
ISBN: 978-3-86395-411-6 Universitätsverlag Göttingen Universitätsverlag Göttingen

Fr
ed

er
ic

 W
ei

dl
in

g 
   

 V
ar

ia
tio

na
l S

ou
rc

e 
Co

nd
iti

on
s 

an
d 

Co
nd

iti
on

al
 S

ta
bi

lit
y 

Es
tim

at
es

 fo
r I

nv
er

se
 P

ro
bl

em
s 

in
 P

D
EsI n inverse problems one wants to fi nd some parameter of interest which is not directly 

observable by indirect measurement. These measurements are usually noisy while 
the mapping of measurement to parameter is typically illposed (that is unstable). 
Therefore one applies regularization techniques that balance these two factors to fi nd 
a stable approximation of the sought for parameter. However, in order to bound the 
reconstruction error, one needs additional information on the true parameter, which is 
nowadays typically formulated in terms of variational source conditions. In this thesis, 
we develop a general strategy to verify these conditions based on smoothness of the 
true parameter and the illposedness of the problem; the latter will be characterized 
by exploiting structural similarities to stability estimates. Following this, we apply our 
strategy to verify variational source conditions for parameter identifi cation problems, 
inverse scattering and electrical impedance tomography.
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INTRODUCTION

Inverse problems arise naturally in science and industry: given some observation one
wants to find some parameter of interest which is not directly observable. Such prob-
lems are common in fields as diverse as medical imaging, geoscientific exploration,
non-destructive testing and finance. Very often these problems can be formulated as
partial differential equations (pdes), where the observation is given by (a part of) the
solution and the unknown can be an initial condition, a coefficent or even the domain
of the equation.

Mathematically these different problems can be put into the following general
framework: given the parameter of interest f the observation g is determined by an
operator equation

F( f ) = g,

where F is the mapping that assigns to each parameter the corresponding data. Hence
naively if we observe some phenomenon g and know the mapping F we simply
have to apply F−1 to find the parameter f . There are, however, problems with this
approach, even if F is invertible. Typically we will not be able to measure the right
hand side g exactly but will measure only gobs ≈ g. Here “≈” includes several
effects like discretization, round-off and modeling errors as well as unavoidable
measurement errors.

Consider for a moment the case that f , g ∈ Rd and F is given by an invertible linear
map A ∈ Rd×d. Then a standard result from numerical analysis is the following:

let A f = g and A( fξ) = g + ξ,

then ‖ fξ − f ‖ ≤ cond(A)
‖ f ‖
‖g‖‖ξ‖,
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where cond(A) := ‖A‖‖A−1‖ is the condition number of the matrix A with respect
to the norm ‖·‖. As on the set of invertible linear matrices the condition number
might be arbitrary large this illustrates that even a small perturbation of the measured
data might lead to large deviations in the reconstructed parameter.

We will, however, usually model inverse problems in infinite dimensional spaces.
A typical situation here is that F is a linear compact operator with dense range. In
this case the inverse mapping F−1 still exists on a dense subset but it is no longer
continuous, i.e. we can not hope to bound the reconstruction error in any way. In
other words we have to consider any naive reconstruction as useless.

In order to obtain stable reconstructions from corrupted data one therefore does
not try to solve the equation F( f ) = gobs exactly but in an approximate way that
takes the error of the right hand side into account. Such methods that approximate
F−1 by stable operators are called regularization methods. In this thesis we will focus
on Tikhonov regularization of the form

f̂α ∈ arg min Tgobs,α( f ), where Tgobs,α( f ) :=
1
α
S
(

F( f ), gobs
)
+R( f ).

Here S measures closeness of observed data gobs and data generated by a candidate
parameter f , R is a penalty term that incorporates our a priori knowledge on the
solution and stabilizes the problem while the regularization parameter α > 0 balances
the two terms. This is a generalization of the more classical method studied e.g. in
[EHN96] where

S
(

F( f ), gobs
)
=
∥∥∥F( f )− gobs

∥∥∥2
and R( f ) = ‖ f ‖2.

That this general procedure yields indeed a stable reconstruction and that f̂α converges
to the true solution f † when gobs converges to the true data for some choice of α has
been established e.g. in [Pös08, Fle11] (see Section 1.2.2 for more details). For the
choice of α one roughly has to take the following effect into account: the larger we
choose α the more stable is the problem we are solving but the less we try to match
the data exactly. Hence one has to try to find an optimal balance of the two effects in
the sense that the f̂α is as close as possible to the true solution f †.

It is well known, however, in the regularization theory that any bound on the
distance f̂α to f † requires a priori knowledge on f †, i.e. we cannot find such a bound
which will hold globally for all possible choices of parameters f †. Such an a priori
knowledge is typically formulated as a source condition. E.g. in [EHN96] for the case
that F is a linear, compact operators acting between Hilbert spaces the spectral source
condition

f † = (TT)νw, ν ∈ (0, 1]

have been studied, where the right hand side is defined by the functional calculus.
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If the data obeys ‖gobs − g‖ ≤ δ for the above choice of the Tikhonov functional a
convergence rate of ∥∥∥ f̂ᾱ − f †

∥∥∥ ≤ cδ
2ν

2ν+1

for an optimal choice α = ᾱ(δ, gobs) of the regularization parameter has been obtained.
For details on generalization to conditions of the form f † = ϕ(F∗F)w and nonlinear
operators see Section 2.1.

While the corresponding theory was quite successful it also has some drawbacks:
using the functional calculus requires a Hilbert space setting, and the treatment of non-
linear operators require strong additional assumptions. However, many interesting
problems arising in practice are non-linear and Banach space settings allow greater
flexibility in the choice of data and penalty terms which are required for more accurate
modeling and promotion of desired features of the reconstruction (see e.g. [SKHK12]).
Hence a more general type of source condition is needed.

The current state of the art assumption is to require that the true solution f † fulfills
the variational inequality

∀ f : E( f , f †) ≤ R( f )−R( f †) + ψ

(∥∥∥F( f )− F( f †)
∥∥∥2
)

for some loss function E . These variational source conditions (VSC) were introduced in
[HKPS07] and have become a standard assumption in regularization theory. For an
optimal choice α = ᾱ of the regularization parameter it is straightforward to show the
convergence rate

E
(

f̂ᾱ, f †
)
≤ cψ(δ2)

under mild assumptions on the involved quantities, where the observed data gobs has
to satisfy ‖gobs − g‖ ≤ δ again.

Recent results of [Fle18] illustrate that such a VSC is always fulfilled, but they do
not tell us how the function ψ will look like. The subject of this thesis is to investigate
conditions which allow to quantify ψ in the VSC and hence the convergence rate.

If F is an operator mapping between function spaces F−1 is often not continuous
due to the fact that F is a smoothing operator, that is F( f ) is a smoother function than
f . It has been observed for such problems that the spectral source condition can be
interpreted as a smoothness assumption on f relative to the smoothing properties
of the operator. The smoothing properties of the operator are related to the degree of
ill-posedness of the operator; e.g. in case of linear, compact operators acting between
Hilbert spaces this is typically measured by the speed of the decay of the singular
values of the operator.

In this thesis we will use the two factors, smoothness of the solution and ill-
posedness of the operator equation, in order to derive explicit forms of variational
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source conditions; the second of the two factors is usually more difficult to character-
ize. This criterion will be treated by using similarities between VSCs and conditional
stability estimates. Conditional stability estimates are inequalities of the form

E( f1, f2) ≤ cΨ(‖F( f1)− F( f2)‖)

for all f1, f2 in a (usually smooth) subset K. Such estimates are quite common for
many interesting problems while results that show that for a given problem and
conditions on the true solution f † a VSC for a specific function ψ is fulfilled are still
rare in the literature (see Remark 2.28). As VSCs imply stability estimates this allows
us to compare our new findings with existing results in the literature.

This thesis is structured as follows:
• In Chapter 1 we will give a more detailed introduction into inverse problems

and Tikhonov regularization.

• Chapter 2 will review the results on convergence rates known in the literature.
We will discuss the advantages and limitations of various source conditions
as well as their relation to each other. Further we will prove a main result of
this thesis: a general strategy to verify VSCs with Bregman loss function for
certain penalty termsR. This strategy generalizes our approach to verify VSCs
in [HW15, HW17b] and quantifies solution smoothness and ill-posedness of the
operator. It will be our main tool to verify VSCs later on.

• The case of linear operator acting between Hilbert spaces will be treated in
Chapter 3. Here we will show that VSCs are not only sufficient but even
necessary to obtain certain rates of convergence. As an important byproduct we
obtain that f † fulfills a VSCs if and only if f † is in a certain interpolation spaces.
The results of this chapter have been published in [HW17a].

