit parameters. Here a Gaussian fit (it showed to be very poor) and a sinc2-
fit to the propagated intensity have been used. The latter is the model function in the
thin lens-approximation. But several fitting procedures each gave inconsistent results
when started with different initial values.

In figure 4.17, the fitted “focus sizes”, obtained as FWHM values for the sinc2-fit, are
shown as a function of modification factor f – for different initial values as indicated.
Clearly, the nature of the red line (initial value of 1.0×∆0) and the blue dotted line
(0.8×∆0) are totally different. The many plateaus and jumps are hardly satisfactory.
In lack of a more adequate mechanism to “measure” the focus, the sinc2-fit was used,
with initialisation parameters of 0.94×∆0 in figure 4.16 (a) and 0.98×∆0 in (b); in fig-
ure 4.19 (a), an initialisation of 1.16×∆0 and 1.14×∆0 has been chosen in (b). These
initialisations lead to focus sizes consistent with the reflected phase front flatness(〈φ(s)2〉−〈φ(s)〉2)1/2

,

where φ(s) denotes reflected phase along the surface s.

4.6.2 New UPBL04 (NINA-project)

Analogue simulations as in the previous subsection have been carried out for the afore-
mentioned planned ML KB system to be used in a planned beamline of the ESRF up-
grade programme, the UPBL04. This beamline is part of the NINA project6 [19].

From the simulations, focus sizes below 6 nm might be expected. But here it is im-
portant to note that the simulations assume a point-source. In horizontal direction,
ESRF undulator sources are rather broad and spot sizes below 50 nm can only be
reached with tremendous de-magnification (the ratio S2/S1 of distances to the focus

6NanoImaging and NanoAnalysis
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Figure 4.16: Simulated focus sizes for the ID22NI geometry, (a) horizontal ML and (b) vertical ML, as a func-
tion of Bragg modification factor f . The focus sizes (red curve with reddish error bands) have been
obtained from sinc2-fits to the intensity in the focus. Standard deviation of reflected phase (along
the ML surface) is shown in green on a logarithmic scale; peak intensity in the focus is shown in
blue. Dotted line shows the diffraction limit obtained from the gradient formula, (4.2). Simula-
tion is carried out for a point-source.
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Figure 4.17: Focus sizes as in figure 4.16 (a), but obtained for different start parameters for the fitting procedure.
Depending on initialisation, non-linear fitting may produce plateaus and jumps.
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Figure 4.18: Focus cuts for the horizontal set-up in figure 4.16 (a), for different modification factors f . Plots
in (a) are shifted horizontally and normalised for clarity. In (b), important characteristics are
tabulated. Focus size ∆ has been obtained from a sinc2-fit and by searching the 50 %-criterion
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Figure 4.19: Same as figure 4.16, but for parameters of a planned ML KB set-up to be used at the upgrade
beamline UPBL04. The geometrical parameters can be found in table 4.3. Simulations have been
carried out assuming illumination by a point-source.

/ from the source). Additionally, at the ID22NI beamline and the planned UPBL04 it
is possible to reduce the horizontal source size by closing slit gaps; however, this re-
duces flux. Depending on the “virtual source size”, nearly diffraction limited focusing
is envisioned.

4.6.3 Exploring limits

In this subsection we present simulations of multilayer mirrors that touch the physical
limits of deposition. The simulations have been performed for four different photon en-
ergies, 12.4 keV, 17.0 keV, 24.8 keV, and 49.6 keV. The angles of incidence at the mirrors’
centres are varied between 14 mrad and 24 mrad, resulting in Bragg bilayer spacings
of 0.5 nm to 3.6 nm. This covers a good part of the range used in current ML mirror
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Quantity Value Quantity Value
distance from source 145 m angle at mirror’s centre 14. . .24 mrad

distance to focus 10 mm photon energy 12.4. . .49.8 keV
length of the mirror 1. . .10 mm number of bilayers 50 . . . 500

Table 4.4: Geometrical parameters of the model system ML-500.

depositions, and even going to slightly smaller spacings. The mirrors have a length of
1 mm or 10 mm; the number of layers varies between 50 and 500. See table 4.4 for a
brief summary of the parameters used throughout this subsection.

The simulated set-ups are defined by the photon energy or wavelength, λ, and the
angle of incidence at the mirror’s centre, θ; from that, the angles at the “left” and “right”
side of the mirror are derived, depending on mirror length L. The results are shown
as a function of Bragg-layer spacing Λ = λ/2sinθ at the mirror’s centre, although sim-
ulated using the modified layer spacing (4.18). The set-up and its defining quantities
are illustrated in figure 4.20 (a). In part (b), the angular range of a L = 10 mm mirror
is shown as a function of layer spacing and photon energy. A typical pseudo-rocking
curve (while an ordinary rocking curve is a function of angle ∆θ, here the modification
factor f is scanned, scaling the modification to Bragg’s law) is shown in figure 4.20 (c).
The blue line shows the integrated reflectivity of the ML mirror, whilst the green dashed
line shows the standard deviation of the reflected phase, on a logarithmic scale. Four
points are marked: Bragg’s law at f = 0, the modified Bragg condition at f = 1, and the
points of highest reflectivity and flattest phase; these two points differ in general.

As already mentioned, the flattest phase in the f -scan does not occur for f = 1. To
study the “best” cases, first an optimisation of flattest phase has been carried out for
different parameters, the modification factor f was scanned to find the minimum. The
result is presented in figure 4.21 (a): The points indicate the modification factor f (λ,θ)
as a function of layer spacing Λ = λ/2sinθ, for the four energies and different angles.
Open symbols are simulations for the short (L = 1 mm) mirror, filled symbols those for
the long (L = 10 mm) mirror.

Increasing energy and angle of incidence (viz., going to smaller layer spacings Λ),
the position of minimal phase-curvature moves towards f → 1. According to the results,
for layer spacings Λ. 1.5 nm, the modified Bragg condition f = 1 is a reasonable ap-
proximation. At larger spacings, however, less additional material should be deposited.
Also, the amount of additional deposition should be decreased for higher layer num-
bers. The simulations for a photon energy of 17.0 keV (blue lines and symbols) have an
overlap with those for 12.4 keV and 24.8 keV; obviously, the optimised modified factor
depends rather weakly on the photon energy.

The minimum standard deviation of the reflected phases after optimisation is
shown in figure 4.21 (b). It is apparent that the shorter mirror yields a flatter phase with
∆φ . 10−4, while for the longer mirror only ∆φ & 10−3 can be reached. The flatness
improves with photon energy and angle of incidence (viz., towards smaller Λ). In the
overlap region, the minimum phase curvature does not depend on photon energy, but
only on layer spacing. In the case of the shorter mirror (the lower data points), several
outliers are present; it seems as if the phase becomes more strongly curved for higher
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layer numbers or smaller angles of incidence.
In figure 4.21 (c), the integrated reflectivity along the mirrors’ surfaces is shown.

While the flatness of the phase does not depend on photon energy, the reflectivity does.
This is due to stronger absorption at lower energies. The data shown here are consistent
with predictions for the flat ML theory.

Reflectivity curves along the mirrors’ surfaces for the points of figure 4.21, indicated
by arrows, are shown in figure 4.22.

The aforementioned results only considered the reflected field at the mirror’s sur-
face. Using the mirror simulation programme, described in chapter 3, the field enve-
lope has been propagated to the focal plane, and the focus size has been determined
by a sinc2-fit. For a discussion of the quality of such fits, see figure 4.17 and the accom-
panying text.

The simulated focus sizes are shown in figure 4.23. In part (a), the results both for the
short mirror of length L = 1 mm (upper red curve) and for the long mirror, L = 10 mm
(lower blue curve) agree well with the expected diffraction limit using the gradient for-
mula (4.2). The deviations in case of the long mirror become visible in part (b), where
the spot size broadening ∆−∆0 has been enhanced by a factor of 20; see the “broad-
ening axis” shown on the right. The deviations are on the order of 0.1 nm to 0.25 nm,
which corresponds to about five to ten percent. This broadening can be attributed
mainly to two causes: (i) at high photon energies the reflectivity is not homogeneous,
hence effective aperture is reduced; (ii) the sinc2-model is based on the assumption of
a thin lens, which is not the case here.

It should again be emphasised that all focus simulations presented in this chapter
assume a point-source, fully coherent in temporal and spatial domain. Calculations in-
corporating spatially partial coherence as shown for simple mirrors in chapter 3 should
be possible, using the scheme from chapter 2.

Using numerical simulations, the field inside a focusing multilayer
mirror has been calculated and the exiting wave envelope has been
propagated to the focus. The modified Bragg condition yields
enhanced reflectivity; influence on the focus size, however, is very
weak.
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Figure 4.20: Definition of the simulation set-up for the following results. (a) Geometrical definition: for differ-
ent wavelengths λ and mirror lengths L, the angle of incidence at the mirror’s centre, θc, is varied;
in (b) the resulting minimal and maximal local angles of incidence on the “left” and “right” edge
are shown as a function of layer spacing at the mirror’s centre. Scanning the Bragg modification
factor f , a pseudo-rocking curve as shown in (c) can be simulated. The blue line is the integrated
reflectivity of the mirror, while in green the standard deviation of the reflected phase (an estima-
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asterisk define the geometry, while those marked with a plus sign is the abscissa of the following
plots.
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tion limit for the long mirror is shown. The abscissa measures the diffraction limit, while the sym-
bols are placed according to the “spot size broadening” axis shown on the right. As can be seen, the
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Chapter 5

Waveguides

5.1 Introduction

In chapter 2 both an analytical and numerical treatment for coherence propagation
in x-ray waveguides has been proposed. In this chapter we present results using both
approaches. Analytical results often provide qualitative insights for questions with easy
geometries and using approximations. Numerical results, on the other hand, can be
used more flexibly also for complex geometries and for more complicated expressions.
However, numerical inaccuracies obscuring the results have to be taken into account.
While setting up analytical expressions for the degree of coherence in x-ray waveguides
we only considered guided modes, neglecting radiative ones. In a numerical treatment
these are accounted for. Nevertheless the analytical expressions provide a quick and
comprehensive answer, for example when optimising waveguide length in terms of
coherence filtering (see subsection 5.2.4).

Using the analytical framework from subsection 2.2.6, we will calculate the evolu-
tion of coherence properties inside x-ray waveguides. We start with a toy model that
shows important features of | j |. Solving an overlap integral of discrete modes with a
model illumination function, semi-analytical results follow next. In subsection 5.2.4,
the required waveguide length for a specified degree of coherence (between points on
optical axis and channel boundary) is evaluated.

Results based on numerical propagation are presented in section 5.3. These calcu-
lations include effects due to radiative modes which add incoherently to the guided
modes and are neglected in the analytical approximation of section 5.2. We close with
section 5.4 about combined optics, that is waveguides placed in the focus of an x-ray fo-
cusing mirror. X-ray waveguides are usually put into a pre-focused synchrotron beam,
both to enhance coherence properties and to clean-up the beam; a photo of an experi-
mental waveguide set-up used for imaging at the coherence beamline P10 at PETRA III
is shown in figure 5.1.

The results presented in this chapter have already been published in [61].

85
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Figure 5.1: Photo of an experimental set-up for waveguide based propagation imaging at the coherence beam-
line P10 at PETRA III. As illustrated in the inset, two planar waveguides in crossed geometry are at-
tached to several stages for rotation and translation. The pre-focused x-ray beam illuminates from
the right. LEDs illuminating the sample (not shown) and an optical microscope in the background
help in aligning of the set-up.

5.2 Analytical degree of coherence

In subsection 2.2.6, an analytical expression for the degree of coherence j (x,d) in an
x-ray waveguide, after a propagation distance x, between the optical axis and a point
within a lateral distance d , was derived to be

j (x,d) =
∑

n λn(x)ψ∗
n(0)ψn(d)√∑

n λn(x)|ψn(0)|2 ·λn(x)|ψn(d)|2
. (5.1)

The occupation numbersλn(x) decay exponentially due to absorption, since a fraction
of the mode’s energy propagates inside the cladding material. Their start values λn(0)
have to be determined by an overlap integral of the mode with an incoming field (see
subsection 5.2.2). But first, we examine j (x,d) in a toy model for a set of chosen model
occupation numbers in the following subsection. Numerically solving the overlap inte-
gral, propagation of the analytical degree of coherence is shown in subsection 5.2.3. In
the final part of this section we address the question of minimum waveguide length if
a specified degree of coherence is needed for an experiment. The following section 5.3
then presents results obtained from numerical propagation.

5.2.1 Guided modes in a toy model

The degree of coherence j (x,d), (5.1), primarily depends on the occupation numbers
λn . As a first step we just “guess” a set of λn to get first insights of the behaviour of j .
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Figure 5.2: Analytical degree of coherence in a toy model x-ray waveguide supporting up to four modes. From
(a) to (c), two, three, and four modes are excited, with increasing occupation numbers as given
by the λn . The dotted line shows the interface between guiding layer and cladding; a significant
fraction of intensity is located within the guiding layer.

However, in the following examples we have the set-up of a silicon–vacuum–silicon
waveguide with a guiding layer thickness of D = 70 nm in mind, hence up to four
modes are guided.

We fix λ1 = 1.0 and then add, step by step, the higher modes. Figure 5.2 shows j (d)
for two (a), three (b), and all four (c) modes excited. In each part, the highest mode’s
strength is increased from red over blue to green. The actual λn are included in the key.
The boundary between guiding layer and cladding material at d = 35 nm is indicated
by the dotted line. Exciting only two modes, the degree of coherence decreases with
increasing λ2. In (b), the third mode is switched on, and a root of | j | appears; actually,
this is a zero-crossing of j : the modes are anti-correlated1 Turning on the fourth mode,
as in (c), the finite anti-correlation for large separations vanishes.