• A choice of penalty term which has become popular is to choose R as a
(weighted) sum of wavelet coefficents. Under certain conditions these sums
turn out to be equivalent norms on Besov spaces; thus we study Tikhonov
regularization with such penalty terms in Chapter 4. While Besov spaces are
not necessarily Hilbert spaces they have a rich structure not only in terms
of wavelets but they can also be characterized e.g. by Fourier transform and
interpolation; the different characterizations will be exploited in order to demon-
strate that under certain conditions VSCs are fulfilled. While we cannot show
equivalence between convergence rates and VSCs here we are able to illustrate
that the derived convergence rates are of optimal order, i.e. in certain Besov
balls no faster uniform convergence is possible. One of the main results of
independent interest concerns the mapping property of the duality mapping
in Besov spaces, namely we show that it maps smooth subspaces into smooth
subspaces. Most findings are available in the preprint [WSH18].

• We then continue the work started in [HW15, HW17b] and verify a VSC for
a scattering problem for the Schrödinger equation in Chapter 5. This relies
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on the one hand on our results on Besov spaces and on the other hand on the
construction of specific solutions to the problem. One of the main new features
of the result is that we will make explicit how constants depend on the energy
which is one of the parameters of the pde. We have already announced a similar
result in [WH17].

• Lastly we derive some new results on electric impedance tomography in Chap-
ter 6. Based on a well-known connection to the Schrödinger equation we will
derive a new conditional stability estimate for this problem. Further we estab-
lish a result which allows to derive VSC from stability estimates. Combining
these two findings then yields the first (at least to the best of our knowledge)
convergence rate result for a reconstruction technique for electric impedance
tomography in three dimensions.

We conclude with an outlook and appendices on convex analysis and function spaces.
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CHAPTER I
TIKHONOV REGULARIZATION

Measure what can be measured, and make measureable what
cannot be measured.

attributed to GALILEO GALILEI.

1.1 Ill-Posed Problems and their Regularization

In [Kel76] the concept of problems which are inverse to each other is introduced: it
is required that the formulation of one problem contains the solution of the other.
These kind of problems occur for example in science where one wants to predict
a parameter given some observation. An associated problem is to to predict the
observation given the parameter which is usually much better understood and hence
called the direct problem. The direct problem is often well-posed in the sense of
Hadamard (see [Had53]), i.e. it meets the conditions of the following definition:

Definition 1.1. A problem is called well-posed if
(a) it has a solution,

(b) the solution is unique and

(c) the solution depends continuously on the data.
A problem that is not well-posed is called ill-posed.



16 1. Tikhonov Regularization

Correspondingly we call the problem to predict the parameter from the solution
the inverse problem which often turns out to be ill-posed. Note that reformulating
the problem can help to overcome issues with the first two items by either enlarging
or shrinking the set where we look for a solution. However, item (c) is the most
important one as in practice any measurement will be noisy, and thus any ad-hoc
reconstruction not taking the noisy character of the measurement into account should
be regarded as meaningless.

From now on we will assume that the direct problem can be written as an operator
equation

F( f ) = g (1.1)

where F is the forward operator mapping the parameter f ∈ dom(F) ⊂ X to the
observation g ∈ Y and X ,Y are Banach spaces. We will denote the true solution by
f † and the corresponding data by g†. The well-posedness criteria of Hadamard in
Definition 1.1 for the inverse problem then read as

(a) F is surjective,

(b) F is injective,

(c) F−1 is continuous.
In case that F−1 is not continuous a small perturbation of the input can lead to an
arbitrarily large perturbation of the output. Further it is evident why this problem
cannot be overcome by a simple reformulation as we either need a finer topology
on Y or a coarser topology on X . However, one would like to analyze the effect of
errors on the solution. Assuming that the topologies are induced by norms one has
the problem that errors are usually unbounded in stronger norms on Y (which would
induce a finer topology) while error estimates in weaker norms on X (i.e. coarser
topology) are usually non-informative. Hence, instead of solving the inverse problem
directly, one approximates F−1 by a family of continuous operators {Rα}α>0 such
that

Rα(g) α→0−→ F−1(g)
whenever the right hand side is defined. A prominent example of such a method is
Tikhonov regularization which will be studied in more detail in the following.

1.2 Generalized Tikhonov Functionals

Consider for a moment the case that X ,Y are Hilbert spaces and the forward operator
is a linear injective map, that is F = T.1 On the observed data g = gobs suppose that
‖gobs − g† | Y‖ ≤ δ.2 Then f̂ is a least-square solution to (1.1) with data gobs if and

1Throughout this thesis a general forward map will be denoted by F, in case that F is linear we will
denote it by T.

2This thesis uses the notation ‖ f | X ‖ for the norm of f in the space X instead of the more common
notation ‖ f ‖X due to the numerous indices of spaces appearing later.



1.2. Generalized Tikhonov Functionals 17

only if f̂ fulfills the normal equation

T∗T f̂ = T∗gobs.

Note that turning to least square solutions does not guarantee existence – consider
the case of gobs ∈ ran(T) \ ran(T) – but injectivity of T ensures uniqueness of the
solution. Formally this equation can be rewritten as f̂ = (T∗T)−1T∗gobs which is still
ill-posed if T−1 is not continuous. However replacing T∗T by T∗T + αI and setting
f̂α := (T∗T + αI)−1(T∗gobs + α f0) for some initial guess f0 we see that f̂α depends
continuously on gobs and f̂α → f̂ as α→ 0 if f̂ is well defined. Indeed T∗T + αI is a
positive self-adjoint operator fulfilling 〈(T∗T + αI) f , f 〉 ≥ α‖ f | X ‖2 implying that
‖(T∗T + αI)−1 | X → X‖ ≤ 1

α by the Lax-Milgram lemma. Regularizations of similar
form in a Hilbert space setting will be considered in Section 3.2.

The approximation f̂α can also be characterized in a variational way, namely

f̂α ∈ arg min Tgobs,α( f ), where Tgobs,α( f ) := ‖T f − gobs | Y‖2 + α‖ f − f0 | X ‖2.
(1.2)

The functional Tgobs,α is called Tikhonov functional due to Tikhonov [Tik63b, Tik63a]
who used spaces X including derivatives of f . The first term of the Tikhonov func-
tional in (1.2) measures the data misfit, i.e. how good the approximation satisfies the
measured data, while the second term stabilizes the problem and incorporates the
a-priori knowledge that the solution is smooth and close to f0. The parameter α > 0
balances the two terms; the smaller we choose α the better our approximation of the
original problem but the more sensitive we become to data errors. In the following
we will study a generalization of the form

f̂α ∈ arg min Tgobs,α( f ), where Tgobs,α( f ) :=
1
α
S
(

F( f ), gobs
)
+R( f ) (1.3)

explained in more detail in the following subsection.

1.2.1 Noise model

More generally denote by Yobs the set of all possible measurable data gobs. In general
one has Yobs 6= Y – note that there are even cases where Yobs is not a vector space (see
the references on impulsive noise below). Define a mapping S : Y ×Yobs → R∪ {∞}
which assigns to each measurement gobs ∈ Yobs a data fidelity functional S(·, gobs)
which should be relatively small if an input close to F( f ) could generate the data gobs.

As we are looking for a minimizer of (1.3) the exact value of S(g, gobs) has no mean-
ing. If gobs is observed data generated by g† however, then (S(g, gobs)− S(g†, gobs))
should be approximately zero if g is close to g† and large if g is far away from
g†. To quantify how close g and g† are, we introduce an ideal data fidelity functional
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Tg† : Y → [0, ∞]. The noise level will now be defined by comparing the difference of
the two data fidelity functionals with the ideal data fidelity functional.

Definition 1.2 (effective noise level). Let g† ∈ Y be exact data and let Cerr ≥ 1 be a
constant. Then the effective noise level err : Y → [0, ∞] given some data gobs ∈ Yobs is
defined as

err(g) := S(g†, gobs)− S(g, gobs) +
1

Cerr
Tg†(g).

For any subset Ỹ ⊂ Y we define

errỸ := sup
g∈Ỹ

err(g).

The global effective noise level err is defined as

err = errF(dom(F)) .

Note that err(g) is the smallest number e such that the inequality

S(g, gobs)− S(g†, gobs) ≥ 1
Cerr
Tg†(g)− e

holds true.
Example 1.3. The following example introduces the two noise models which will
occur in this thesis, together with their respective choices of (ideal) data fidelity
functionals.

(a) Classical, deterministic noise model, see [WH12, Ex. 3.1]: In this case one has
Yobs = Y and one assumes that the observed data gobs satisfies

gobs = g† + ξ, ‖ξ | Y‖ ≤ δ.

The typical choices of data fidelity functionals are

S(g1, g2) = Tg1(g2) =
1
p
‖g1 − g2 | Y‖p

for some p ∈ [1, ∞). Choosing Cerr = 2p−1 one can show that err ≤ 2
p δp. The

typical choice of p when Y is a Hilbert space is p = 2 in which case one obtains
the classical form of the data misfit in the Tikhonov functional.

(b) White noise, see [HW12, Sec. 2]: We assume that Y is a Hilbert space and that
the data is of the form

gobs = g† + εZ

where Z is a white noise process on Y , that is

E[〈Z, g〉] = 0 and E[〈Z, g1〉〈Z, g2〉] = 〈g1, g2〉
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for all g, g1, g2 ∈ Y . Choosing the ideal data fidelity functional as in the Hilbert
space case above, that is Tg†(g) = 1

2‖g†− g | Y‖2, one would like to do the same
for the data fidelity functional. But by setting

S
(

g, gobs
)
=

1
2

∥∥∥g− gobs
∣∣∣Y∥∥∥2

=
1
2
‖g | Y‖2 − 〈gobs, g〉+ 1

2

∥∥∥gobs
∣∣∣Y∥∥∥2

one sees that this term is infinite almost surely. However, all terms up to
‖gobs | Y‖2 are almost surely finite and this term does not depend on g. Hence
we will drop this term and define

S
(

g, gobs
)
=

1
2
‖g | Y‖2 − 〈gobs, g〉.

Setting Cerr = 1 this leads to

err(g) = ε〈Z, g− g†〉

so one obtains E[err(g)] = 0 and V[err(g)] = ε2‖g− g† | Y‖2. Note that err(g)
is still a random variable and that err = ∞, if dom(F) contains a one dimen-
sional subspace. Therefore to handle the error more properties on the distribu-
tion in form of concentration or deviation inequalities are required.

Further examples where this error model has been used are impulsive noise
models [HW14, KWH16] and Poisson noise models [WH12].

1.2.2 Regularizing property
In this section we prove the following regularization properties of (1.3):

(a) Well-definedness, that is there exists a minimizer f̂α of Tgobs,α for any α > 0 and

gobs ∈ Yobs.

(b) Stability, that is the regularized solutions f̂α depend sequentially continuously
on the data gobs.

(c) Convergence, that is regularized solutions ( f̂αn)n∈N for which αn → 0 and
(err(F( f̂αn)))n∈N → 0 in an appropriate manner converge to the true solution
f †.

To prove these properties we will require that the subsequent assumption holds true:

Assumption 1.4. The following will be standing assumption throughout the current
and the following chapter.

(a) (X , τX ) and (Y , τY ) are locally convex vector spaces and (Yobs, τYobs) is a Haus-
dorff space.
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(b) R : X → R∪ {∞} is convex and lower semicompact.

(c) Let F : dom(F)→ Y be a possibly nonlinear operator defined on a set dom(F)
and assume that D := dom(F) ∩ dom(R) 6= ∅ is a sequentially closed set and
F is sequentially continuous on D.

(d) Associate to all data gobs ∈ Yobs a data fidelity functional S(·, gobs) : Y → R∪
{∞} satisfying inf f∈dom(F) S(F( f ), gobs) ∈ R which is lower semicontinuous
w.r.t. τY × τYobs and sequentially continuous w.r.t. τYobs .

(e) Let g† be exact data and Tg† : Y → [0, ∞] be a corresponding ideal data fidelity
functional, which is lower semicontinuous and satisfies Tg†(g) = 0 if and only
if g = g†.

(f) There exists a unique f † ∈ arg min f : F( f )=g† R( f ), calledR-minimizing solution
to F( f ) = g†.

(g) ∂R( f †) 6= ∅.

Example 1.5. Consider the classical Tikhonov functional (1.2) with norm-to-norm
continuous operator T. Setting τX as the weak topology on X and τY = τYobs as
the weak topology on Y we see that all the assumptions are fulfilled. Indeed T
is also weak-to-weak continuous and even if T is not injective the R-minimizing
solution is unique as f † is the orthogonal projection of f0 onto the affine subspace
{ f ∈ X : T f = g†}.

The following theorem shows that under the assumptions above Tikhonov regular-
ization is well-defined, the proof follows along the lines of[Pös08, Thm. 1.6] or [Fle11,
Thm. 3.2] and essentially shows that the Tikhonov functional is lower semicompact.

Theorem 1.6 (well-definedness). Suppose that Assumption 1.4 is satisfied. Then there
exists a minimizer f̂α of Tgobs,α( f ).

If F = T is linear and S(·, gobs) andR are convex with at least one of them being
strictly convex, then the minimizer f̂α is unique as then the Tikhonov functional is
strictly convex. This is e.g. the case for the classical Tikhonov regularization (1.2).
In general however one cannot guarantee uniqueness. Hence one cannot expect
that given a converging sequence of data a sequence of corresponding minimizers
converges as the sequence of minimizer might jump between different solutions.
Nevertheless the following result shows that one still has convergence along subse-
quences.

Theorem 1.7 (stability, [Fle11, Thm. 3.3]). Let gobs ∈ Yobs and α ∈ (0, ∞) and assume
that the Tikhonov functional Tgobs,α is proper. Let (gobs

n )n∈N ⊂ Yobs, (αn)n∈N ⊂ (0, ∞)

and (εn)n∈N ⊂ [0, ∞) such that gobs
n → gobs, αn → α and εn → 0. Let ( fn)n∈N ⊂ X such

that
Tgobs

n ,αn
( fn) ≤ inf

f∈X
Tgobs

n ,αn
( f ) + εn.
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If Assumption 1.4 is satisfied then the following holds true:
(a) lim supn∈NTgobs

n ,αn
( fn) < ∞.

(b) ( fn)n∈N has a convergent subsequence ( fnk )k∈N.

(c) Each limit f̂α of a convergent subsequence satisfies f̂α ∈ arg min f Tgobs,α( f ).

(d) For each convergent subsequence one obtains S( fnk , gobs
nk

)→ S( f̂α, gobs),R( fnk )→
R( f̂α) and Tgobs

nk
,αnk

( fnk )→ Tgobs,α( f̂α) as k→ ∞.

(e) If the minimizer of Tgobs,α is unique, then ( fn)n∈N converges to f̂α.

The previous theorem shows that generalized Tikhonov estimators depend con-
tinuously on the observed data. So if we solve (1.3) instead of (1.1) we obtain a
well-posed problem in the sense of Definition 1.1 up to uniqueness. It further shows
that it is also robust with respect to only approximate evaluation.

Theorem 1.8 (convergence). Let f † ∈ X with exact data g† ∈ Y . Let (gobs
n )n∈N ⊂ Yobs

be a sequence of observed data with associated global effective noise level (errn)n∈N such that
limn→∞ errn = 0. Assume that the regularization parameters (αn)n∈N are chosen such that

lim
n→∞

αn = 0 and lim
n→∞

errn

αn
= 0.

Let Assumption 1.4 be satisfied and f̂n := f̂αn be a sequence of minimizers of Tgobs
n ,αn

. Then
the following holds true:

(a) f̂n → f † with respect to τX ;

(b) R( f̂n)→ R( f †);

(c) ∆ f ∗

R ( f̂n, f †)→ 0 for all f ∗ ∈ ∂R( f †);

(d) Tg†(F( f̂n))→ 0.

Proof. As f̂n minimizes Tgobs
n ,αn

, we obtain

1
αn
S
(

F( f̂n), gobs
n

)
+R

(
f̂n

)
≤ 1

αn
S
(

F( f †), gobs
n

)
+R

(
f †
)

.

Rearranging terms and using the definition of the effective noise level this implies

R
(

f̂n

)
+

1
Cerrαn

Tg†

(
F( f̂n)

)
≤ R

(
f †
)
+

1
αn

err
(

F( f̂n)
)

.
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Bounding the effective noise level by errn and taking the limit superior on both sides
this shows that

lim sup
n→∞

[
R
(

f̂n

)
+

1
Cerrαn

Tg†

(
F( f̂n)

)]
≤ lim sup

n→∞

[
R
(

f †
)
+

1
αn

errn

]
= R

(
f †
)

(1.4)
due to the assumption on the choice of αn. As Tg† is positive andR is lower semicom-
pact by Assumption 1.4 we obtain that there exists a subsequence ( f̂nk )k∈N converging
to some f̃ . As D is supposed to be sequentially closed we get f̃ ∈ D ; hence by the
lower semicontinuity of Tg† and sequential continuity of F that

Tg†
(

F( f̃ )
)
≤ lim inf

k→∞
Tg†

(
F( f̂nk )

)
≤ lim inf

k→∞

[
S
(

F( f̂nk ), gobs
nk

)
− S

(
g†, gobs

nk

)
+ errnk

]
≤ lim sup

k→∞
αnk

[
R
(

f †
)
−R

(
f̂nk

)]
+ lim sup

k→∞
errnk = 0.