5.2.2 Overlap integral

Next we calculate the occupation numbers for given waveguides geometries and illu-
mination function. Since the degree of coherence j only depends on the ratios of the
λn , we can agree to use relative occupation numbers that add up to 1.0. As discussed in
the literature [31, 33, 102], the occupation numbers are given by the overlap integral of
the respective modes ψn(y) with the illumination function ψillu(y).

1Anti-correlated fields yield an interference pattern in the far-field; but compared to the case of correlated
fields, minima and maxima are swapped.
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Waveguides used for coherence filtering are of course illuminated by a partially co-
herent beam. We assume that ψillu(y) is composed of independent, hence incoherent,
plane waves ψillu(y,θ) impinging under an angle θ perpendicular to the entrance,

ψillu(y,θ) =ψenv(y,θ)exp

(
2πi

λ
sinθ

)
,

ψenv(y,θ) =ψenv exp
(
−y2/2σ2

y

)
exp

(−θ2/2σ2
θ

)
.

(Here, λ is the wavelength.) The incoming angular spectrum and each plane wave is
thus enveloped by Gaussians of widths σθ and σy . Each plane wave shall excite the
modes independently, we write the overlap integral for angle θ as

λn(θ) =
∣∣∣∣∫ ∞

−∞
d yψillu(y,θ) ·ψn(y,θ)

∣∣∣∣2

.

To calculate the total occupation numbers λn , we integrate over angles:

λn =
∫

dθλn(θ).

For finite integral limits and a more realistic model, we limit the illumination en-
velopes by setting σy = 5D and σθ = 5 mrad (D is the guiding layer thickness). The for-
mer yields a finite illumination beam, while the latter restricts the angular spectrum.
The small value of 5 mrad is reasonable since the angular acceptance of x-ray WGs is
limited by the critical angle ϑc . For silicon at photon energies of E = 12.4 keV, we have
ϑc = 2.52 mrad. The lateral beam size σy = 5D corresponds to about 100 nm to 1 µm
(full width at half maximum, FWHM), which is a reasonable model for good or moder-
ate pre-focusing available at synchrotron radiation sources.

The integrations are carried out numerically by Riemann sums. As integration limits,
±5σy and ±2σθ have been chosen; the integration domain was divided into 1000×500
(in y and θ) points. Solving the overlap integral, occupation numbers λn(x = 0) are
obtained.

The modes are subject to absorption, since a finite fraction of energy is transported
inside the cladding material. If the index of refraction is written as n = 1−δ+ iβ, the
linear absorption coefficient for Beer-Lambert’s law is µ= 2kβ [8], and the propagated
occupation numbers λn(x) are

λn(x) =λne−µn x .

Here the effective absorption per mode is given by the fraction of intensity inside the
cladding,

µn =µcl(E)

(∫
y∈cladding

dy |ψn(y)|2
)/(∫

dy |ψn(y)|2
)

, (5.2)

and µcl(E) is a tabulated value depending on photon energy and cladding material.
In figure 5.3 the relative occupation numbers λ1...4 for WG guiding layer thickness
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Figure 5.3: Relative occupation numbers λn as a function of WG guiding layer thickness D, and for different
propagation lengths, (a) to (c). The parameters of the illumination are given in the text.

D = 10. . .70 nm (i.e. one to four modes) are shown (a) right at the entrance, and af-
ter (b) 500 µm, and (c) 1500 µm of propagation, for E = 12.4 keV and a silicon cladding.
Limiting values for σy ,σθ →∞ are indicated by the dotted lines.

Obviously, right at the entrance the occupation numbers resemble
their limiting values for σ→∞ quite well; as soon as a specific mode
n is allowed to propagate, relative occupation numbers go to 1/n.
Due to finite beam size and reduced angular spectrum the steps are
smoothed. After some propagation – 500 µm in (b) and 1500 µm in
(c) – the highest modes are absorbed quickly and hence the low
modes dominate. From this one expects an increase in degree of
coherence due to mode filtering.

The following subsections will give more quantitative testament of this expectation.
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Figure 5.4: Degree of coherence | j | for three waveguides of different guiding layer thickness D, (a) to (c), and
different propagation lengths x.

5.2.3 Degree of coherence

Based on the occupation numbers calculated in the previous subsection, we now
present the resulting degree of coherence, j (x,d). The coordinate x measures distance
from the waveguide’s entrance, while d is the distance from the probe point to the op-
tical axis.

Figure 5.4 shows the degree of coherence for three WGs with D = {30,50,70} nm and
propagation lengths x = {0,500,1500,6000} µm. As can be seen, the degree of coherence
increases considerably with propagation distance, resulting from the stronger absorp-
tion of higher modes, and the resulting smaller spectrum of mode occupation numbers.

Compared to figure 5.2 and our toy model, the guessed occupation numbers de-
scribe the actual curves quite well. See, for example, at the green curve in figure 5.4 (a),
with guiding layer thickness D = 30 nm and propagation distance x = 1500 µm: since
the second mode is absorbed stronger than the first mode, the degree of coherence
increases as a function of propagation distance x. After a few millimetres, the beam is
nearly fully coherent.

In the case of a three-mode-WG, figure 5.4 (b), with D = 50 nm, coherence filter-
ing by mode damping takes longer. First, the anti-correlation far in the cladding is re-
duced. Near the interface between guiding layer and cladding, a finite correlation at
the entrance vanishes for some hundred micrometres of propagation, while the zero-
crossing moves to larger separations. After propagation lengths of about 6 mm, the con-
fined beam is highly correlated.
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Figure 5.5: Required waveguide length L as a function of guiding layer thickness D, for different energies E
and coherence thresholds jthresh between the optical axis and the interface.

For a four-mode-WG as in figure 5.4 (c), D = 70 nm, propagation lengths of x = 6 mm
are not sufficient to filter photon energies of E > 12.4 keV. The required WG length for
a specified degree of coherence threshold is the topic of the following subsection.

5.2.4 Optimised waveguide length

Due to absorption of higher modes, the degree of coherence is enhanced with increas-
ing propagation distance x in x-ray waveguides. In this subsection we address the ques-
tion of minimum WG length, if a certain degree of coherence j (x,d = D/2) is required
between optical axis and interface. Figure 5.5 gives two answers: in (a) the energy is
fixed, and required WG length L is shown as a function of guiding layer thickness for
different thresholds, i.e.

L(D, jthresh) = argminx

(
j (x,d = D/2) ≥ jthresh

)
;

for (b), on the other hand, a constant threshold jthresh = 0.6 was chosen and the re-
quired length calculated for different photon energies, hence

L(D,E) = argminx

(
j (x,d = D/2)E ≥ 0.6

)
.

At a fixed energy, E = 12.4 keV, required length scales nearly quadratically with guid-
ing layer thickness. This is a result of the modes’ extension into the cladding quickly
being reduced, and thus the effective absorptionµn . For this moderate energy, the four-
mode WGs up to D = 70 nm can be filtered efficiently with WG lengths in the millimetre
range (L ≈ 9 mm for jthresh = 0.6). If a higher degree of coherence is necessary, the guid-
ing layer thickness should be reduced to D . 55 nm for comparable lengths.

Figure 5.5 (b) shows the results for a fixed, medium threshold jthresh = 0.6, at differ-
ent energies up to E = 24 keV. As can be seen, WGs with D & 50 nm are not favourable
if E & 17 keV, because very long WGs would be required for coherence filtering.
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It has to be noted that due to radiative modes not being considered here actual de-
grees of coherence are smaller; this will be shown in the next section by numerical
propagation. Coherence properties increase for reduced angular spectra, however.

Based on analytical theory, the degree of coherence has been
propagated through x-ray waveguides. With the described
framework it is now possible to optimise WG design in terms of
coherence. However, radiative modes and real structure effects are
beyond this simple analytical approach. Numerical propagation as
described in the following section is able to account for these effects.
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5.3 Numerically propagated degree of coherence

In this section, results from numerical propagation including radiative modes are pre-
sented. The code is based on the programme PWG (parabolic wave equation GUI) by
Christian Fuhse [33] that propagates a single plane wave along an x-ray waveguide and
uses the parabolic wave equation, an approximation of the Helmholtz equation. Some
improvements have been made:

1. the code was ported from IDL2 to C-code and optimised for speed,

2. free-space propagation before and after the WG is included.

With this new version and the tools for stochastic superpositions (see chapter 2), fields
can be propagated and superposed much faster than before; the typical time-scale for
Si-WGs with lengths of a few millimetres is less than a minute for each incident wave.
In figure 5.6 (a), the intensity distribution inside a Si-WG of guiding layer thickness
D = 50 nm is shown for a single plane wave under perpendicular angle. The partially
coherent superposition with the methods of chapter 2 is shown in (b), where 2401
waves of different angles have been propagated. The photon energy was chosen to be
E = 12.4 keV. The angular spectrum of the illumination was ±3 mrad.

The results of calculations similar to those in figure 5.6 (b) are shown in parts (c-
e). Compared to the analytical approach with neglected radiative modes, the degree
of coherence is lower. The red curves, that give j (x = 0, y) right at the entrance corre-
spond to a sinc-function that describes the degree of coherence for the incoming angu-
lar spectrum. Clearly, several hundred micrometres of propagation are necessary until
j is dominated by guided modes. After several millimetres, the numerical results agree
well with analytical theory. In performing such analyses, WG design can be optimised
in terms of coherence; up until now, the design goal was damping of radiative modes.
In (f), iso-lines of intensity and coherence are shown for large propagation lengths be-
hind the WG.

The analytical calculations of section 5.2 have been generalised by
numerical propagation to account for radiative modes. This set-up
allows for optimisation of WG length in terms of coherence filtering;
including real structure effects as in [31, 38] or tapered WGs as
analysed in [103] is also possible but beyond the scope of this thesis.

2“Interactive Data Language”, software package from Exelis Visual Information Solutions (formerly ITT
VIS and RSI Research Systems, Inc.)
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Figure 5.6: Numerically propagated degree of coherence in x-ray waveguides. In (a), coherent propagation of
a single plane-wave is shown, while (b) is the partially coherent intensity of 2401 waves. (c-e) show
the degree of coherence in waveguides of indicated guiding layer thickness D for different propa-
gation lengths x. The dotted line indicates the interface between guiding layer and cladding. In
(f), iso-lines of intensity (red, dashed) and coherence (green) are shown for free-space propagation
behind the WG exit.

5.4 Combined optics

Up until now, the waveguide was illuminated by an angular spectrum of plane waves.
In experiments, a focused x-ray beam is used. In this section, mirror simulations taken
from chapter 3 are used as an illumination of the waveguide. A Si-WG with D = 50 nm
is placed right in the focal plane of P10-HFM that focuses x-rays of photon energy E =
7.9 keV (or a wavelength of λ = 0.157 nm) to a spot size of approximately 220 nm. As
can be seen from figure 5.7 (a,c, and d), the focused beam is only partially coherent.
Inserting a WG (figure 5.7, b and e) the beam size is further reduced below 50 nm; only
after one millimetre of filtering, the beam is nearly perfectly coherent.

For propagation imaging, not only coherence is important, also beam divergence
plays a crucial role to improve resolution due to larger magnifications. In figure 5.7 (f)
the filtered intensity and degree of coherence is shown after free-space propagation
of only 100 µm behind the WG’s exit. Due to the strong beam confinement, a beam
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Figure 5.7: Combined optics: a waveguide placed in P10-HFM’s focus plane. In (a, KB focus) and (b, WG in KB
focus), the partially coherent intensity distribution (linear colour map) and iso-lines of the degree
of coherence are shown. Cuts of intensity and degree of coherence along the indicated lines are
drawn in (c-f).
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divergence on the order of ∼ 4 mrad is predicted for this particular set-up, three time
as high as for the focused beam.

The numerical propagation of coherence through x-ray waveguides
has been generalised to combined set-ups, where the WG is placed
in the focal plane of an x-ray focusing mirror. It has been
demonstrated numerically that indeed a significant beam
confinement as well as nearly perfect coherence filtering is feasible
with this approach.
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Conclusion

The main goal of this thesis was to develop a wave-optical description of curved multi-
layer mirrors used for nano-focusing of x-ray beams. An analytical framework has been
derived, a numerical simulation programme has been written and used for optimisa-
tion. The computer codes are deployed at the European Synchrotron Radiation Facility
(ESRF, Grenoble) and the Institut für Röntgenphysik, Göttingen, to assist in the design
of future experiments.

More incidentally, a stochastic description of random optical fields has been used
to model spatial coherence properties. Combined with related techniques, this ap-
proach has helped in the understanding of x-ray propagation imaging experiments.
The method of stochastic fields is very flexible and can be used on top of existing soft-
ware that propagates deterministic wave-fields.

6.1 Summary

The following subsections give a short summary of the main results found in this thesis
regarding coherence and multilayer mirrors (ML mirrors). Open questions for further
research and programming tasks are stated in the following section.

6.1.1 Coherence

Partial coherence properties of optical fields are described by their stochastic proper-
ties. Most sources, including current x-ray laboratory or synchrotron radiation sources,
show rather strong random variations in the time- and space-domain. Random super-
positions of pre-calculated complex valued fields, as described in chapter 2, give a de-
scriptive and vivid representation of such random fields.

This method has been used to better understand the properties of a focusing set-
up at the synchrotron source PETRA III, see subsection 3.3.4. The simulated prediction
complies well with experimental data of focus size scans. Good agreement with analyti-
cal theory has been found quantitatively in section 5.3. Using this approach, coherence
filtering by x-ray waveguides has be demonstrated theoretically.

97
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6.1.2 Multilayer mirrors

A wave-optical theory describing propagation of an incoming and a reflected wave
inside (nearly) elliptically curved focusing multilayer mirrors has been developed in
chapter 4. The analytical treatment in subsection 4.3.2 provides confidence in the mod-
ified Bragg condition, so far only derived on geometrical grounds. The numerical treat-
ment of the Takagi-Taupin equations (4.7) allows for further optimisation, in terms of
reflectivity and focus spot size.