Thus F( f̃ ) = g†, as furthermoreR( f̃ ) ≤ R( f †) this implies f̃ = f † by Assumption 1.4.
Due to the uniqueness of f † this implies that f̂n → f †, hence limn→∞〈 f ∗, f̂n − f †〉 = 0
for all f ∗ ∈ ∂R( f †). Combining (1.4) and the lower semicontinuity ofR we see that

lim sup
n→∞

R
(

f̂n

)
≤ R

(
f †
)
≤ lim inf

n→∞
R
(

f̂n

)
finishing the proof.

1.2.3 Numerical minimization of Tikhonov functionals

In order to simplify the notation we will abbreviate S(g) := S(g, gobs) and T ( f ) :=
Tgobs,α( f ) in this section. Additionally we will assume that S(·) is convex which is
the case for the most prominent data fidelity terms.

1.2.3.1 Linear Forward Mappings

In case that F = T the Tikhonov functional is convex, hence any (sub-)gradient decent
algorithm will eventually converge to a minimizer f̂ of T . Especially in the Hilbert
space setting where the solution of the Tikhonov functional is given by the solution
of the linear equation

(T∗T + αI) f̂ = T∗gδ + α f0

the Conjugate Gradient Method provides a very efficient and fast algorithm to solve
this linear system.

In the following we want to shortly present a First-Order Primal-Dual Algorithm
for Convex Problems which works for functionals S andR which are proper, convex
and lower semicontinuous. The algorithm solves the problem by simultaneously
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minimizing the Tikhonov functional and the corresponding dual problem. It was
first developed in [CP10] for a (formally finite dimensional) Hilbert space setting and
extended to an infinite dimensional Banach space setting in [Hom15].

Associated to each Tikhonov functional

f̂ ∈ arg min
f∈X

[
S(T f ) +R( f )

]
, (1.5P)

where for simplicity we absorbed the regularization parameter α into the data misfit
functional there is a corresponding dual problem

p̂ ∈ arg max
p∈Y∗

[
−S∗(−p)−R∗(T∗p)

]
, (1.5D)

where S∗ and R∗ are the Fenchel conjugates (see Definition A.13) of S and R re-
spectively. Both problems can be solved simultaneously by finding a saddle point
of

( f̂ , p̂) ∈ arg min
f∈X

arg max
p∈Y∗

[
〈p,−T f 〉+R( f )− S∗(−p)

]
. (1.5S)

The three problems are related by the following Theorem:

Theorem 1.9 (see [BC11, Chap. 19]). Assume that there exist f0 ∈ X and p0 ∈ Y∗ such
thatR( f0),S(Tp0),R∗(T∗p0) and S∗(p0) are all finite. Set

µ := inf
f∈X

[
S(T f ) +R( f )

]
and µ∗ := sup

p∈Y∗

[
−S∗(−p)−R∗(T∗p)

]
Then the following holds true:

(a) IfR∗ is continuous at T∗p0, then a solution f̂ of (1.5P) exist and µ = µ∗.

(b) If S is continuous at T f0, then a solution p̂ of (1.5D) exist and µ = µ∗.

(c) The following are equivalent:

(i) f̂ is a solution of (1.5P), p̂ is a solution of (1.5D) and µ = µ∗.

(ii) ( f̂ , p̂) is a saddle point of (1.5S).
(iii) The extremal relations

− p̂ ∈ ∂S(T f̂ ), T∗ p̂ ∈ ∂R( f̂ ) (1.6)

hold true.

If any of the points in Theorem 1.9(c) is fulfilled we say that strong duality holds
true. In this case the extremal relations can be used to set up an algorithm for solving
the saddle point problem (1.5S). Using Corollary A.15, we can rewrite the second
extremal relation as T f̂ ∈ ∂S∗(− p̂). Then scaling both equations with some positive
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parameters σ, τ as well as adding and subtracting jY∗(− p̂) and jX ( f̂ ), where jY∗ , jX
are selections of the normalized duality mapping (see Definition B.6) we see that

(1.6) ⇔

 p̂ ∈ −
(

jY∗ + σ∂S∗
)−1
[

jY∗(− p̂) + σT f̂
]

f̂ ∈
(

jX + τ∂R
)−1
[

jX ( f̂ ) + τT∗ p̂
] . (1.7)

In order to create an algorithm out of these equations efficient ways to evaluate the
operators (jY∗ + σ∂S∗)−1 and (jX + τ∂R)−1, called resolvent mappings, are needed.
Under the conditions of Theorem 1.9 it can be shown that they are well-defined
and single valued, see [Roc70]. Furthermore, they can be computed by solving the
minimization problem(

jX + τ∂R
)−1

( f ∗) = arg min
f∈X

[
τR( f ) + ∆ f ∗

1
2 ‖· | X ‖2( f , jX ∗( f ∗))

]
and likewise for the second resolvent. For several important cases there even exist
closed form expressions of the resolvents:

Example 1.10 (see [Hom15, Cor. 4.3.3]). Let σ, τ > 0, S(g) = 1
2‖g− gobs | Y‖2 and

R( f ) = 1
2‖ f | X ‖2, then

(
jY∗ + σ∂S∗

)−1
(g) = jY

(
g− σgobs

1 + σ

)
,

(
jX + τ∂R

)−1
( f ∗) =

1
1 + τ

jX ∗( f ∗).

We can now use (1.7) together with an overrelaxation step to obtain the following
algorithm to solve the saddle point problem (1.5S):

Algorithm 1.11. First-Order Primal-Dual Algorithm for Convex Problems
• Initialize: Choose ( f0, p0) ∈ X × Y∗, (σn, τn)n∈N ⊂ (0, ∞)2, (Θn)n∈N ⊂ [0, 1]

and set f̄0 = f0.

• Iterate: For n ∈ N0 set

pn+1 = −
(

jY∗ + σn∂S∗
)−1[jY∗(−pn) + σnT f̄n

]
,

fn+1 =
(

jX + τn∂R
)−1[jX ( fn) + τnT∗pn

]
,

f̄n+1 = fn+1 + Θn
(

fn+1 − fn
)
.

For convergence properties of this algorithm under suitable parameter choice
rules and mild assumptions on the involved functionals see [Hom15, Chap. 4]. As a
particular example, let X be 2-convex and Y be 2-smooth with S andR as in Example
1.10, then there exists a constant parameter choice rule for σ, τ, Θ such that (pk, fk)

converge linearly with respect to the the Bregman distance to a solution ( p̂, f̂ ) of the
saddle point problem.
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1.2.3.2 Nonlinear Forward Mappings

If the forward operator is nonlinear, then the Tikhonov functional will usually have
local minima even for convex functionals S ,R. Hence finding the global minimizer
is a great numerical challenge. For the convergence rate analysis of Tikhonov regular-
ization in the following chapters we will still always assume that the minimizer f̂α is
given.

If the forward operator is nonlinear but differentiable the corresponding inverse
problem is often solved via successive linearization, that is given some guess fn one
solves

F( f ) ≈ F( fn) + F′[ fn]( f − fn) = gobs

to obtain an update fn+1 = f . If this equation is ill-posed one of course has to
regularize again.

• Given a Tikhonov functional with fixed α the following methods can be used:

– If the functionals are smooth one can either apply a Gradient Decent Method
or a Newton-type Method to obtain a locally convergent algorithm. The
problem with gradient decent methods is that they generally converge
quite slowly, also their performance can be improved by suitable adjust-
ment of the step direction, see e.g. [BB88]. The main problem of Newton’s
method is that it require the Hessian of the forward operator, which is
usually very costly to compute, as the method is applied to the first order
optimality conditions. So one typically uses quasi Newton’s methods like
BFGS where only the Jacobian of the forward operator is needed.

– Alternatively one can try to directly apply the technique of the previous
subsection. While there exists no dual problem one can still formulate a
saddle point problem for a nonlinear operator which is of the form

( f̂ , p̂) ∈ arg min
f∈X

arg max
p∈Y∗

[
〈p,−F( f )〉+R( f )− S∗(−p)

]
.

An algorithm similar to the one presented in Algorithm 1.11 for solving
this equation with nonlinear operator F has first been developed in [Val14]
for a finite dimensional setting and was extended in [CV17] to an infinite
dimensional Hilbert space setting. Assuming that the forward operator is
differentiable, the iteration reads

fn+1 =
(

jX + τn∂R
)−1[jX ( fn) + τnF′[ fn]

∗pn
]
,

f̄n+1 = fn+1 + Θn
(

fn+1 − fn
)
,

pn+1 = −
(

jY∗ + σn∂S∗
)−1[jY∗(−pn) + σnF( f̄n+1)

]
and local convergence has been shown under suitable regularity assump-
tions. For global convergence properties see [CMV18].
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• Another idea is to solve a sequence of Tikhonov functionals where αn → 0
together with an early stopping rule which lead to new regularization methods.