From first-order approximations, diffraction limited focusing may be expected. The
numerical propagation and focusing yet show deviations (see, for example, figure 4.23).
But statements of focus size ∆ heavily depend on the definition of ∆. In this work, the
full width at half maximum of a fitted sinc2-function has been chosen; the quality of
the fit was not as high as expected, however.

6.2 Outlook

6.2.1 Coherence

Based on random superpositions of basic-fields, a stochastic description of partial
coherence has been described in chapter 2. So far, the equal-time spatial coherence
j (~x1,~x2) has been addressed. Incorporating the time-domain is desirable, regarding
the emerging availability of short-pulse sources such as free electron lasers or plasma
sources.

For simplicity, the source plane itself has been assumed to be free of any correlations.
It is well-known that such correlations exist, and show a great influence, at least in the
vertical direction. These might be included in the modelling scheme using non-flat
distributions for the random coefficients cn . Further generalisations might model long
undulators or coupled undulator sources.

6.2.2 Multilayer mirrors

As a first model, we have derived Takagi-Taupin-like equations based on the assump-
tion of the two-beam approximation. Further effort might be reasonable, since higher-
order reflections allow for larger layer spacings and smaller spot sizes.

For the numerical solution, a simple algorithm based on the finite difference
method has been used. The current implementation does not allow for an adaptive
step size and turns out to be rather inefficient in case of large layer spacing gradients.
Appropriate step sizes have been found to depend on the largest local angle of inci-
dence; while the transformation to elliptical coordinates is very reasonable on analyti-
cal grounds, a description based on an angular coordinate might show better numeri-
cal performance.

Without a proper description of radiation conditions at the boundary, the finite ele-
ment method does not seem to be usable. It would intrinsically lead to more efficient
implementations.

Some approximations used in the current approach should be questioned in further
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works on this topic. We list some open discussions and implementation tasks; see also
subsection 4.4.3.

• vector versus scalar theory,

• boundary condition of the incoming
wave-field,

• real-structure effects due to non-perfect
layer deposition,

• effects due to diffusion or chemical

reactions,

• merging the ML code with the coherence
code,

• a modified Bragg condition correcting for
change of reflection angle.
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I want to close with Robert Hanbury Brown [104], describing
“the features of modern science.

It starts, like so many other branches of science,
with an accidental discovery and then shows how the
construction of new tools [...] brings us entirely new
knowledge of the world, knowledge which is so strange
that it could never have been foreseen.

It shows how our knowledge of the real world is
limited by the tools which are available at the time,
and goes on to show how each step forward in science
depends on the interplay of imaginative theory [...]
and experiment; furthermore it illustrates how each
discovery in an active science raises more questions
than it answers.”



Appendix A

Tabular derivation

In subsection 4.2.2, Takagi-Taupin equations have been written for non-elliptical mul-
tilayers, which are described by a deviation function ϕ(s, t ). Elliptical MLs fulfil the
Bragg condition for an incoming cylindrical wave, and can be described by a Fourier
series expansion in exp(i 2kt ), q.v. (4.5) and its following paragraph. Non-elliptical MLs

may be approximated using a pseudo Fourier series in exp
(
i 2kt − i kϕ(s, t )

)
. Thence

the phase factor exp
(
i kϕ(s, t )

)
is introduced into the reflected wave:

P ′
1 := P1e i kϕ(s,t ).

A parallel derivation of the Takagi-Taupin equations for the incoming wave, the Bragg-
reflected wave, and the modified Bragg-reflected wave is shown on the following page,
along with some notes describing the steps and some terms.
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Appendix B

Families of rays

Here we give a short recursive algorithm, written in ANSI C, that prints families of rays,
propagating inside a multilayer. The families are characterised by the number 2n −
1,n ≥ 1 of transmissions and reflections at the ML interfaces. The discrete length, the
number of layers passed, of such a ray is 2n. The rays of family 2n −1 are supposed to
leave the ML in step 2n −1 through the surface, denoted as interface 0.

The following C-code enumerates all rays of a given family 2n −1, see the example
output and table B.1 for the first families. The number of rays in family 2n −1 is given
by the Catalan number cn .

In theoretical computer sciences and graph theory, the rays in these families are
known as monotonic paths [84, 85]. For an exhaustive discussion of monotonic paths,
cf. subsubsection 2.3.4.4 in [86].

01: #include <stdio.h>
02: #include <stdlib.h>
03:
04: void raygen(int, int, char*);
05:
06: int main(int argc, const char *argv[])
07: {
08: int length = 7;
09: int i;
10:
11: if (argc == 2)
12: length = atoi(argv[1]);
13:
14: char* abc = (char*) malloc(length);
15: for (i=0; i<length; i++)
16: abc[i] = ’0’;
17:
18: raygen(length, 1, abc);
19:
20: free(abc);
21: return 0;
22: }

23:
24: void raygen(int length, int position, char* abc)
25: {
26: char* abc1, *abc2;
27: int i;
28:
29: if (position == length)
30: {
31: char last = abc[position-1];
32:
33: if (last == ’0’)
34: printf("%s\n", abc);
35:
36: return;
37: }
38:
39: abc1 = (char*) malloc(length);
40: abc2 = (char*) malloc(length);
41:
42: for (i=0; i<length; i++)
43: abc1[i] = abc2[i] = abc[i];
44:

103
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45: char last = abc[position-1];
46: if (last <= ’0’ + length/2)
47: {
48: abc1[position] = last+1;
49: raygen(length, position+1, abc1);
50: }
51: if (last > ’0’)
52: {

53: abc2[position] = last-1;
54: raygen(length, position+1, abc2);
55: }
56: free(abc1);
57: free(abc2);
58: }
59:

$ ./raygen 3
010

$ ./raygen 5
01210
01010

$ ./raygen 7
0123210
0121210
0121010
0101210
0101010

2n −1 cn 2n −1 cn

1 1 15 429
3 1 17 1430
5 2 19 4862
7 5 21 16796
9 14 23 58786

11 42 25 208012
13 132 27 742900

Table B.1: The number of rays within family 2n −1 is given as the Catalan number cn .

010 01210 0121210 012121010

Figure B.1: Sketch to illustrate naming convention of multiple-reflections.
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Implementation details of XMLS

An overview of the simulation programme XMLS (x-ray multilayer mirror simulations)
is given in this appendix. The following sections show an example user session, the
corresponding call graph of the C++-code, and a brief summary of the most important
classes. Unfortunately, we cannot go into detail.

C.1 Example session

In this section we present an example session of running the Command Line Inter-
face (CLI) of XMLS. Actually, a multilayer mirror is simulated; analogue output of the
takagi-taupin simulation programme is skipped and shown later in subsection D.1.

User input is marked in boldface. See notes below for explanations.

This is kernel v.098e running
on htc5202.nice, Linux-2.6.18-238.9.1.el5

debug level is 1; logging
[ PROGRESS MESSAGE ERROR WARN TIMING ]

xmls $ get geometry.s1
geometry.s1 is 1.45e+08
xmls $ get geometry.s2
geometry.s2 is 10000
xmls $ get geometry.theta
geometry.theta is 0.014
xmls $ set geometry.s1 80e6
xmls $ set geometry.s2 100e3
xmls $ set geometry.theta 0.01
xmls $ set mirror.length 10e3
xmls $ get ml.numberlayers
ml.numberlayers is 50
xmls $ set ml.numberlayers 25
xmls $ set physic.wavelength 1e-4
xmls $ set detector.length 1.0
xmls $ set detector.pixels 1000

xmls $ set physic.numberrays 10000

xmls $ start

(see subsection D.1)

preprocess timer: 8.7 s
reading data from precalc.dat ...
interpolating data on random grid ...
propagation timer: 866 ms

[gouy-cut] [fft]
[intensity-cut] [phase-cut]
[fft-plot] [intensity-cut-plot]
[phase-cut-plot] [gouy-cut-plot]
[phase-plot] [intensity-plot]
[profile-plot] [phaserel-plot]
[ml-reflected-plot] [ml-incoming-plot]

fitting focus cut:
χ2/dof = 0.0317557
A = 178.523 ± 0.6978

105
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k = 154.82349 ± 0.22885
off = -1.61771 ± 0.00407

rayleigh crit: 40.583 ± 0.060 nm
fwhm sinc: 17.976 ± 0.027 nm

Kullback-Leibler: 0.2671 (0.0214)
postprocess timer: 241 ms
xmls $ exit

1. This is the greeting of XMLS, telling the ver-
sion number, host name and Linux kernel
version. The debug level is set to 1, hence
only part of possible messages are shown.

2. get <para> is the CLI command to ask
for the current value of parameter <para>.
XMLS shows the value on the next line.

3. set <para> <val> is the CLI command to
set the parameter <para> to the new value
<val>.

4. start is the CLI command to start a single
simulation run with the current set of param-
eters. See section C.2 for a list of commands
used to define multiple runs using loops.

5. Output of this multilayer simulation is
shown and annotated in subsection D.1.
The propagation timer shows the time
needed for the propagation from the mirror
surface to the focal region.

6. The class CPostprocessor creates a num-
ber of line-plots using gnuplot1, and some
colour map plots with a built-in programme
(but using the typical gnuplot colour maps).

7. At the end, the focus size is obtained from a
sinc2-fit to the intensity data. First the fit pa-
rameters A,k,o f f are printed, subsequently
the focus size as given by the Rayleigh crite-
rion (distance between first minima) and as
a full width at half maximum (FWHM); units
are in nanometres, including error estimates
as given by the fit function. As a backend for
the fit algorithm, the non-linear multi-fit rou-
tines from the GNU Scientific Library2 are
used.

8. exit is the CLI command to end the simula-
tion programme.

More commands available in the CLI are explained in the following section.

C.2 CLI commands

The XMLS CLI offers several commands to interactively control the simulations. The
get, set, and loop commands act on the parameter set to be described in section
C.3.

$ get <para> — prints the current value of
the specified parameter on the next output
line

$ set <para> <value> — sets the given new
value to the specified parameter; a loop (see
next point) would be overwritten

$ loop <para> <from> <till> <steps> —
defines a loop, usable in a multirun (using
the command do); the given parameter will
be varied in the given interval, resulting in
steps+1 simulation runs; nested loops are
possible

$ start — starts a singlerun with the current
set of parameters

$ do — starts a multirun with the current set
of parameters and loops; nested loops are
possible; note: output files (see section C.4)
may be overwritten, use hooks as described
in section C.5 to rename them

$ mlscan <para> <from> <till>
<steps> — is the command for a multilayer
scan; here, <para> might be one of theta,
rot.theta, rotation.theta, or
modbragg.factor; see section C.6 for
details; the parameter is looped over as in
the loop command; for some parameters,
simulations are started in parallel, so take
care of memory and CPU load

1http://www.gnuplot.info
2http://www.gnu.org/s/gsl

http://www.gnuplot.info
http://www.gnu.org/s/gsl
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$ exit and quit — ends the programme

$ run <prog> — starts the given shell
command via the system(3) syscall

$ restart — restarts the XMLS kernel,
re-reading the xmls-defaults.conf file

$ recompile — recompiles the XMLS source
code, and if successful, restarts the kernel

$ estimate — calculates a rough estimate of
the focus size, using a thin lens
approximation; this information may give
good values for the parameter
detector.length described in section C.3;

also this estimate is used as a first guess for
the sinc2-fit

$ fit — performs a sinc2-fit to the intensity
cut in the focal plane; the fit is done by the
non-linear multi-fit routines form the GNU
Scientific Library3; the initialisation is done
with values from the estimate command
shown above

$ ana — calculates some experimental and
rather inaccurate focus properties

$ thetac — prints the critical angle of total
reflection, θc, for the current multilayer
materials and the current photon energy

C.3 Parameters of XMLS

The current XMLS version knows about three dozens of parameters, that are organ-
ised hierarchically. All parameters can be set, get, and looped over, as described
in section C.2. When started, XMLS reads the default parameter set from the file
xmls-defaults.conf, which uses the set-syntax. We now describe the current set
of parameters, sorted within eight groups.

3http://www.gnu.org/s/gsl

http://www.gnu.org/s/gsl
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detector angle a angle of rotation for the detector, if optical axis is mis-
aligned

length l the length of each 1d detector
line first l distance of first 1d detector from nominal focal plane

last l distance of last 1d detector from nominal focal plane
number n the number of 1d detectors, i.e. resolution along opti-

cal axis
offset A l offset of detector centre from nominal focal plane,

along A-axis
B l offset of detector centre from nominal focal plane,

along B -axis
pixels n number of pixels of the 1d detector

geometry s1 l distance from the source to mirror’s centre
s2 l focal distance, measured from mirror’s centre
theta a gracing incidence angle at the mirror’s centre

mirror length l projection of mirror length onto A-axis
reality f factor scaling the height deviation profile
slits f factor to the length, to scan the effective length

ml rot theta a angle of ML modification “rot” (see section D.3)
rotation theta a angle of ML modification “rotation” (see section D.3)
modbragg factor f factor of ML modification “modbragg” (see section

D.3)
numberlayers n number of ML bilayers
layerratio f ratio of the widths of the mono-layers in a bilayer
gridratio f ratio of grid discretisation points in s- and t -direction

(see section D.4)
gridfactor f number of discretisation points in t -direction, factor of

numberlayers
factordelta f factor of optical index, delta
factorbeta f factor of optical index, beta
maxmem n memory limit, in MB

physic numberrays n number of points on the mirror’s surface to be propa-
gated to focal region

wavelength l wavelength
postproc plotting n flag, if results should be plotted

fit n flag, if focal cut is to be fitted
simu autorun n flag, if simulation starts after set command

numberthreads n number of threads to be used in propagation (and sev-
eral mlscans)

source divergence a angle of divergence of the source
offset A l offset of the source, along A-axis

B l offset of the source, along B -axis

The unit of lengths (indicated by an l in the fourth column) is micrometre, unit of
angles (indicated by an a) is milliradians; factors (indicated by an f) are real numbers,
whilst numbers (n) are treated as integers. For simplicity, the source code treats all pa-
rameters as doubleprecision floating point numbers. Therefore, numbers are rounded
to next integers, flags are compared to 0.5.

C.4 Output files

The XMLS programme writes its simulation output to several files in the fold data/;
plot image files are copied into the webgui-folder, where also the HTML and related
files reside.
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C.4.1 Data files

The numerical data are written as ASCII coded numbers (usually floating point num-
bers in decimal representation, equivalent to the C formatted output modifiers %f or
%e). We distinguish one-dimensional (1D) and two-dimensional (2D) data. The most
important file is

• intensity.dat (2D). Here, the intensity
and phase (not: amplitude and phase) is
stored, for each pixel of the 2D-detector. The
data are organised as a four-column table,
representing (i) the optical axis, (ii) the
lateral axis (both in micro metre), (iii) the
intensity (in arbitrary units) and (iv) the
phase (in radian; domain: [−π,π]).

• intensity-cut.dat (1D) is a cut of
intensity.dat in the focal plane; it
contains two columns: (i) the lateral axis (in
micro metre) and (ii) the intensity.

• phase-cut.dat (1D) is similar to
intensity-cut.dat, but it holds the phase
in the focal plane. This file contains two
columns: (i) the lateral axis (in micro metre)
and (ii) the phase (in radian).

• phase-cut-unmod.dat (1D) is the same,
but acted with a phase-unwrapping
algorithm upon.

• gouy-cut.dat (1D) is the phase along the
optical axis, hence it contains two columns:
(i) the optical axis (in micro metre) and (ii)
the phase (in radian, where a plane-wave
has been subtracted).

• farfield.dat (1D) saves the intensity for
the far-field, as predicted by an FFT for,
basically, intensity-cut.dat and
phase-cut.dat. Note that the data is
subject to large noise, even for high
numbers of points propagated from the
mirror’s surface (physics.numberofrays
should be at least 105).

• scanfile.dat (1D) is the result of the
mlscan command, i.e. it holds the average
intensity, phase at the ML mirror’s centre,
and the reflected phase’s standard deviation
in columns (ii) to (iv); the meaning of first
column (i) depends on the mlscan type, e.g.
rot.theta, rotation.theta, or
modbragg.factor.

C.4.2 Image files

If the parameter postproc.plotting is larger that 0.5, at the end of each simula-
tion run the data will be plotted. Like for the data files, we distinguish between one-
dimensional (1D) and two-dimensional (2D) plots. All plots are output in Scalable Vec-
tor Graphics format (SVG). In the case of 2D-plots, only the axes and labels are saved
as vectors, while the actual data are plotted to linked Portable Network Graphics (png)
files, hence bitmaps.

The 1D-plots and the SVG-skeleton including axes of the 2D-plots are generated by
Gnuplot, while the 2D colour maps are produced by the programme plot.cpp. The
plots can be found in the webgui/ folder.

• intensity-large.svg (2D, +.png)
represents the intensity distribution in the
focal region.

• phasemap-large.svg (2D, +.png)
represents the phase in the focal region.

• phaserel-large.svg (2D, +.png) is the
same, but with a plane-wave subtracted.

• plot-mini.png (2D) is a low resolution
version of intensity-large.png, used as

a preview in the web GUI.

• phasemap.png (2D) is a preview of
phasemap-large.png.

• phaserel.png (2D) is a preview of
phaserel-large.png.

• focuscut_int.svg (1D) is a plot of
intensity-cut.dat in the focal plane.

• focuscut_phs.svg (1D) is a plot of
phase-cut.dat in the focal plane.
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• focuscut_phs_unmod.svg (1D) is a plot of
phase-cut-unmod.dat, the unwrapped
phase-cut.dat.

• gouy.svg (1D) shows the Gouy phase of
gouy-cut.dat.

• farfield.svg (1D) shows the far-field as
obtained by a simple FFT4.

• ml_incoming_int.svg, ..._phs.svg
(1D) show the intensity and phase of the

incoming wave-field onto the ML mirror,
while

• ml_reflected_int.svg, ..._phs.svg
(1D) are for the reflected wave-field.
Furthermore,

• scan_1.svg, scan_2.svg, scan_3.svg
(1D) show the reflectivity, phase, and
standard deviation of the reflected phase, of
the last mlscan run.

C.5 Hooks

In section C.2, the CLI command loop was described; it allows for a multirun over
(possibly nested) loops of large parameter spaces. But each single simulation would
override former data and plot files. Using hooks, it is possible to run bash scripts after
different steps of the simulation programme. There, environment variables can be ac-
cessed to move or rename files according to the parameter values. Hooks also allow for
a flexible junction to other numerical tools, like more sophisticated plotting or fitting
routines. The following hooks are available; if files of those names exist and are exe-
cutable, they will be executed at the indicated steps within the simulation programme:

• pre-kernel.sh may be executed while the
new instance of CKernel is constructed.
Might be helpful for logging or
communication to other tools.

• preprocess.sh may be executed after
CKernel.preprocess. This is between the
ML simulation and the propagation to the
focal region.

• simulate.sh may be executed after
CKernel.simulate. This is a good place for
own analysis tools.

• postprocess.sh may be executed after
CKernel.postprocess, hence after fitting
and plotting. This is a good place to copy
data files before they will be overwritten in
the next run.

As said, these hook scripts have to be executable5. They have access to environment
variables of the current simulation run. The names of these variables are of the form
$xmls_parameter, where parameter is the given name of the parameter, with further
underscores as delimiters (note, that the CLI uses a dot, while the web GUI recognises
both dots and slashes).

As an example for a postprocess.sh hook, consider the following bash script.

01: #!/bin/sh
02: echo "this is $0"
03:
04: sourcepos=$xmls_source_offset_B
05: datafile=data/intensity.dat

06: folder=hfm_12keV
07:
08: save=$folder/intensity_$sourcepos.dat
09:
10: cp -v $datafile $save

4http://www.fftw.org/
5On POSIX compliant systems, this can be achieved setting permissions of file hook.sh using the shell

utility chmod +x hook.sh.
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It will copy the intensity.dat file to a folder hfm_12keV, renaming it regarding
the current source position. This is useful if a finite source size is scanned using a
loop command, for further processing of the simulated data with the partial coher-
ence scheme presented in chapter 2.

Additional hooks can be defined by calling the function bool hook(std::string)
within the CKernel class; the argument names the file to be exectued (it will be tested
for permissions).

C.6 Multilayer scans

The CLI command mlscan <para> <from> <till> <steps> allows for a scan (sim-
ilar to a rocking curve) of the ML mirror; currently, four scan types are implemented:

• theta scans the gracing angle of incidence
on the ML mirror’s centre; note, that each
simulation is described by a different ellipse.

• rot.theta is a scan of the modification
function rot (see subsection D.3.1),
representing a simple rocking curve of the
ML mirror.

• rotation.theta does the same, but using
a more complicated description of the
rotation, see subsection D.3.2).

• modbragg is a pseudo-rocking curve, scaling
the modification of Bragg’s law for refraction;
see subsection D.3.3.

All these commands write their output to the file scanfile.dat with an appropri-
ate heading. There is one column for the scan value, and three for data: the integrated
or average reflectivity of the ML mirror, the phase at the centre, and the standard devi-
ation of the phase along the surface. Plots are generated to scan_1.svg, scan_2.svg,
and scan_3.svg, corresponding to the three data columns of scanfile.dat.

C.7 Call graph

The whole XMLS suite consists of more than two hundred C++ and C code functions.
Obviously, we only can focus on a small number in this thesis; the main topic is phys-
ical interpretations of the simulations. To assist future updates of the code base, we
give a very brief overview the XMLS call graph – what happens, if the user wishes new
results. This is sketched in figure C.1.

The main( · ) function resides in kernel.cpp and spawns several interfaces; a new
simulation is started inside the callback( · ) function. There an instance of CKernel
is created and control delegated via simulate( · ) and postprocess( · ) functions6.

CKernel creates instances of phyiscal objects, like CPSource that models a mono-
chromatic point-source, CPMFresnelReflectivity for a simple mirror described by
a tabulated index of refraction, and CPDLine, a 1D-detector. Some steps are influenced
by the class CSimulation. After calculating the illumination function and applying
Fresnel’s coefficient of reflectivity, the line detector evaluates Kirchhoff’s diffraction

6In case of the multilayer simulation running as a separate programme, there is also a preprocess( · )
function that starts the Takagi-Taupin code described later.
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kernel.cpp

main();

callback();

CKernel.cpp

simulate();

postprocess();

CSimulation.cpp CPMFresnelRefl.cpp

apply Fresnel

coefficients

CPDLine.cpp

evaluate FKI,

write results to disk

CPostprocessor.cpp

data treatment,

plotting

(CKernel continued)

getMirror();

getIncomingField();

doReflectivity();

propagate();

CInterface.cpp

spawn();

CIWebserver.cpp

greetings();

CIReadline.cpp

greetings();

http://lou:8080/gui/

$ set ml.rot 1337

Figure C.1: Very incomplete illustration of the call graph within XMLS; this is just an overview due to space
constraints.

formula and writes the propagated field to disk. An instance of CPostprocessor then
generates line cuts of the two-dimensional data and runs external programmes for plot-
ting.

C.8 Physical classes

In this section we have a look at important classes of the XMLS source base that model
physical objects like a Fresnel mirror and a detector (that does the actual free-space
propagation). The following section C.9 then describes additional helper classes exten-
sively used within XMLS.

C.8.1 CPMFresnelReflectivity

This class models a Fresnel mirror; it gets the complex valued illumination func-
tion from a source and applies Fresnel’s coefficient of reflection. Although elliptically
curved, the mirror is assumed to be locally flat, so the Fresnel coefficients for plane-
waves and flat surfaces are used. Currently, the coefficient for the σ-component (the
electrical field vector oscillates perpendicular to the surface) is used. Comparing (3.2)
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and (3.3), this is justified: For gracing incidence angles below some hundred milliradi-
ans the reflectivities are virtually the same.

Fresnel’s coefficient (3.2) is written in terms of incoming θ1 and refracted θ2; the
latter therefore is calculated from Snell’s law (3.1). Using complex variables, the phase
change (3.4) is accounted for. Since C++ does not come with a complex variant of the
inverse cosine, this is represented using a logarithm:

cos−1(φ) ≡−i log

(
φ+ i

√
1−φ2

)
, φ ∈C.

For a discussion of the local flux density, see subsection C.8.3.

C.8.2 CPMFromFile

The pseudo mirror CPMFromFile reads the complex valued reflected field from a file
called precalc.dat, consisting of three columns: (i) the position along the mirror sur-
face, measured in micro metre; (ii) the reflected intensity; (iii) the reflected phase in
radian. The data are read and extrapolated onto a non-regular grid to avoid artefacts.

The file precalc.dat is assumed to stem from the Takagi-Taupin simulation pro-
gramme discussed in appendix D. Because the field envelopes there are calculated
with a cylindrical wave term omitted, the spherical wave converging to the focus is
projected onto the elliptically curved mirror surface and then added to the field. This
is done in the function CPMFromFile::doReflectivity().

C.8.3 CPDLine

The “line detector” propagates the complex valued field from the mirror surface onto
a one-dimensional line in the focal region. The free-space propagation is modelled
using the diffraction integral of Fresnel and Kirchhoff, (3.6); this integral is evalu-
ated using Riemann sums. The 1D-detector can be moved along the optical axis; in-
deed, respecting the parameters detector.line.first, detector.line.last, and
detector.line.number, a parallel loop using openMP is carried out. Afterwards, the
intensity and phase are written to the file intensity.dat.

For optimisation, the code in this class not only uses the openMP standard to be
run in parallel, but also makes use of SSE intrinsics (if built with macro SSE defined, as
in g++ -DSSE). These intrinsics allow usage of specialised SIMD registers in the CPU:
SIMD stands for single instruction, multiple data. Hence it is possible, i.e., to calculate
the square root of two numbers in parallel.

We will report on tests with different compiler versions, GCC 4.1 and GCC 4.3, in
appendix J. Experience strongly suggests to use GCC 4.3 or newer.

A remark on best practices using openMP: It is recommended to parallelise the outer
loop, here the loop over different line detectors; if only a single cut (“only the focal
plane”) is to be simulated, the corresponding pragma directive should be placed in
front of the “middle loop” (the loop over detector pixels).

The propagation is modelled using the scalar Fresnel-Kirchhoff diffraction integral
(FKI) (3.6). Its physical foundation is the principle of diffracted elementary spherical
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waves following Huygens; due to its descriptive interpretation and fast numerical im-
plementations, it is one of the standard tools in computational optics. A lot of textbook
space is reserved to the discussion of the FKI – but also a lot of criticism has been
raised. In the derivation, Kirchhoff had to introduce somehow disputable boundary
conditions for the light field behind a diffracting screen [3,105]; this question has been
addressed by Arnold Sommerfeld [58]. Moreover, the FKI is derived as a solution to the
wave equation (WE); but a solution to the WE is not necessarily a solution to Maxwell’s
equation, as pointed out in [59].

For simplicity, an obliquity factor to be found in the FKI often is dropped, “be-
cause it is unity”. This term can be interpreted as ensuring the local flux density on
the curved mirror’s surface: Since the angle of incidence varies along the surface, the
local “strength” of both illumination and reflection changes. In CPDLine this has been
accounted for by a correction factor; a similar expression, discussed for the case of
parabolic mirrors, can be found in [83].

C.9 Helper classes

Much functionality, mainly for managing information and processing data, has been
put into helper classes; some of them are described now.

C.9.1 CKernel

The CKernel is like the control centre of the simulation programme, where single
pieces are combined together. Some of these single pieces are the illuminated mirror
and the CPDLine detector carrying out the propagation; plus routines for pre- and post-
processing like plotting.

C.9.2 CSimulation

The class CSimulation hides some aspects from CKernel, like the type of mirror to be
simulated or the type of detector (if there would have been more than only CPDLine).
While it is the task of CKernel to control the instances of different classes (illuminate
the mirror, do the reflection, start propagation to the detector), CSimulation creates
the instances.