– Starting with [Ram03] and extended in [ZW16] an algorithm that yields
global convergence has been studied where S is a norm power andR con-
vex of power type. The idea is to first compute an approximate minimizer
of a Tikhonov functional with a very large α via an iterative algorithm, as
it can be shown that then the Tikhonov functional is convex in a neighbor-
hood of f †. Then α is reduced and the previous minimizer is used as an
initial guess. It can be shown that this algorithm terminates after finitely
many inner and outer iterations, however strong assumptions have to be
made (one needs the nonlinear version of the source condition (2.17) as
well as a tangential cone condition (2.13)).

– A widely used method is the iteration

f̂n+1 ∈ arg min
1

αn+1
S
(

F( fn) + F′[ fn]( f − fn), gobs
)
+R( f )

which is the so called iteratively regularized Gauss-Newton method. As at
each step a Tikhonov type functional has to be minimized one can apply
the First-Order Primal-Dual Algorithm presented in the previous section
as an inner algorithm. In [HW12] it is shown that together with an early
stopping rule this algorithm provides a regularization method under suit-
able assumption restricting the nonlinearity of the forward operator (the
conditions generalize the tangential cone condition (2.13)). Furthermore a
large part of the convergence rate theory described later on carries over to
this regularization technique.



CHAPTER II
CONVERGENCE RATES THEORY

Mathematics is the work of individuals. But its concepts and
its theorems belong to no person and no ethnic, religious, or

political group. They belong to all of us. Mathematical
knowledge builds on the work of those who have gone before

us. It is hard won, and we often do not value it as we should.
Anyone of us with an elementary school education can solve
arithmetic and algebraic problems that would have defeated

the most learned Babylonian scribes. Anyone of us with a few
courses of calculus and linear algebra can solve problems that

Pythagoras, Archimedes, or even Newton could not have
touched. A mathematics graduate student today can handle

topological calculations that Riemann and Poincare could not
have begun. We are not smarter than they. Rather, we are

their beneficiaries.

DONAL O’SHEA, in “The Poincaré conjecture”

We have seen in Theorem 1.8 that if we have a sequence of data for which the limit of
the noise level vanishes, then the estimator of the Tikhonov functionals converge to
the exact solution. A key question in regularization theory is to determine bounds on
the distance between regularized and true solution. In the classical Tikhonov model
one tries to find error estimates of the form∥∥∥ f̂α − f †

∣∣∣X ∥∥∥ ≤ ψ(δ) (2.1a)
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for some continuous function ψ : [0, ∞)→ [0, ∞) with ψ(0) = 0 and some parameter
choice rule α = α(δ, gobs). More generally one tries to find error estimates of the form

E
(

f̂α, f †
)
≤ ψ

(
err
(

F( f̂α)
))

(2.1b)

where E is some generalized loss functional for some parameter choice α depending
on the data and the noise model. Such error estimates are called convergence rates in
regularization theory.

In order to obtain convergence rates one needs additional information on the true
solution as the following proposition shows:

Proposition 2.1 (see [EHN96, Prop. 3.11]). Let F : X → Y be injective. Assume that
there exists R : Y → X and ψ : [0, ∞)→ [0, ∞) continuous such that ψ(0) = 0 such that

sup
{∥∥∥R(gobs)− F−1(g)

∥∥∥ : g ∈ ran(F),
∥∥∥g− gobs

∥∥∥ ≤ δ
}
≤ ψ(δ) ∀δ > 0,

then F−1 is continuous.

In this chapter we will study several conditions on the true solution f † which will
guarantee that convergence rate of the form (2.1) hold true. In Section 2.1 we will look
at spectral source conditions that will yield convergence rate in the classical Hilbert
space setting, and in Section 2.2 at the closely related range conditions which allow to
extend some special cases to a Banach space setting. Next we will show how stability
estimates can be used to derive convergence rates for specially constructed Tikhonov
functionals. In Section 2.4 we will present the convergence rate theory based on
variational source conditions which can be considered as the state of the art theory.
Afterwards we will describe an abstract framework to prove such a condition which is
applicable for a wide range of settings and will be an important tool in the following
chapters. Lastly we will discuss the relation to the previously studied conditions and
give some further results on variational source conditions.

2.1 Spectral Source Conditions

In this section we will present the classical convergence rate theory in Hilbert spaces,
the basics of this are already treated in [EHN96]. This theory is very well suited to deal
with solving linear equations in Hilbert spaces. We will recall the main convergence
rate result and briefly comment on optimality, parameter choice rules and extensions
to nonlinear operators. As this theory relies heavily on the spectral calculus it is not
extendable to a Banach space setting, however in special cases the conditions are
equivalent to range conditions which can also be exploited in a Banach space setting
to get convergence rates as we will see in Section 2.2.
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Definition 2.2. A continuous function ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0 that is
monotonically increasing is called an index function.

We say that f † satisfies a spectral source condition, if

f † − f0 = ϕ(T∗T)w (2.2)

for some index function ϕ, source element w and initial guess f0. The two most
commonly used examples of index functions in spectral source conditions are Hölder
source condition where

ϕ(t) := ϕH
ν (t) = t

ν
2 (2.3a)

for some ν > 0 and logarithmic source condition where

ϕ(t) := ϕL
p(t) =

{
(− log(min{t, t0}))−p t > 0
0 t = 0

(2.3b)

for some p > 0 and some t0 ∈ (0, 1).
The difficulty with condition (2.2) is the interpretation of the equation. It turns out

that for many problems spectral source conditions with the index functions as in (2.3)
can be interpreted as smoothness conditions on f † − f0 in the sense of classic Sobolev
smoothness of the true solution. Hence one often refers to (2.2) as a smoothness
condition.

Example 2.3. For the following examples such an interpretation holds true with
f0 = 0:
• In the case of Numerical Differentiation (that is, (T f )(x) =

∫ x
0 f (y)dy) with

X = Y = L2
�([0, 1]) := { f ∈ L2[0, 1] :

∫ 1
0 f (y)dy = 0} we have (2.2) with

ϕ = ϕH
ν as in (2.3a) if and only if f † ∈ Hν

per([0, 1]) ∩ L2
�([0, 1]).

• The Backward heat equation tries to determine the temperature distribution at
t = 0 given the temperature distribution at some later time t = τ > 0 (see
Section 3.6 for details on the operator). If one assumes a periodic setting, that
is X = Y = L2(Td), then we have (2.2) with ϕ = ϕL

p as in (2.3b) if and only if
f † ∈ H2p(Td). Similar results hold for the side ways heat equation and in satellite
gradiometry, see [Hoh00].

• In the case of inverse potential and inverse scattering (which are both nonlinear
problems, see Section 2.1.4 below on how to treat nonlinear problems) it has
been shown in [Hoh97] that even analyticity of the true solution is not enough
in order to obtain (2.2) with ϕ = ϕH

ν as in (2.3a) while ϕ = ϕL
p as in (2.3b) has

again meaningful interpretations in terms of Sobolev smoothness.

An example for the verification of a spectral source condition which is not of the
form (2.3) can be found in [HH01, Lemma 4.2] (see also Lemma 5.16).
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2.1.1 Convergence rates
In order to state the convergence rate result for spectral source conditions, we need to
introduce a quasiordering on the set of index functions.

Definition 2.4. We say that an index function ϕ0 covers an index function ϕ if there
exists a constant c > 0 such that

c
ϕ0(α)

ϕ(α)
≤ inf

α≤t≤1

ϕ0(t)
ϕ(t)

∀α ∈ (0, 1].

If ϕ0 covers ϕ, we write ϕ < ϕ0.

Whether an index function covers another is only determined by their behavior
around zero; roughly speaking ϕ < ϕ0 means that ϕ0 decays faster to zero then ϕ.

Theorem 2.5 (convergence rate, see [MP03, Thm. 2]). Let f † fulfill (2.2) for some index
function ϕ, f0 ∈ X and w ∈ X such that ‖w‖ ≤ $. Assume that ϕ < id and set
Θ(t) :=

√
tϕ(t). Choose ᾱ by

ᾱ := Θ−1
(

δ

$

)
(2.4)

then there exists a constant c > 0 such that for f̂ᾱ the minimizer of the classical Tikhonov
functional the error estimate∥∥∥ f̂ᾱ − f †

∥∥∥ ≤ c$ϕ

(
Θ−1

(
δ

$

))
, ∀δ ∈ (0, $] (2.5)

holds true.