C.9.3 CPostprocessor

The helper class CPostprocessor is mainly used as a generalised interface to call
the actual plotting routines. Most of the functions just directly call Gnuplot or the
plot.cpp programme; sometimes simulation parameters are incorporated in the calls
to external programmes, like the number of pixels. The plotting functions are called
from CKernel:: postprocess(), for efficiency made parallel with openMP.
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C.9.4 CFos

This class stores the Field on the surface of the mirror. It is a container class saving
the position in different coordinate systems (along the mirror, the A-B-coordinates of
the ellipse), and the amplitude in different representations. Objects of type CFos are
propagated from the source to the mirror’s surface.

C.10 Interface classes

In this section we describe three classes to store and handle simulation parameters.
Here, interface class does not refer to the concept of abstract classes, but is meant as a
class implementing a user interface.

C.10.1 CInterface

The class CInterface stores the current values of all parameters used by XMLS. Other
classes obtain values from double CInterface::getValue(std::string). This
class also implements the logic to traverse the nested loops for a multirun. The user in-
terfaces, however, are not implemented here, but in the following classes CIReadline
and CIWebserver.

C.10.2 CIReadline

The most robust user interface of XMLS is implemented using the GNU readline library,
featuring a command line prompt with tab-completion. Here, using the commands
summarised in section C.2, all parameters of section C.3 can be changed, and (possibly
nested) loops can be defined, as well as external programmes started via run <prog>.
There is, however, not much visualisation possible, except for some rudimentary termi-
nal based Gnuplot output.

It is reasonable to start the XMLS programme within a GNU screen environment.
That way it is possible to detach from a running session and reattach later to change
parameters. Using screen -xR, the same instance can also be controlled from differ-
ent users and terminals in parallel.

C.10.3 CIWebserver

As a graphical frontend to XMLS, a novel approach featuring a web interface has been
chosen. Within CIWebserver, the HTTP web server library mongoose7 is used to com-
municate with other tools. This allows for a unified interface, in principle with world-
wide access, to (i) set parameters, (ii) start the simulation, and (iii) obtain plots and
data for further analysis. For convenience, a graphical user interface running in a web
browser has been set-up using HTML, CSS and Javascript/AJAX. For more details and
advantages of decoupling the simulation programme from the GUI, see appendix F.

7http://code.google.com/p/mongoose/

http://code.google.com/p/mongoose/
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Example code fragments that allow different third-party software to control XMLS are
shown in appendix G.

C.11 Current limitations of XMLS

Here we list some limitations and problems of XMLS; those marked with a dagger (†)
only apply for the multilayer version.

• Number of points to be propagated: may not exceed some 105 due to memory
problems (physics.numberofrays).

• Elliptical parameters, S1, S2, and θ, are not updated after first simulation run;
xmls has to be restarted.

• † Height deviation profile not respected for multilayers.

• † Source offset not respected for multilayers.

• † Webgui does not report on progress for Takagi-Taupin simulation.

• † Errors in Takagi-Taupin simulation are not reported, instead mirror simulation
uses old data to propagate.
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Implementation details of TT

D.1 Example session

Missing output of the Takagi-Taupin simulation programme from section C.1 is shown
below. Colours and output have been slightly adapted for print.

--- optical constants information ---
material 1 : W
material 2 : B4C
E : 12.4000 keV
λ : 1.0000 Å
U0 : (-7×105, 1×105)
U1 : (-3×105, 7×104)
Um1 : (-3×105, 7×104)

--- geometry information ---
S1 : 80.0000 m
S2 : 0.1000 m
s-value at center : 39.9500
t-value at bottom : 40.0500
θ at center : 10.0000 mrad
θ at left edge : 9.7593 mrad
θ at right edge : 10.2595 mrad
∆θ (Bragg-dev. 1) : 0.0000 mrad
∆θ (Bragg-dev. 2) : 0.0000 mrad
mod Bragg factor : 0.6224 ×
peak expected near : 1.1367 mrad

--- layer information ---
mirror length : 10.0000 mm
layer thickness : 5.0001 nm
ML structure : 0.1250 µm

number of layers : 26

--- simulation information ---
grid points, s : 250×103

grid points, t : 50
grid ratio : 16.0000
virtual memory usage : 281.6 MB

--- online analysis ---
total incoming : 1.8130×10−2

total reflected : 1.1237×10−2

total transmitted : 3.5626×10−5

reflectivity : 0.619770
transmittance : 0.001965
phase at center : -2.420278
mean of phase : -2.420469
stddev of phase : 2.468e-03

--- simulation information ---
user time : 8.16 s
system time : 0.23 s
virtual memory usage : 272.0 MB

1. In the first block, optical components and
constants of the ML mirror are printed. The
optical constants are taken from a database,

see section I.

2. The second block summarises the geomet-
rical parameters. Values in boldface are in-

117
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put obtained from the calling XMLS instance
via environment variables or command line
arguments. For a discussion of the different
modification functions rot, rotation, and
modbragg, see section D.3. Important output
values are the local angles of incidence at the
“left” and “right” edge of the ML mirror.

3. In the layer information, the bilayer thick-
ness at the mirror’s centre, using Bragg’s law
(4.12), is shown, together with the thickness
of the whole structure.

4. The simulation information block tells the
user how many grid points are used in
the discretisation of the computational do-

main, and how much virtual memory is
occupied by the programme. A limit on
the allowed memory usage may be in-
troduced by the command line argument
--maxmem=<value>.

5. The progress bar is updated while the integra-
tion is running.

6. After the integration is carried out, a small
but informative on-line analysis subroutine
gives a brief overview of the reflectivity, re-
flected phase, and the standard deviation of
the phase along the surface.

7. At the end, the user time needed for the
simulation run is printed.

D.2 Integration routines

Here we discuss the integration routines used to solve the Takagi-Taupin equation sys-
tem (4.7). The partial differential equations are solved using a finite difference scheme
and a Runge-Kutta-algorithm (RK) of second order. The algorithm is implemented in
the GNU Scientific Library (GSL)1. Tests with RK of fourth order and a Runge-Kutta-
Fehlberg method did not show more accurate results, but were slower by a factor of
three to four.

The Takagi-Taupin programme can be divided into three steps: (i) initialisation and
input, (ii) solution of the TT system, and (iii) output and clean-up. In the following we
summarise the second part, represented by the function int ttsolver(). But first we
discuss the principle of operation.

D.2.1 Principle of operation

The TT system (4.7) consists of two coupled partial differential equations for two
complex-valued envelope functions ψ0 and ψ1 in two dimensions, s and t . The equa-
tions are homogeneous, but coupled via the coefficients u±1, and show a propagation
term u0. From the physical set-up and the modelling of the two beams it is clear that
the incoming beam ψ0 is supposed to propagate in the “top-right” direction (increas-
ing s and t ), while the reflected beam ψ1 is supposed to travel to “bottom-right” (that
is, increasing s, decreasing t ). As outlined in section 4.4, the values of ψ0,1 are known
to be zero on the “left” surface, the reflected beam ψ1 vanishes on the “top” boundary,
the incoming beam ψ0 is given by the illumination on the “bottom” boundary.

The computational domain, transformed to elliptical–hyperbolic coordinates, is di-
vided into a “rectangular” grid of step size ∆s ×∆t . Now we approximate the partial
derivatives ∂tψ of (4.7) as finite differences:

∂tψ0(s, t ) ≈ ψ0(s, t )−ψ0(s, t −∆t )

∆t
, ∂tψ1(s, t ) ≈ ψ1(s, t +∆t )−ψ1(s, t )

∆t
.

1http://www.gnu.org/s/gsl

http://www.gnu.org/s/gsl
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ψ0 ψ1

(a)

∂s ψ ≈ ∆ψ / ∆s ∂t ψ ≈ ∆ψ / ∆t

∆s∆t

incoming wave reflected wave

s

t

ψ0

ψ1

ψ0

(b) (c)

ψ1

Discrete computational grid

Figure D.1: Illustration of the integration scheme for the Takagi-Taupin equation system (4.7). In (a), the prin-
ciple of the used model is shown. The partial derivatives are approximated by finite differences of
the four-point stencil in (b). Earlier versions used the five-point stencil from (c), but this violates
energy conservation, since information can travel “backwards”.

Note the asymmetrically chosen differences, discussed later.
If we know ψ(s) on one vertical cut in the domain, both the right-hand side of (4.7)

and, using the aforementioned finite difference approximation, half of the left-hand
side is known. Solving for ∂sψ, the two envelope functions can be propagated “to the
right”. This scheme is illustrated in figure D.1 (a,b). The integration along s-direction is
carried out using the GSL RK-method.

The integration method is based on the four-point stencil shown in figure D.1 (b). In
a first version, a symmetric difference of step size 2∆t had been chosen; but this some-
times resulted in reflectivities greater than unity, hence energy was not conserved. The
corresponding five-point stencil in figure D.1 (c) shows that in this case information
(and hence energy) can travel “backwards” relative to the propagation direction of the
two beams.

The implementation of the integration method is discussed in the following subsec-
tion.

D.2.2 Physics in source code

In this subsection we describe the solution scheme in terms of involved C-code func-
tions. After some initialisation steps invoked from the int main(int, char**) func-
tion, the solution starts by calling the int ttsovler() function.

int ttsolver() This function initialises the GSL RK library and carries out the loop
in the propagation direction s. For each vertical slice in the computational domain,
an array double y[] is prepared, holding the data of the previous slice. The GSL RK
library then calls the function int func_P(double, double, double, void*) that
provides the finite difference of the RK step in s-direction. These finite differences are
copied to the array double f[]. The calculation of these differences is delegated to
the functions setDpsi0 and setDpsi1 which hold the proper constants for the finite
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difference scheme.

int func_P(...) is called from the GSL RK library to calculate the finite dif-
ference in the s-direction. A call to int copy_amplitudes_from_y(...) first re-
assembles the complex values of ψ0 and ψ1 from the double y [] array (this
is necessary due to the GSL library). The differences are calculated by the func-
tion int get_coefficients_for_Dpsi(...), that basically implements the four-
point stencil from figure D.1 (b). The stencil values are used in the functions int
setDpsi0(...) and int setDpsi1(...).

int setDpsi0,1(...) obtain the stencil values of figure D.1 from the function int
get_coefficients_for_Dpsi(...) and combine them with the right-hand-side of
the TT equations to approximate the finite differences in s-direction. Special care is
taken at the “top” and “bottom” boundary, where the stencil and hence the coefficients
differ.

int copy_derivatives_to_f(...) Finally, this function disassembles real and
imaginary part of the s-differences and puts them into the double f[]-array, as
needed by GSL. The function int func_P(...) returns the constant GSL_SUCCESS
to the GSL RK stepper function.

int ttsolver() saves the calculated values of the current slice of ψ0 and ψ1 to
memory and continues with the next slice. A progress bar is implemented.

D.3 Modification functions

Modification functions model geometrical strains in the ML mirror, introducing addi-
tional phase factors in the TT system (4.7) as described in subsection 4.2.2 and section
4.3. In XMLS, two kinds of modifications are implemented: rotations of the ML, result-
ing in a rocking-curve, and the modified Bragg condition of (4.13). The rotation is mod-
elled using two different approximations and is described by the model functions “rot”
and “rotation”. The model function for the modified Bragg condition is “modbragg”.

The model functions are defined as C macros in the file params.h; the macros are
called PHI_[ST]_[123], where S and T stand for the coordinates s and t , whilst 1,2,3
number the different models. The macros PHI_[ST] then are defined as sums over the
three model functions; these macros are used in the Takagi-Taupin integration scheme.

In subsection 4.2.2, the modified TT equations (4.9) is derived, introducing a devi-
ation parameter ε = ε(ϕ,s ,ϕ,t ); the quantities ϕ,s and ϕ,t are derivatives of the trans-
formation function ϕ(s, t ) with respect to the coordinates s and t . This ϕ(s, t ) is intro-
duced to generalise the Fourier series expansion of the susceptibility χ(s, t ). As shown,
its derivatives contribute to the deviation parameter ε, which appears in the second
equation of the TT system.
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In the following subsections, the implementations of rotations (for rocking curves)
and the modified Bragg condition (for optimisation of reflectivity and focus size) are
described.

D.3.1 rot

As illustrated in figure 4.6, a rotation of the ML structure relative to the incoming beam
can be modelled as the original multilayer with increased layer thickness; this, on the
other hand, can be modelled using a transformation of the t-coordinate. Depending
on the direction of ML rotation, the t-coordinate is either stretched (if the new angle
of incidence is smaller than the original angle) or shortened. This transformation, that
depends on coordinates and local angle of incidence, gives rather complicated terms
for ϕ,s and ϕ,t . In the model rot, only the most important term is used:

ϕ,s = 0, ϕ,t =∆θ /β(s, t ),

where ∆θ is the rocking angle and β(s, t ) = sinθ(s, t ) a scaling factor originating in the
Jacobian of elliptical-hyperbolic coordinates. In the derivation of this form, the depen-
dence of β(s, t ) on the coordinates has been neglected.

D.3.2 rotation

Derivatives of β(s, t ) enter in the derivatives of ϕ(s, t ) by application of the chain rule.
The next leading terms are included in the model function rotation, defined as

ϕ,s =− (t − t0)∆θ s

(t 2 − s2)β
,

ϕ,t = ∆θ

β(s, t )
+ (t − t0)∆θα2 t

(t 2 − s2)β3 .

Again, ∆θ is the (global) angle of rotation, α and β stem from the Jacobian and depend
on position.

D.3.3 modbragg

The modified Bragg condition (4.13) changes the layer spacing to correct for refraction.
Again, this modification can be interpreted as an additional transformation of coordi-
nates (from rectangular to elliptical to “modified elliptical”). As shown in subsection
4.3.2, this transformation can be modelled as a “local rotation” ∆θ(s, t ). This local an-
gle is given as δ/β(s, t ), with δ as the deviation from unity of the index of refraction,
n = 1−δ. The model function modbragg is defined like rotation, setting

∆θ = f δ/β,

where the factor f is a scaling parameter that can be changed for optimisation. Since
now ∆θ(s, t ) also depends on position, additional terms occur due to the chain rule. A
numerical estimation showed them to be small, hence they have been neglected.
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(a) 12.4 keV, 30 layers
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Figure D.2: Reflectivity curve analogue to figure 4.10, but with 30 layers and differing numbers of discretisation
grid points in t-direction.

D.4 Calculation grid

The computational domain inside the ML structure is discretised according to figure
D.1. But how to choose the grid sizes ∆s ×∆t? Usually, a fine grid is needed to approxi-
mate infinitely small derivatives well by finite differences; but this enhances numerical
problems (ratio of very small numbers) and increases computational time significantly.
For ∆t , several tests have been done to characterise the algorithm’s needs. An example
is shown in figure D.2, for analogue parameters as in figure 4.10, but 30 layers. In part
(b), a zoom-in to the peak of the reflectivity curve (a) is shown.

The curves have been obtained for different numbers of computational “layers”,
from half the number of actual bilayers to thrice as many. The red dots are calculated
using IMD’s implementation of Parratt’s algorithm.

The reflectivity curves seem to converge with increasing number of grid-points; this
and similar simulations suggest that one grid point per mono-layer gives reasonable
results.

For the s-direction, the situation is more complicated. Tests have shown that the
grid size has to be small enough, otherwise the computation results in “exploding” am-
plitudes. A quantity called “grid ratio” has been defined in (4.21):

GR = gridratio := θ×∆s/∆t .

Tests have shown that GR . 100 should be used for moderate angles of incidence,
θ ∼ 10 mrad; but much smaller values (and hence smaller grid sizes in s-direction) are
necessary for larger angles. Note that this grid ratio is defined for the ML mirror’s cen-
tre, and a static grid is used throughout the structure. Since the local angle of incidence
may vary significantly, a local grid spacing might improve performance. But this intro-
duces the need of interpolation. Further studies on the feasibility of a finite element
method are wishful.
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D.5 Environment variables

The Takagi-Taupin simulation programme for curved focusing ML mirrors obtains ge-
ometrical and physical parameters via POSIX environment variables. These can be set
by a host programme (or simply your favourite shell); for convenience, a shell script
setup.sh is available that exports default values. The variables and their meaning
are summarised in table D.1. From the BASH shell, environment variables are set using
the

$ export config_layers_number=50
$ ./takagi-taupin

syntax; in C/C++, use the setenv(...) function.

D.6 Command line arguments

In addition to the mandatory environment variables described in the previous section,
optional parameters and flags may be set using command line arguments of the form

$ ./takagi-taupin -acp --beta1=0 --beta2=0

Flags are denoted by single letters that can be combined, and are written behind a
single hyphen-minus; options are written in full behind two hyphen-minus, their value
is added behind an equality sign. Possible flags and options are shown in table D.2.

Environment variable Meaning
config_geometry_s1 distance from source to mirror’s centre
config_geometry_s2 distance from there to focus
config_geometry_theta gracing angle of incidence at mirror’s centre
config_illumination_center centre of illumination, inverse mirror length
config_illumination_factor spacing of multiple incoming beams, inverse mirror length
config_illumination_file (unused)
config_illumination_intens intensity of illumination
config_illumination_method (unused, should be self)
config_illumination_number number of incoming beams (for testing)
config_illumination_shm (unused)
config_illumination_width width of incoming beam, inverse mirror length
config_layers_material1 file name of tabulated optical index, first material
config_layers_material2 file name of tabulated optical index, second material
config_layers_number number of bilayers
config_layers_ratio Γ-ratio of both layers
config_mirror_length length of the ML mirror
config_physic_wavelength vacuum-wavelength of illumination
config_shm_fieldout key to shm segment for reflected amplitude
config_shm_plotdata key to shm segment for intensity inside ML
config_simulation_gridpointss number of discretisation points along the surface
config_simulation_gridpointst number of discretisation points inside the structure
config_xocd_hostname hostname of optical constants daemon
config_xocd_port port number of optical constants daemon

Table D.1: List of environment variables and their meaning to set simulation parameters for Takagi-Taupin.
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They are parsed using GNU’s getopt and getopt_long functions2. Flags can also be
given with two hyphen-minus signs and the full name listed in the table.

2http://www.gnu.org/s/hello/manual/libc/Getopt.html

Flag/Option Meaning
-a/--ascii do not use unicode characters for output
-c/--colour use TERM escape sequences for colourful output
-d/--dry do (nearly) nothing, only print information
-f/--flat simulate a flat ML, illuminated with a plane wave
-n/--nowrite do not write to files or shm; useful for starting in parallel
-p/--progressbar enable progress bar during actual calculation
-s/--smallfiles only create files of field amplitude at surface, not intensity within ML
--factordelta=<value> multiply optical constants of both materials
--factorbeta=<value> multiply optical constants of both materials
--delta1=<value> overwrite optical constants of first material; real part
--delta2=<value> overwrite optical constants of second material; real part
--beta1=<value> overwrite optical constants of first material; imaginary part
--beta2=<value> overwrite optical constants of second material; imaginary part
--field-in=<name> overwrite file name for incoming amplitude
--field-out=<name> overwrite file name for reflected amplitude
--field0=<name> overwrite file name for incoming field inside the structure
--field1=<name> overwrite file name for reflected field inside the structure
--maxmem=<value> never use (much) more memory than given, in megabytes
--rot-theta=<v> use modification function of subsection D.3.1; value is rocking angle

in microradian
--rotation-theta=<v> use modification function of subsection D.3.2; value is rocking angle

in microradian
--modbragg-factor=<v> use modification function of subsection D.3.3; value is modification

factor f in (4.18)

Table D.2: Flags and options for the Takagi-Taupin programme. Flags are basically used to change the out-
put of the programme, whilst options change values and filenames.

http://www.gnu.org/s/hello/manual/libc/Getopt.html


Appendix E

Command-line interface

The x-ray multilayer mirror simulations (XMLS) offers a command-line based on the
GNU readline library as a basic interface to the user. In addition, a web-based graphical
user interface (GUI) has been implemented that is described in the following appendix.
An example session of the command-line interface (CLI) has been given in appendix
C.1; the commands and their parameter have been introduced in appendix C.2. The
present appendix is devoted to the readline interface itself. The GNU readline library is
known from a lot of Linux programmes, like bash, gnuplot, and others. It offers more
than just a simple command line; in XMLS, history function and tabular completion
assist the user.

History With the cursor keys “up” and “down”, the user may recall previous com-
mands, edit, and resubmit them to XMLS. Hitting the “page up” key searches the his-
tory for lines with the same start pattern as the currently typed input. Pressing “ctrl-r”
allows for searching at arbitrary positions in the older lines.

Tabulator completion Pressing the “tabulator” key, readline tries to auto-complete
the current start of a word; possible completions are the XMLS commands (as get,
set etc.) at the start of a command, or the parameters (like mirror.length or
physics.wavelength). If none matches, file names are completed. This is handy com-
bined with . . .

Shell escape The xmls command runmeans that the rest of the line shall be executed
using the system(3) command that calls /bin/sh. This command proved useful for
quickly navigating and manipulating the file system, calling external programmes such
as the vim editor, or gnuplot.
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Web-based interface

In addition to the GNU readline based command line interface (CLI), a web based
graphical user interface (GUI) has been implemented in XMLS. Although control is a
little slower, this allows for fast access to important plots.

The web GUI is served from the built-in HTTP server (see the following appendix for
more details) as a set of HTML, CSS, and Javascript files that can easily be adapted. This
approach seems more flexible than traditional GUI software. In fact, GUI and XMLS
core are separate: simulations do continue if the client is no longer connected; the web
GUI can be re-opened later from a different terminal, or multiple GUIs can control the
same simulation.

A screenshot of XMLS’ web-based GUI is reproduced in figures F.1 – F.3.
The simple layout is composed of three parts: a large plot on top, an overview of

different plots below; on the right hand side, the current set of parameters is given.
Clicking on a parameter asks the user for a new value; clicking “start” starts one simula-
tion run (it is not yet possible to start loops from the GUI). From the overview of small
plots, the top plot can be selected; often, the corresponding data file is linked.

There are several informative boxes placed between the “start” link and the parame-
ter box. The current state of the simulation (“idle”, “singlerun” etc.) is given in boldface;
a progress counter (in percent) of the mirror simulation is placed next to it. If XMLS
runs on a multi-user system, the output of the uptime(1) command found below is
useful not to overload the system. The numbers estimate the average number of run-
ning jobs over the last {1,5,15} minutes.
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Figure F.1: Screenshot of XMLS’ web GUI. A detailed reproduction is shown in figures F.2 – F.3.
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ruprecht, Linux-2.6.18-194.11.1.el5
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geometry.s1            1.45e+08
geometry.s2        10000
geometry.theta         0.014
mirror.length      10000
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ml.numberlayers       50
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physic.wavelength      0.0001
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Figure F.2: Detailed reproduction of XMLS’ web GUI, continued in figure F.3. (a) enlarged plot, one selected
from (aa) to (dc); here: intensity distribution in the focal region; (b) link to start a single simulation,
with host information below; (c) list of all parameters; these are links to a Javascript query.
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Figure F.3: Continuation of figure F.2: (aa) mirror height deviation profile; (ab) intensity distribution in the
focal region; (ac) intensity cut in the focal plane; (ba) far-field obtained from a simple FFT (often
very noisy); (bb) phase distribution in the focal region: “relative phase map” is with plane wave sub-
tracted, “Gouy phase” is a cut along the optical axis; (bc) focus cut in the focal plane; (ca) incoming
intensity on a ML mirror; (cb) reflected intensity along ML’s surface; (cc) phase of the reflected wave
along ML’s surface; (da) reflectivity curve of a ML rocking scan; (db) reflected phase at ML’s centre for
a rocking scan; (dc) standard deviation of reflected phase, evaluated along ML’s surface; (s) control
form for rocking scan.





Appendix G

Remote control via HTTP

The x-ray multilayer simulation programme XMLS can be controlled using the hyper-
text transfer protocol (HTTP). As a graphical user interface, a web-based GUI is pro-
vided, see appendix F. This is based on Javascript and communicates with a built-in
web server, implemented using the mongoose library1. In this appendix we show how
to directly communicate with XMLS, using HTTP as a remote control from within dif-
ferent third-party programmes.

G.1 Basic control via curl

The cURL library2 and the command line tool curl allows for data transmission using
a lot of protocols with URL syntax. The HTTP interface allows for remote control of the
current parameters, starting a simulation (Takagi-Taupin plus propagation to the focal
region), mlscan commands, and access to plots and data files. We give some examples:

$ B="http://ruprecht:8080"

$ curl $B/
This is xmls kernel v.098e running on

ruprecht.roentgen ... ,
Linux-2.6.18-194.26.1.el5

$ curl $B/params | head -3
detector.angle 0
detector.length 0.2
detector.line.first -250

$ curl $B/params/detector/pixels
1000

$ curl -X POST $B/params/detector/pixels
-d 100

detector.pixels is now 100

$ curl $B/params/detector/pixels
100

$ curl $B/params/mirror/length
2000

$ curl -X POST $B/start -d ’’
simulation started
simulation finished

timer: 4882 ms

$ curl $B/data/intensity-cut.dat |
head -3

-0.100000 4.69926
-0.098000 6.81641

1http://code.google.com/p/mongoose/
2http://curl.haxx.se/
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-0.096000 9.01234 $ curl $B/fit/focus/fwhm
31.234

So the basic syntax is

$ curl -X METHOD $BASE/URL -d DATA,

where METHOD is either GET (the default, for retrieving information from XMLS) or POST
(used for “writing”, like changing a parameter or starting a new simulation), BASE is the
base part of the address (containing the computer name and port number), URL is the
path to the “information” (like a parameter, or start, or a data file name), and DATA
may be the new value of a parameter (in case of start, it may be empty).

In the following sections, examples show how to remote control XMLS from other
programmes like Gnuplot, MATLAB, or Mathematica. We also reproduce parts of a
bash script that controls XMLS based on a file containing parameter sets.

G.2 Obtaining data and plots

Data files are accessible via the URL $BASE/data/, where $BASE is the base part of the
URL, connecting to the XMLS programme. Possible data files are listed in subsection
C.4, like $BASE/data/intensity-cut.dat or $BASE/data/scanfile.dat. They can
easily be accessed from within Gnuplot using curl:

gnuplot> plot ’<curl $BASE/data/scanfile.dat’ w l t ’scanfile’

G.3 Example: MATLAB

Remote control of XMLS via HTTP from Matlab is somewhat tricky, since Matlab’s
urlread function does not seem to allow for standard compliant POST. The following
script uses a workaround using curl to set a new mirror length and start the simula-
tion.

01: base=’http://centos5-devel:8080’;
02: para=’params/mirror/length’;
03:
04: url=sprintf(’%s/%s’, base, para);
05: urlread(url)
06:
07: length=80e3;

08: curl=sprintf(’curl %s/%s -d "%f"’,
...
09: base, para, length);
10: system(curl);
11:
12: url=sprintf(’%s/start’, base);
13: urlread(url)

G.4 Example: Mathematica

In figure G.1 we give a short example how to start a simulation and plot the result from
within Mathematica.
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Figure G.1: Reproduction of a Mathematica notebook showing how to start an XMLS simulation, load the
result, and plot it.

G.5 Example: bash script

In this section we reproduce parts of a bash script used to automate the calculations
for figure 4.23. Given an input file containing parameter sets as shown below, this script
controls XMLS and aggregates the results.