The proof is based on splitting the error in two different parts∥∥∥ f̂α − f †
∥∥∥ ≤ ∥∥∥ f̂α − fα

∥∥∥+ ∥∥∥ fα − f †
∥∥∥ (2.6)

where fα is the minimizer of Tg† ,α. The two error terms on the right hand side are
called propagated data noise error and approximation error (or bias in a statistical context)
respectively. For the propagated data noise error one has the estimate1∥∥∥ f̂α − fα

∥∥∥ ≤ c
δ√
α

(2.7a)

while the estimate of the approximation error is given by∥∥∥ fα − f †
∥∥∥ ≤ c$ϕ(α) (2.7b)

1Throughout this thesis c is a generic constant whose value might change from line to line. In general c
can depend on all quantities not made explicit.
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if the conditions of the theorem are met. The parameter choice rule then ensures
that the right hand sides of (2.7) are of equal order and so their sum approximately
minimize the total error.

If we specialize the theorem above to the index functions considered in (2.3) we
see that in the case of ϕ = ϕH

ν we have ϕH
ν < id if and only if ν ≤ 2. In the case of

ν ≤ 2 we see that a choice of α = (δ/ρ)2/(ν+1) implies the convergence rate∥∥∥ f̂ᾱ − f †
∥∥∥ ≤ c$

1
ν+1 δ

ν
ν+1

When ν > 2 the additional smoothness of the true solution cannot be used to improve
the convergence rate when using Tikhonov regularization (other regularization meth-
ods have to be used in this case, see Section 3.2). One might wonder whether faster
rates are possible for Tikhonov regularization which are attainable under different
conditions. However, the following shows that this only the case if f † = f0:

Proposition 2.6 (see [Neu97, Thm. 3.1]). Let ᾱ = α(δ, gobs) be a parameter choice rule
such that

sup
‖gobs−g†‖≤δ

∥∥∥ f̂α − f †
∥∥∥ = o

(
δ2/3

)
.

Then f † = f0.

We would like to give a small example (which we will refer to repeatedly in this
chapter) where Hölder type source conditions are fulfilled:

Example 2.7. Let T : `2(N) → `2(N) be given by (T f )n = 1
n fn. Let f † ∈ `2(N) be

given by f †
n = 1

n . Then for f0 = 0 a short calculation shows that

f † = (T∗T)ν/2w(ν), w(ν) ∈ `2(N) with w(ν)
n =

(
1
n

)1−ν

for ν ∈ (0, 1/2),

but not for ν = 1/2. Hence Theorem 2.5 shows that for a classical noise model and an
appropriate parameter choice rule ᾱ the convergence rate∥∥∥ f † − f̂ᾱ

∣∣∣ `2(N)
∥∥∥ ≤ c

∥∥∥w(ν)
∣∣∣ `2(N)

∥∥∥ 1
ν+1

δ
ν

ν+1

for the minimizer of the Tikhonov functional f̂ᾱ holds true. Note that ν
ν+1 < 1

3 for all

ν ∈ (0, 1/2) and ‖w(ν) | `2(N)‖
1

ν+1 → ∞ as ν→ 1/2.

For ϕ = ϕL
p we obtain that ϕL

p < id for all p > 0. Since Θ−1 does not have a nice
closed form expression we cannot simplify the parameter choice rule but can show
that ∥∥∥ f̂ᾱ − f †

∥∥∥ ≤ c$ϕp

(
δ

$

)
[1 + o(1)], as

δ

$
→ 0.
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One can actually prove that this rate is even achievable by the very simple parameter
choice rule α = δ/$ (see [Hoh00, Thm. 5]).

One of the natural questions that appear is whether all possible solutions f † fulfill
a spectral source condition. This question has been answered for injective operators,
first under the assumption that they are also compact in [MH08] and later for the
general case in [HMvW09].

Proposition 2.8. Let T be injective. Then for all f † ∈ X there exist an index function ϕ and
w ∈ X such that f † = ϕ(T∗T)w and ‖w‖ ≤ 2‖ f †‖.

Note that this does not contradict Proposition 2.1: while for each specific element
f † ∈ X we get a convergence rate, we cannot uniformly bound these rates on the
whole space X .

2.1.2 Lower bounds on rates

So far we have seen convergence rates for Tikhonov regularization under a-prior
parameter choice rules for linear operators. One might wonder whether the derived
convergence rates are optimal or better rates are possible under the same conditions
either for Tikhonov regularization or any other reconstruction method. In order to
compare different methods we define:

Definition 2.9. Let F : X → Y . Then for any (linear or nonlinear) mapping R : Y →
X the worst case error at noise level δ on the set K ⊂ X is defined as

DR(δ,K) := sup
{∥∥∥ f † − R(gobs)

∥∥∥ : f † ∈ K, gobs ∈ Y ,
∥∥∥F( f †)− gobs

∥∥∥ ≤ δ
}

.

We will say that a method R converges of optimal order on the set K if there exists
a constant c ≥ 1 such that DR(δ,K) ≤ c infR̃ DR̃(δ,K). In order to determine whether
a method is of optimal order, we hence need a universal lower bound for the worst
case error. This bound is given by the following:

Definition 2.10. Let F : X → Y be injective andK ⊂ X . Then the modulus of continuity
of (F|K)−1 is defined as

ω(δ,K) := sup{‖ f1 − f2‖ : f1, f2 ∈ K, ‖F( f1)− F( f2)‖ ≤ δ}.

Lemma 2.11 (compare [EHN96, Rem. 3.12]). The worst case error for any (linear or
nonlinear) reconstruction method R : Y → X satisfies the lower bound

DR(δ,K) ≥ 1
2

ω(2δ,K).



2.1. Spectral Source Conditions 33

Proof. Let f1, f2 ∈ K such that ‖F( f1)− F( f2)‖ ≤ 2δ, then setting gobs = 1
2 (F( f1)−

F( f2)) we get that ‖F( fi)− gobs‖ ≤ δ for i = 1, 2. Thus one obtains

1
2
‖ f1 − f2‖ ≤

1
2

(
‖ f1 − R(gobs)‖+ ‖ f2 − R(gobs)‖

)
≤ max

i∈{1,2}
‖ fi − R(gobs)‖ ≤ DR(δ,K),

and taking the supremum over the left hand side yields the claim.

It therefore remains to calculate lower bounds on suitable sets K for the modulus
of continuity. In the case of linear operators and spectral source conditions a suitable
source set is given by

K = Kϕ,$ := { f = ϕ(T∗T)w : ‖w‖ ≤ $}.

For Tikhonov regularization we know that on these sets the estimate

DTik(δ,Kϕ,$) ≤ c$ϕ

(
Θ−1

(
δ

$

))
holds true by Theorem 2.5.

Proposition 2.12 (lower bound, [MP03, Thm. 1]). Let ϕ be an index function and Θ be
defined as in Theorem 2.5.

(a) If Θ−1(δ/$) ∈ σ(T∗T), then

ω(δ,Kϕ,$) ≥ $ϕ

(
Θ−1

(
δ

$

))
.

(b) If Θ−1(δj/$) ∈ σ(T∗T) for j = 1, 2, then

ω

(√
(1− t)δ2

1 + tδ2
2 ,Kϕ,$

)2
≥ (1− t)$2 ϕ2

(
Θ−1

(
δ1

$

))
+ t$2 ϕ2

(
Θ−1

(
δ2

$

))
.

Furthermore it can be shown that if the gaps in the spectrum are bounded on a
logarithmic scale and ϕ is of type (2.3), then there exist a constant c > 1 such that the
estimate in Proposition 2.12(a) also holds true for Θ−1(δ/$) 6∈ σ(T∗T) if we multiply
the left hand side by c; hence Tikhonov regularization is always of optimal order in
this case.
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2.1.3 Parameter choice rules
The previous two sections have illustrated how to obtain order optimal convergence
rates for Tikhonov regularization under the assumption of a spectral source condi-
tion (2.2). Achieving this rate required the choice of the regularization parameter α
according to (2.4). In practice however it is usually unknown what type of source
condition the solution fulfills, i.e. ϕ and $ are unknown. Hence one would like to
have a criterion which selects the best solution f̂ j for a sequence of solutions to the
Tikhonov functional f̂ j := f̂αj . Here best solutions mean that the selection criterion
will lead to order optimal convergence rates. We will discuss two of these methods
here, the sequential discrepancy principle and the Lepskiı̆ principle which both operate on
the set of regularization parameters

αj = α0qj, j ∈ N (2.8)

for some sufficiently large α0 > 0 and q ∈ (0, 1). The idea is to evaluate after the
computation of f̂ j for j = 1, . . . , J which f̂ j is an order optimal solution with low
computational cost.

2.1.3.1 The sequential discrepancy principle

The discrepancy principle introduced by Morozov [Mor66] is based on the following
heuristic idea: if for the true solution f † solving T f † = g† we have that ‖g† −
gobs‖ ≤ δ, then it does not make sense to look for approximate solutions f̂α such that
‖T f̂α − gobs‖ � δ. As generally the residual decreases as α decreases one should
instead look for the largest α such that ‖T f̂α − gobs‖ ≈ δ.

For simplicity let f0 = 0, τ > 1 be a parameter and assume that the signal-to-noise
ratio fulfills ‖gobs‖/δ > τ. Then we choose the regularization parameter ᾱd by the
rule ∥∥∥T f̂ᾱd − gobs

∥∥∥ ≤ τδ ≤
∥∥∥T f̂ᾱd/q − gobs

∥∥∥, (2.9)

where ᾱd ∈ (αj)j∈N as defined in (2.8). By the functional calculus we get that∥∥∥T f̂α − gobs
∥∥∥ =

∥∥∥rα(TT∗)gobs
∥∥∥ for rα(λ) =

α

λ + α

which shows that the dependence of the residual on α is continuous and monotone.
As the limits of the residual are given by

lim
α→∞

∥∥∥T f̂α − gobs
∥∥∥2

=
∥∥∥gobs

∥∥∥2
> (τδ)2

and lim
α→0

∥∥∥T f̂α − gobs
∥∥∥2

= inf
f∈X

∥∥∥T f − gobs
∥∥∥2
≤ δ2 < (τδ)2
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we see that the sequential discrepancy principle is well defined if α0 is large enough.
Moreover note that one can directly check after the computation of each f̂ j whether
the criterion (2.9) is fulfilled by a simple evaluation of the forward operator; hence
the discrepancy principle is numerically cheap to compute.

Theorem 2.13 (see [AHM14]). Assume that f † fulfills (2.2) for some ϕ such that ϕ <
√
·

and ‖w‖ ≤ $. Let τ > 1 and choose ᾱd ∈ (αj)j∈N as defined in (2.8) according to (2.9).
Then there exists a constant c > 0 such that the estimate∥∥∥ f̂ᾱd − f †

∥∥∥ ≤ c$ϕ

(
Θ−1

(
δ

$

))
holds true for δ small enough.

A proof of this theorem for Hölder-type source conditions (2.3a) can also be found
in [EHN96, Thm. 4.17 and Rem. 4.18] and a version for logarithmic source conditions
in [Hoh00, Thm. 7]. There is an important difference between the previous theorem
and Theorem 2.5 if one considers Hölder-type source conditions with index function
ϕH

ν . The discrepancy principle yields order optimal rates only for ν ∈ (0, 1] since
otherwise the condition ϕH

ν <
√
· is violated. Indeed it can be shown that for Hölder-

type source conditions with ν > 1 order optimal rates for this parameter choice rule
are achieved only in very special cases, see [Gro84, Theorem 3.3.6].

Instead of using the sequential version presented above one can also solve the
equation G(t) = 0 where G(t) = ‖T f̂1/t − gobs‖2 − (τδ)2. One can show that this
function is two times differentiable and convex, therefore it is solvable via Newton’s
method and the iteration will converge globally. It can be formulated in a way such
that the only inverse operators appearing are of the form (T∗T + 1

t I)−1 which have
to be computed anyway. This is the original discrepancy principle, however the
sequential version described here can be generalized easier to more general Tikhonov
functionals, see [AHM14].

2.1.3.2 The Lepskĭı principle

The Lepskiı̆ principle builds onto the idea of splitting the error as in (2.6). It originates
from [Lep90] and was further developed in [MP03, BH05, Mat06]. Note that the
bound on the propagated data noise error (2.7a) is known a-priori and decreases in α
(respectively increases in j if we pick αj by (2.8)); we will denote it by Φnoi(j). The
approximation error (2.7b) on the other hand depends on the unknown smoothness
of f † and has a bound – denoted by Φapp(j) – that is increasing in α (respectively
decreasing in j). Hence we have an error decomposition of the form∥∥∥ f † − f̂ j

∥∥∥ ≤ Φnoi(j) + Φapp(j). (2.10)
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Ideally, after computing f̂1, . . . f̂ J for some J ∈ N, we would pick the index jor ∈
{1, . . . , J} as a parameter choice rule such that

jor ∈ arg min
j∈{1,...,J}

(
Φnoi(j) + Φapp(j)

)
.

As such a parameter choice rule requires knowledge of the unknown exact solution it
is called an oracle choice. Adopting the idea of balancing the two errors which lead to
(2.5) another idea would be to choose j∗ given by

j∗ := min
{

j ∈ {1, . . . , J} : Φnoi(j) ≥ Φapp(j)
}

but as the approximation error is unknown this rule is still not implementable. Even
though we know that for j ≥ j∗ the total error is bounded by 2Φnoi(j) which can be
used to define the parameter choice

j∗ := min
{

j ∈ {1, . . . , J} :
∥∥∥ f † − f̂k

∥∥∥ ≤ 2Φnoi(k), ∀j < k ≤ J
}

.

As for all k > j ≥ j∗ the inequality ‖ f̂ j − f̂k‖ ≤ 4Φnoi(k) holds true, we finally obtain
an implementable parameter choice rule

jLep :=
{

j ∈ {1, . . . , J} :
∥∥∥ f̂ j − f̂k

∥∥∥ ≤ 4Φnoi(k), ∀j < k ≤ J
}

(2.11)

which is the so called Lepskiı̆ principle.

Theorem 2.14 (see [Mat06]). Let f † fulfill (2.2) for some index function ϕ and w ∈ X
such that ‖w‖ ≤ $ and ϕ < id. Let αj for j = 1, . . . J be generated by (2.8) and let J be large
enough such that Φnoi(J) ≥ Φapp(J). Then jLep ≤ j∗ ≤ j∗ and with ᾱLep := α0qjLep the
estimate∥∥∥ f † − f̂ᾱLep

∥∥∥ ≤ 6
√

q
arg min
j∈{1,...,J}

(
Φnoi(j) + Φapp(j)

)
= O

(
$ϕ

(
Θ−1

(
δ

$

)))
holds true as δ→ 0.

The condition Φnoi(J) ≥ Φapp(J) guarantees that the choice of j∗ is well defined
which is needed throughout the analysis. For Tikhonov regularization it can be shown
that Φapp(j) ≤ 2‖ f †‖, and thus we have to choose J large enough such that

J ≥ min

j ∈ N :
δ√
α0qj

≥ 2‖ f †‖

.

It is evident that the main difference between the discrepancy principle and this
approach is that we cannot determine when to stop the computation of f̂ j on the
fly but have to compute a fixed number of iteration as detailed above. In return we
get order optimal convergence rates even for Hölder-type source conditions with
ν ∈ (1, 2].
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2.1.4 Nonlinear operators
If the operator F is nonlinear (2.2) is not well defined. Assuming that the operator is
Fréchet differentiable, we replace it by

f † − f0 = ϕ
(

F′[ f †]∗F′[ f †]
)

w (2.12)

where F′[ f †] is the Fréchet derivative of F at f † and F′[ f †]∗ its adjoint. This is,
however, not sufficient, and some nonlinearity conditions that control how well F′[ f †]
approximates F in a neighborhood of f † are required. Depending on the strength of
the source condition (2.12) different nonlinearity conditions have been employed.

For spectral source conditions with ϕ = ϕH
ν and ν ∈ [1, 2] it is assumed that the

derivative of the forward operator is Lipschitz continuous, i.e. that ‖F′[ f1]− F′[ f2]‖ ≤
L‖ f1 − f2‖ for all f1, f2 ∈ X . As many operators appearing in practical applications
are smooth this condition is not very restrictive. Furthermore the source condition
implies that there exists some w̃ ∈ X such that f † − f0 = F′[ f †]∗w̃ (also see the
Section 2.2 about range conditions). If the smallness assumption L‖w̃‖ < 1 is satisfied,
then one obtains the same rates as in Theorem 2.5, see [EKN89, Neu89].

But for weaker source conditions this is not sufficient and stronger nonlinearity
assumptions are necessary. Here two different concepts have been used:
• In [HNS95] the tangential cone condition∥∥F( f2)−

(
F( f1) + F′[ f1]( f2 − f1)

) ∣∣Y∥∥ ≤ η‖F( f1)− F( f2) | Y‖a‖ f1 − f2 | X ‖b

(2.13)
for all f1, f2 in a ball around f † with some a ∈ [0, 1], b ∈ [0, 2] and η > 0
usually assumed to be small was introduced. Then if either a = 1 and η < 1
or a ≥ 1 + ν(1 − a − b) > 0 and ϕ = ϕH

ν Theorem 2.5 remains valid even
for ν ∈ (0, 1], see [HS94, Tau97]. Lipschitz continuity of the derivative as
above implies a tangential cone condition with a = 0 and b = 2 however for
convergence rates it is needed that a ≈ 1. Hence this condition is much more
restrictive especially since for ill-posed problems ‖F( f1) − F( f2)‖ can decay
much faster then ‖ f1 − f2‖ if f1 → f2.