The script scan.sh:

01: #!/bin/sh
02:
03: BASE=http://ruprecht:8080
04:
05: # helper function to set parameters
06: function setpar {
07: what="$1"
08: value="$2"
09: curl -s $BASE/params/$what
-d$value
10: }
11:
12: # set default values
13: function default {
14: setpar "geometry/s1" "1.45e+08"
15: setpar "geometry/s2" "10000"
16: setpar "mirror/length" "6492"
17: # and similar settings
18: }
19:
20: # parse a line from inputfile
21: # and set parameters
22: function prepare {
23: length="$1"

24: theta="$2"
25: setpar "mirror/length" $length
26: setpar "geometry/theta" $theta
27: }
28:
29: # start the simulation
30: function simulate {
31: curl -s $BASE/start -d1
32: }
33:
34: # obtain focus sizes and data files
35: function getdata {
36: fwhm=‘curl -s $BASE/fit/focus/fwhm‘
37: file=‘date +%s‘
38: echo -e "\t$@ $fwhm $file"
39: curl $BASE/data/ml_reflected.dat >
40: reflected/$file.dat
41: curl $BASE/data/intensity.dat >
42: intensities/$file.dat
43: }
44:
45: # set default parameters
46: default
47: # clear outputfile
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48: :>outputfile
49:
50: # read inputfile
51: while read line
52: do
53: first=${line:0:1}
54: [ $first = "#" ] && continue
55: echo -e "\t$line"

56:
57: prepare $line
58: simulate
59: getdata $line | tee -a outputfile
60:
61: done < inputfile
62: echo | tee -a outputfile
63:

The input and output files:

# INPUT FILE
#
# length theta
7701.594 0.019616

12018.018 0.015816
14508.689 0.013135
16029.366 0.011184
17013.037 0.009717
17680.672 0.008578
5607.545 0.014144
9424.926 0.012130

# OUTPUT FILE
#
# length theta fwhm timestamp
7701.594 0.019616 2.747 1315565158

12018.018 0.015816 1.916 1315565487
14508.689 0.013135 1.799 1315565811
16029.366 0.011184 1.868 1315566139
17013.037 0.009717 2.027 1315566447
17680.672 0.008578 2.199 1315566717
5607.545 0.014144 5.363 1315566867
9424.926 0.012130 3.503 1315567071
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Modified Bragg condition

In subsection 4.3.2, an approximative expression of the deviation ε ≈ −4δ has been
derived from a model functionϕ(s, t ) to describe ML mirrors constructed following the
modified Bragg condition (4.13). Using the Mathematica software by Wolfram Research,
version 8.0, we obtain numerical values of ε(s, t ) that are in good agreement to this
approximation.

Figure H.1 shows the Mathematica source code used to produce the plots in H.2. In
the left column, first some functions are defined, see the derivations of chapter 4. Then
the Bragg layer spacingΛ1 and the modified versionΛ2 are defined, and a “stretching”
of the t-coordinate is constructed from their ratio. The deviation ε is given as a sum of
derivatives, see subsection 4.2.2. The code in the right column are plot commands and
define the geometrical parameters, as summarised in table H.1. The plots are two line
cuts ε(s) (figure H.2 (a)) and ε(t ) (figure H.2 (b)); in (b), the cut is at the mirror’s centre,
s = s0; for (a), t has been put to three values: t − t0 = {0.0, 0.5, 1.0} µm.

According to figure H.2 (a), the deviation function ε(s, t ) ≈−4δ, as derived in subsec-
tion 4.3.2. At small angles (on the “left” side of the ML mirror), actual values are larger
(in absolute value) by about two per cent in this model case. Also a small gradient in
t-direction is visible; this can be better seen in the cut ε(s = s0, t ) of figure H.2 (b). Esti-
mating the derivatives of ϕ(s, t ), at first it seems that ∂tϕÀ ∂sϕ. But usual ML mirrors
are rather thin – T . 1 µm – and long – S ∼ 10 mm, so ε changes more with s than with
t .

Quantity Value
distance from source 50.0 m

distance to focus 0.1 m
length of mirror 16.0 mm

angle at mirror’s centre 10.0 mrad
average index of refraction n = 1−1×10−6

Table H.1: Geometrical parameters for figure H.2.
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α2(s,t)

β2(s,t)

local angle θ(s,t)

Bragg’s law

modified Bragg
condition

stretching factor

deviation function,
see subsection 4.2.2

(a)

(b)

Figure H.1: Mathematica notebook to produce plots (a) and (b) in the following figure.

(a) Deviation along surface

-8.0   0.0   8.0

-4.00

-4.04

-4.08

along surface, s-s0 in mm

(b) Deviation inside thickness (at centre)

0.0 0.5 1.0
inside thickness, t-t0 in µm

deviation, ε/δ

surface

back side

-4.0405

-4.0410

-4.0420

-4.0430

Figure H.2: Deviation function ε(s, t ), along surface s (a) and along thickness t (b). The value is approximately
−4δ, as derived in (4.15).
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X-ray optical constants daemon

The simulation programmes written and used for this thesis rely on optical constants
that describe matter’s interaction with x-ray photons. Often it is appropriate to assume
homogeneous media described by a complex valued index of refraction, n = 1−δ+ iβ.
The coefficients δ and β depend on material and photon energy. For a large variety of
elements and compounds, and for large energy ranges, these values have been deter-
mined experimentally and tabulated. For this thesis, the database of the IMD software
suite, written by David Windt, has been used [52]. Interpolation of data in between
measured values has been done linearly.

A stand-alone web server XOCD (x-ray optical constants daemon) has been pro-
grammed as a wrapper to access IMD’s files from remote, including linear interpola-
tion. For convenience, the core part has also been included in the XMLS programme.

From the index of refraction n the susceptibility χ is given as

χ= n2 −1.

Multilayers considered in this work consist of two materials, described by their indexes
of refraction n1 and n2; the layer thickness ratio is denoted by Γ. Assuming now a
square wave with wave number h̃, the Fourier series expansion in first order is given as

χ(t ) = Γχmat 1 + (1−Γ)χmat 2

+ 2

π
(χmat 1 −χmat 2)sin(h̃t )− 2

π
(χmat 1 −χmat 2)sin(−h̃t ),

see figure I.1. In first order, layer ratio Γ only contributes to average susceptibility χ0

and does not influence Fourier components χ±1. In this form we assume that the first
layer is described by χmat 1. Numerical values of the coefficients for different photon
energies and a W/B4C-multilayer are given in table I.1.
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inside structure, t
susceptibility, χ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

0.6

0.4

0.2

0.0

Figure I.1: First order Fourier representation of a square wave by a superposition of two sine waves with wave
numbers ±h̃.

Photon energy index of refraction, W index of refraction, B4C
12.4 keV 1−1.951×10−5 +3.305×10−6i 1−3.224×10−6 +1.187×10−9i
17.5 keV 1−1.045×10−5 +9.601×10−7i 1−1.609×10−6 +2.643×10−0i
24.8 keV 1−5.228×10−6 +2.668×10−7i 1−7.749×10−7 +5.755×10−1i
49.6 keV 1−1.273×10−6 +2.072×10−8i 1−1.788×10−7 +3.098×10−2i

Photon energy χ0 χ1

12.4 keV −2.273×10−5 +3.306×10−6i −2.074×10−5 +4.206×10−6i
17.5 keV −1.206×10−5 +9.604×10−7i −1.126×10−5 +1.222×10−6i
24.8 keV −6.003×10−6 +2.669×10−7i −5.670×10−6 +3.396×10−7i
49.6 keV −1.452×10−6 +2.072×10−8i −1.393×10−6 +2.638×10−8i

Table I.1: Index of refraction and Fourier coefficients of the susceptibility for W/B4C multilayers at different
photon energies, as used within this thesis. Values for n are taken from the IMD database [52]. Not
given are χ1̄ =−χ1.



Appendix J

Comparison: GCC 4.3 vs. 4.1

In appendix C it is pointed out that the GNU compiler collection, version 4.3, produces
faster code for the Fresnel-Kirchhoff integral used in the class CPDLine that GCC 4.1.
This integral needs to calculate phase factors exp(i kx); in the C++-code, this complex
factor is rewritten using Euler’s identity, so the sine and cosine are calculated; before,
the remainder of kx with 2π is obtained using fmod. On the following page, fragments
of assembler code generated by GCC 4.1.2 (Red Hat 4.1.2-48) (left column) and GCC
4.3.4 (built from source) (right column), unoptimised, for a 64 bit Intel Xeon CPU
(X5472, running at 3 GHz), are compared. Differing lines have are indicated by a bold-
face line number. The translated C-code function is printed on top. Timing results of
100×106 evaluations with different optimisation flags are shown in table J.1.

The two compiler versions generate very different (unoptimised) code. GCC 4.3 uses
Intel’s FPREM (floating point, partial remainder) instruction to calculate the remainder
of ST(0)/ST(1) by iterative subtraction. This remainder differs from IEEE 754. The
exponent of ST(0) is reduced by no more than 63 in one execution, which is the reason
for the loop with address .L9. With optimisation enabled, GCC 4.3 improves the loop
around FPREM – with a tremendous speed-up.

Optimisation GCC 4.1 GCC 4.3
-O0 12.835 (32) 6.748 (67)
-O1 7.787 (12) 0.809 ( 2)
-O2 7.862 ( 9) 0.777 ( 1)
-O3 7.861 (11) 0.781 (15)

Table J.1: Run-time comparison for 108 evaluations of the doit-function, compiled with GCC 4.1 and GCC 4.3,
with indicated optimisation flags. Times are in seconds. Error estimations are standard deviation of
twenty consecutive runs.
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C-code: double doit(int i, int j) { return sin(fmod(i+j,2*M_PI)); }

Assembler code (gcc -S -O0)
GCC 4.1 GCC 4.3

01: doit: pushq %rbp doit: pushq %rbp
02: movq %rsp, %rbp movq %rsp, %rbp
03: subq $16, %rsp subq $64, %rsp
04: movl %edi, -4(%rbp) movl %edi, -4(%rbp)
05: movl %esi, -8(%rbp) movl %esi, -8(%rbp)
06: movl -4(%rbp), %eax movl -4(%rbp), %eax
07: addl -8(%rbp), %eax movl -8(%rbp), %edx
08: leal (%rdx,%rax), %eax
09: cvtsi2sd %eax, %xmm0 cvtsi2sd %eax, %xmm0
10: movabsq $4618760256179416344, %rax movsd %xmm0, -24(%rbp)
11: movq %rax, -16(%rbp) fldl .LC5(%rip)
12: movsd -16(%rbp), %xmm1 fstpt -64(%rbp)
13: fldl -24(%rbp)
14: fstpt -48(%rbp)
15: .L9: fldt -48(%rbp)
16: fldt -64(%rbp)
17: fxch %st(1)
18: fprem
19: fxch %st(1)
20: fstpt -64(%rbp)
21: fstpt -48(%rbp)
22: fnstsw %ax
23: testb $4, %ah
24: jne .L9
25: fldt -48(%rbp)
26: fstpl -32(%rbp)
27: movsd -32(%rbp), %xmm0
28: ucomisd -32(%rbp), %xmm0
29: jp .L12
30: je .L10
31: .L12: movsd .LC5(%rip), %xmm0
32: movapd %xmm0, %xmm1
33: movsd -24(%rbp), %xmm0
34: call fmod call fmod
35: movsd %xmm0, -16(%rbp) movsd %xmm0, -32(%rbp)
36: movq -16(%rbp), %rax
37: movq %rax, -16(%rbp) .L10: movsd -32(%rbp), %xmm0
38: movsd -16(%rbp), %xmm0
39: call sin call sin
40: movsd %xmm0, -16(%rbp)
41: movq -16(%rbp), %rax
42: movq %rax, -16(%rbp)
43: movsd -16(%rbp), %xmm0
44: leave leave
45: ret ret



Bibliography

[1] Wilhelm Conrad Röntgen. Über eine neue Art von Strahlen. Sitzungsberichte der
physikal.-medizin. Gesellschaft, page 123, 1895.

[2] Walter Friedrich, Paul Knipping, and Max von Laue. Interferenz-Erscheinungen bei
Röntgenstrahlen. Sitzungsberichte der Mathematisch-Physikalischen Classe der
Königlich-Bayerischen Akademie der Wissenschaften zu München, 303, 1912.

[3] Max Born. Optik. Springer-Verlag, Berlin, Heidelberg, 1965.

[4] Wolfgang Demtröder. Elektrizität und Optik (Experimentalphysik, Bd.2). Springer, Berlin,
2002.

[5] Dieter Meschede, editor. Gerthsen Physik. Springer, Berlin, 2010.

[6] Leonard Mandel and Emil Wolf. Optical Coherence and Quantum Optics. Cambridge
University Press, Cambridge, 1995.

[7] Emil Wolf. Introduction to the theory of coherence and polarization of light. Cambridge
University Press, Cambridge, 2007.

[8] Jens Als-Nielsen and D. McMorrow. Elements of Modern X-ray Physics. John Wiley & Sons,
Chichester, 2011.

[9] Gianluca Geloni, E. Saldin, L. Samoylova, E. Schneidmiller, H. Sinn, Th. Tschentscher, and
M. Yurkov. Coherence properties of the European XFEL. New Journal of Physics,
12(3):035021, 2010.

[10] K. Balewski, W. Brefeld, W. Design, H. Franz, R. Röhlsberger, and Edgar Weckert. PETRA
III: A Low Emittance Synchrotron Radiation Source. Technical Design Report. DESY,
Hamburg, 2004.

[11] Ivan A. Vartanyants and Andrei Singer. Coherence properties of hard x-ray synchrotron
sources and x-ray free-electron lasers. New Journal of Physics, 12(3):035004, 2010.

[12] Tim Salditt, Sebastian Kalbfleisch, Markus Osterhoff, Sven Phillip Krüger, Matthias
Bartels, Klaus Giewekemeyer, Henrike Neubauer, and Michael Sprung. Partially coherent
nano-focused x-ray radiation characterized by Talbot interferometry. Optics Express,
19(10):9656, 2011.

[13] Raphael Klünder, Fabia Masiello, Pierre van Vaerenbergh, and Jürgen Härtwig.
Measurement of the spatial coherence of synchrotron beams using the Talbot effect.
Phys. Status Solidi A, 206:1842, 2009.

[14] Alexander Rack, Timm Weitkamp, T. Rack, A. Cecilia, P. Vagovič, E. Harmann, Rainer
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[91] Zinovĭı Grigor’evich Pinsker. Dynamical Scattering of X-Rays in Crystals. Springer-Verlag,
Berlin, 1978.

[92] Jürgen Härtwig. Hierarchy of dynamical theories of x-ray diffraction for deformed and
perfect crystals. J. Phys. D: Appl. Phys., 34(10A), 2001.

[93] Heinrich Schlangenotto. Dynamische Theorie der Röntgenbeugung für deformierte
Kristalle. Zeitschrift für Physik, 203(1):17–36, 1967.

[94] Yves Epelboin. Simulation of x-ray topographs. Materials Science and Engineering,
73:1–43, 1985.

[95] Yves Epelboin. A varying-step algorithm for numerical integration of Takagi-Taupin
equations. Acta Crystallography Section A, 39(5):761–767, 1983.

[96] Jerzy Gronkowski. Propagation of x-rays in distorted crystals under dynamical diffraction.
Physics Reports, 206(1):1–41, 1991.

[97] Vito Mocella, W. K. Lee., G. Tajiri, D. Mills, Claudio Ferrero, and Yves Epelboin. A new
approach to the solution of the Takagi-Taupin equations for x-ray optics: application to a
thermally deformed crystal monochromator. Journal of Applied Crystallography,
36(1):129–136, 2003.

[98] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions. Dover
Publications, New York, 1972.

[99] Hanfei Yan. personal communication, 2009.

[100] Christian Morawe. personal communication, 2011.

[101] Raymond Barrett, Robert Baker, Peter Cloetens, Yves Dabin, Christian Morawe, Heikki
Suhonen, Remi Tucoulou, Amparo Vivo, and Lin Zhang. Dynamically-figured mirror
system for high-energy nanofocusing at the esrf. SPIE proceedings, 8139, 2011, in press.

[102] Dietrich Marcuse. Theory of dielectric optical waveguides. Academic Press, New York,
1974.

[103] Sebastian Panknin, Alexander K. Hartmann, and Tim Salditt. X-ray propagation in
tapered waveguides: Simulation and optimization. Optics Communications,
281:2779–2783, 2008.

[104] Robert Hanbury Brown. The Wisdom of Science. Cambridge University Press, Cambridge,
1986.

[105] Joseph W. Goodman. Fourier Optics. Roberts & Company Publishers, Greenwood Village,
2005.



Bibliography 147

Photographies on pages 3, 43, 45, and 85: own works.

Photography on page 17: own work;
building design: Staatliches Baumanagement Niedersachsen.

Figure 2.2 own work, based on [53].

Figure 2.4 based on [61] (own publication).

Figure 3.5: measurements by Frank Siewert (BESSY, Berlin) and WinlightX (Pertuis).

Photography of figure 4.15: courtesy ESRF Grenoble.

Photography of figure 5.1: own work, experimental set-up: nano-focus end-station,
P10.

IDL: trademark by Exelis Visual Information Solutions.

Intel, Xeon: trademarks by Intel Corporation.

Mathematica: trademark by Wolfram Research, Inc.

Matlab: trademark by The MathWorks, Inc.





Index

adiabatic lenses, 17
anti-phase shift, 59, 60
average relative phase, 15

bender, 72, 73
Born approximation, 44, 46
boundary conditions, 60, 61, 64, 66,

114, 118, 120
Bragg’s law, 44, 46, 50, 54, 56, 57, 59

Catalan number, 46, 103, 104
chaotic light source, 5, 8, 10

diffraction limit, 26, 30, 46, 74, 79, 83
distortion, 50, 51, 54, 56, 58, 59
double-slit, 3–5
dynamical theory, 44–46

elastic emission machining, 18
electron orbit, 4, 6, 7, 18
elliptical coordinates, 47–49, 54, 55, 60
entropy, 34
ergodic system, 8
ESRF, 44, 45, 72–74
evanescent wave, 12, 19, 20, 22

fluctuation, 6, 9, 15
fluctuations, 3, 5, 39
focus of a point-source, 26, 74, 79, 83
focus of extended source, 30, 31
Fresnel’s coefficients, 20, 64
Fresnel-Kirchhoff diffraction integral,

23, 113
fringes, 3, 5, 38–40

Gaussian beam, 23

Gaussian-Schell model, 30, 31
geometrical optic, 3
GMP, 24
Goos-von Hänchen effect, 19–22
Gouy phase, 4, 15, 20, 23, 39, 41
GPGPU, 12
guided mode, 85, 87, 93

holography end-station, 25, 26
homogeneous medium, 52, 137
HTTP, 24, 115, 127, 131, 132
Huffman code, 35
Huygens’ elementary sources, 23

ID22NI, 72, 73, 75, 77
improved slit model, 32–35
integrated reflectivity, 66, 78–80, 111,

113, 118, 121, 122
interference, 3, 6, 9, 10, 25, 33, 37, 39, 53

Kirkpatrick-Baez mirror, 12, 18, 38, 72–
74

Kullback-Leibler divergence, 34, 35

Laplacian, 49–52, 54
light ray, 3
linear absorption coefficient, 20, 88
local angle of incidence, 43, 55, 63, 118,

121, 122
local lattice vector, 49, 54
local rotation, 55, 58, 60, 70, 121

magnetron sputtering, 44, 45
ML-500, 77, 78, 83
mode, 8, 10, 12, 14, 85–90

149



150 Index

modification factor, 59, 70–75, 78, 80,
81, 108, 124

modified Bragg condition, 45, 47, 50,
55, 57–60, 69, 72, 78, 120, 121,
124, 135

MPI, 24
multilayer Laue lens, 36, 37, 46, 47

naïve slit model, 32, 35
numerical aperture, 17, 26, 43, 46
Nyquist frequency, 15

obliquity factor, 23, 114
occupation number, 14, 86–90
openMP, 24
oscillations, 69, 72

P10, 19, 22, 25–31, 37, 38, 40, 43, 85
parameter scaling, 27, 30
Parratt’s algorithm, 56, 64, 66–69, 122
partial coherence, 4, 6, 10, 15, 19, 25,

30–33, 36, 38–41, 88, 93–95,
111

PETRA III, 19, 25, 26, 30, 37, 43, 85, 86
phase trajectories, 39, 41
phase unwrapping, 15, 39
physical limits, 77
propagation imaging, 12, 13, 37, 94
pseudo-rocking curve, 70, 71, 78, 80,

111

radiative mode, 85, 92, 93
ray-tracing, 44, 46, 103
readline, 24, 115, 125, 127
reciprocal lattice vector, 49
relative phase, 15

scatterless slits, 32
Snell’s law, 20, 57, 113
spatial coherence, 4, 6, 15, 40
speckle pattern, 8, 9
SSE, 24, 113
stationary field, 5
stencil, 62, 66, 119, 120
susceptibility, 48–50, 54, 64, 65, 120
synchrotron source, 4, 6, 7, 18, 88

Talbot interferometry, 4
temporal coherence, 4
toy model, 85–87, 90
transfocator, 17
two-beam approximation, 45, 47, 49,

50, 64

UPBL04, 72, 74, 77

van Cittert-Zernike theorem, 10
visibility, 3–5, 7, 36, 37
volume diffraction, 44

wave-packet, 3, 6
waveguide, 4, 10–15, 85–87, 90–96
weak conditions, 61

XMLS, 24, 105–108, 111, 112, 115, 116,
118, 120, 125, 127, 128, 131–
133, 137



List of Publications

• Markus Osterhoff and Tim Salditt: Coherence filtering of x-ray waveguides:
analytical and numerical approach, New Journal of Physics, 13(10):103026,
2011.

• Tim Salditt, Sebastian Kalbfleisch, Markus Osterhoff, Sven Philip Krüger,
Matthias Bartels, Klaus Giewekemeyer, Henrike Neubauer, and Michael Sprung:
Partially coherent nano-focused x-ray radiation characterized by Talbot
interferometry, Optics Express, 19(10): 9656–9675, 2011.

• Sebastian Kalbfleisch, Henrike Neubauer, Sven Philip Krüger, Matthias Bartels,
Markus Osterhoff, Dong-Du Mai, Klaus Giewekemeyer, Bastian Hartmann,
Michael Sprung, and Tim Salditt: The Göttingen Holography Endstation of
Beamline P10 at PETRA III/DESY, AIP Conf. Proc., 1365, 96–99, 2011.

• Markus Osterhoff and Tim Salditt: Partially coherent x-ray beam simulations:
mirrors and more, Proc. SPIE Vol. 8141, Advances in Computational Methods for
X-Ray Optics II, 2011.

• Christian Morawe and Markus Osterhoff: Hard X-Ray Focusing with Curved
Reflective Multilayers, X-Ray Optics and Instrumentation, 2010:479631, 2010.

• Sebastian Kalbfleisch, Markus Osterhoff, Klaus Giewekemeyer, Henrike
Neubauer, Sven Philip Krüger, Bastian Hartmann, Matthias Bartels, Michael
Sprung, Olaf Leupold, Frank Siewert, and Tim Salditt: The holography
endstation of beamline P10 at PETRA III, AIP. Conf. Proc., 1234, 433–436, 2010.

• Christian Morawe and Markus Osterhoff: Curved graded multilayers for X-ray
nano-focusing optics, Nuclear Instruments and Methods in Physics Research
Section A, 616:98–104, 2010.

• Markus Osterhoff and Tim Salditt: Real structure effects in X-ray waveguide
optics: The influence of interfacial roughness and refractive index profile on the
near-field and far-field distribution, Optics Communications 282(16):3250–3256,
2009.

151





Acknowledgement

Danksagung

Remerciements

This thesis would not have been possible without close collaborations. At first, I
acknowledge encouraging discussions with and stipulating questions from Prof. Dr.
Tim Salditt. Undoubtful, Dr. Jean-Pierre Guigay contributed a great lot sharing his
insights into the Takagi-Taupin theory. Merci beaucoup! Unforgotten are our often
long and intense discussions, together with Dr. Claudio Ferrero. When needed, Dr.
Christian Morawe contributed answers regarding practicalities of multilayer mirror
design.
I thank my thesis committee, Prof. Dr. Tim Salditt, Prof. Dr. Arnulf Quadt, and Prof. Dr.
Sarah Köster, for their advice in scientific practice and academic life. Thanks to Prof.
Dr. Rainer G. Ulbrich for co-refereeing this thesis.
For many fruitful and clarifying discussions I am indebted to Dr. Cameron Kewish, Dr.
Hanfei Yan, Dr. Jörg Maser, Prof. Dr. Christian Schroer, Dr. Ray Barrett, Dr. Jürgen
Härtwig, and Tobias Liese.
Academic life was enriched by my office colleagues – Dr. Simon Castorph, Robin
Wilke, and Tobias Reusch in Göttingen, Dr. Kathrin Friedrich in Grenoble. I enjoyed
beamtimes with Sebastian Kalbfleisch, Matthias Bartels, Dr. Klaus Giewekemeyer, Dr.
Sven-Philip Krüger, Henrike Neubauer, Dr. Christian Olendrowitz, many more – and
also Prof. Dr. Tim Salditt. Thanks to Marius Priebe, Aike Ruhlandt, and Johannes
Hagedorn for many productive hours; Jan Goeman, IRP system administrator, often
helped quickly to solve problems.
Ganz besonderen Dank an Elisabeth, meinen Vater Werner Osterhoff und Elsbeth für
die Wärme und den Zuspruch der vergangenen drei Jahre.

153





Curriculum Vitæ

Markus Osterhoff,
born on June 30th, 1983, in Warstein

Education and professional experience

since 01/2012 PostDoc at Institut für Röntgenphysik,
Georg-August-Universität Göttingen

01/2009−12/2011 PhD student and scientific employee,
Institut für Röntgenphysik,
Georg-August-Universität Göttingen

12/2008 Diploma in physics (Dipl.-Phys.),
thesis title: “Numerische Modellierungen von Röntgen-
wellenleitern unter Berücksichtigung von Realstruktur-
effekten”

“Numerical modelling of x-ray waveguides, with special
regard on real structure effects”

10/2004−12/2008 Studies of physics,
Georg-August-Universität Göttingen

10/2003−07/2004 Zivildienst,
Westfälische Landeskliniken Warstein

06/2003 Abitur (A-levels),
Städtisches Gymnasium Warstein

01/2000−12/2008 free journalist

155





BN: 978-3-938616-yyy
			                       

ISBN 978-3-86395-054-5
ISSN 2191-9860

Göttingen Series in
X-ray Physics  

Universitätsverlag GöttingenUniversitätsverlag Göttingen

Vol. 
9

Markus Osterhoff

Wave optical simulations of x-ray  
nano-focusing optics

M
ar

ku
s 

O
st

er
ho

ff
  

W
av

e 
op

tic
al

 s
im

ul
at

io
ns

 o
f x

-r
ay

 n
an

o-
fo

cu
si

ng
 o

pt
ic

s

Curved x-ray multilayer mirrors focus synchrotron beams down to tens of 
nano metres. A wave-optical theory describing propagation of two waves 
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and aberrations. Within this framework, performance of both existing and cur-
rently upgraded synchrotron beamlines is simulated. Using a more theoretical 
model case, limits of the theory are studied. A significant part of this work is 
dedicated to partial spatial coherence, modelled using the method of stocha-
stic superpositions. Coherence propagation and filtering by x-ray waveguides 
is shown analytically and numerically. This comprehensive model is put for-
ward that shall help in development and testing of new algorithms for a vari-
ety of imaging techniques using coherent x-ray beams. Advanced simulations 
accounting for real structure effects are compared to experimental data ob-
tained at the GINIX instrument at the coherence beamline P10 at PETRA III, DESY.  
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