• Starting from [SEK93] the condition(
F′[ f1]− F′[ f2]

)
v = F′[ f2]ṽ(v, f1, f2) ‖ṽ‖ ≤ k0‖v‖‖ f1 − f2‖ ∀v ∈ X

(2.14)
for all f1, f2 in a ball around f † has been considered. Convergence rates as in
Theorem 2.5 under smallness assumptions of k0‖ f † − f0‖ for ϕ = ϕH

ν have been
derived in [JH99, TJ03] and for general source conditions in [MN07].

The two conditions were put in relation in [Kal08]. Assume that for f1, f2 close enough
to f † we have either

F′[ f1] = F′[ f2]Rr( f1, f2) ‖Rr( f1, f2)− I‖ ≤ Cr‖ f1 − f2‖β (2.15a)
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for some Cr > 0 and β ∈ [0, 1] or

F′[ f1] = Rl( f1, f2)F′[ f2] ‖Rl( f1, f2)− I‖ ≤ Cl‖ f1 − f2‖β (2.15b)

for the same range of parameters. Then on the one hand it can be shown that (2.15a)
with β = 1 is equivalent to (2.14). On the other hand (2.15b) with β > 0 implies (2.13)
with a = 1 and b = β. Indeed, since

F( f2)−
(

F( f1) + F′[ f1]( f2 − f1)
)
=
∫ 1

0
(Rl( f1 + t( f2 − f1), f1)− I)dt F′[ f1]( f2− f1),

we can estimate∥∥F( f2)−
(

F( f1) + F′[ f1]( f2 − f1)
)∥∥ ≤ CR

1 + β

∥∥F′[ f1]( f2 − f1)
∥∥‖ f1 − f2‖β.

The tangential cone condition in a small enough neighborhood then follows with
η = 2Cr/(1 + β) by estimating∥∥F′[ f1]( f2 − f1)

∥∥ ≤ ∥∥F( f2)−
(

F( f1) + F′[ f1]( f2 − f1)
)∥∥+ ‖F( f1)− F( f2)‖.

In summary, obtaining convergence rate by spectral source conditions for nonlin-
ear operators is still possible. Strong assumptions on the nonlinearity of F, however,
have to be imposed for weak source conditions that guarantee that F is reasonably
well approximated by F′ and that F′ does not change to rapidly. But these conditions
are very hard to verify and may even not be fulfilled, see e.g. [BH14].

2.2 Range Conditions

Coming back to linear operators T, we will now generalize two specific cases to a
Banach space setting. Consider the case that f † fulfills a Hölder type source condition
(2.3a) with ν = 1 or ν = 2, then using the fact that ran(T∗) = ran((T∗T)1/2) we can
write these two specific source conditions as

either ∃w̃ ∈ Y : f † = T∗w̃,

or ∃w ∈ X : f † = T∗Tw.

We know that for proper parameter choice rules these conditions lead to conver-
gence rates for ∆ 1

2 ‖·‖2( f̂α, f †) = 1
2‖ f̂α − f †‖2 of O(δ) and O(δ4/3) respectively. Note

that this formulation of the two conditions does not require the functional calculus,
hence one might hope for a generalization. The aim of this section is to provide
such a generalization that yield similar rates in the non-Hilbert space setting when
S(g, gobs) = 1

q‖g− gobs‖q for some q > 1.



2.2. Range Conditions 39

If we explicitly state the dependence on α in (1.5P) and take the limit of α→ 0 for
true data g† we obtain the minimization problem

f̂0 ∈ arg min
T f=g†

R( f ). (2.16)

which by our assumptions on R (see Assumption 1.4) has the unique solution f †.
Requiring that strong duality (i.e. one of the points of Theorem 1.9(c)) holds true for
this problem we obtain the extremal relation

f † ∈ ∂R∗(T∗ p̂). (2.17)

Interpreting this equation as a source condition was first done in [BO04] and the
following result has been achieved:

Theorem 2.15. Let f † fulfill the source condition (2.17) then there exists a c > 0 such that
the estimate

∆T∗ p̂
R

(
f̂α, f †

)
≤ c
(

αq′−1 +
δq

α

)
holds true. In particular for α ∼ δq−1 the convergence rate

∆T∗ p̂
R

(
f̂α, f †

)
= O(δ), as δ→ 0

is obtained.

Note that for the Hilbert space case and classical Tikhonov regularization (2.17) is
equivalent to f † = T∗ p̂ and therefore to the Hölder source condition with index ν = 1.
As ∆ 1

2 ‖·‖2( f1, f2) =
1
2‖ f1 − f2‖2 we obtain the same rate as expected by Theorem 2.5.

To motivate the stronger source condition assume that Y and Y∗ are uniformly
convex and uniformly smooth. We then replace in (2.16) the equality constraint
T f = g† by a minimization property to obtain the problem

f̂0 ∈ arg min
f∈arg min f̃∈X

1
q ‖T f̃−g†‖q

R( f ). (2.18)

where again f̂0 = f † by assumption. Expressing the minimization property by the
first order optimality conditions and using single valuedness for the duality mapping
we can conclude that

f ∈ arg min
f̃∈X

1
q
‖T f̃ − g†‖q ⇐⇒ jY ,q(T f − g†) ∈ ker(T∗)

⇐⇒ T f ∈ g† + jY∗ ,q′(ker(T∗))
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after applying the likewise single valued operator (jY ,q)
−1 = jY∗ ,q′ on both sides.

Note that jY∗ ,q′(ker(T∗)) = jY∗(ker(T∗)) as the two duality maps only differ by
different scaling and that this set is a closed subspace of Y . Indeed jY∗(ker(T∗)) is
symmetric, homogeneous and convex as the set of solutions to a convex optimization
problem. Hence if we require strong duality to hold for the problem (2.18) we obtain
as extremal relations

f † ∈ ∂R∗(T∗ p̂), p̂ ∈ (jY∗(ker(T∗)))0,

where for a set K ⊂ X we denote by K0 ⊂ X ′ the set K0 := { f ∗ ∈ X ′ : 〈 f ∗, f 〉 =
0 for all f ∈ K}. It holds that (jY∗(ker(T∗)))0 = jY∗((ker(T∗))0) if Y is a Hilbert
space; assuming that the same relation holds true in a Banach space2 we get that
p̂ ∈ jY∗(ran T). Requiring that even p̂ ∈ jY∗(ran T) is fulfilled, see [Res05, Sec. 2] for
further motivation, one obtains

f † ∈ ∂R∗(T∗ jYTw), (2.19)

which will again be regarded as a source condition.

Theorem 2.16 (see [NHH+10, Thm. 3.3]). Let f † fulfill (2.19) and assume that Y is q-
smooth. Further let there exist r > 1 and cr, ρr > 0 such that ∆R( f , f †) ≤ cr‖ f − f † | X ‖r

for all f with ‖ f − f †‖ ≤ ρr. Then for the parameter choice rule

ᾱ ∼ δ
(q−1)q
r+q−1

the convergence rate

∆R( f̂ᾱ, f †) = O
(

δ
rq

r+q−1
)

holds true.

For the classical Hilbert space setting we obviously have r = q = 2 and thus regain
the expected convergence rate of δ

4
3 in Bregman distance. With suitable nonlinearity

conditions on F as well as replacing T with F′[ f †] in (2.17) and (2.19) the results of
this section can be carried over to nonlinear operators, see [RS06, NHH+10].

2.3 Rates by Stability Estimates

Convergence rates for Tikhonov regularization can also be obtained by conditional
stability estimates without any further assumptions which restrict the nonlinearity
of the operator F. Conditional stability estimates are of interest e.g. in parameter

2This is at least true if either Y = `p and ker(T∗) = span{en}n∈I for some index set I or Y = Lp and
ker(T∗) = {g : supp(g) ⊂ C} for some set C.
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identification problems and proven for a lot of different applications, see e.g. [Isa06]
as well as the references in Chapters 5 and 6. They have the form

‖ f1 − f2 | X ‖ ≤ R($)Ψ(‖F( f1)− F( f2) | Y‖) ∀ f1, f2 ∈ dom(F) ∩ BZ$ , (2.20)

here R : [0, ∞)→ [0, ∞) is a monotonically increasing function, Ψ is a concave index
function and BZ$ is the set of all f ∈ Z with ‖ f | Z‖ ≤ $ where Z ⊂ X is a dense,
continuously embedded subspace.

Assuming that the true solution f † satisfies f † ∈ Z , Tikhonov regularization with
the functional given by

Tgδ ,α( f ) :=
1
2
‖T f − gδ | Y‖2 +

α

q
‖ f | Z‖q (2.21)

for 1 < q < ∞ can be used to ensure that the minimizer f̂α belongs to Z as well. With
a proper parameter choice rule, we can obtain the following convergence rate result,
see [CY00, Thm. 2.1] and [HY10, Prop. 6.9].

Theorem 2.17. Suppose the conditional stability estimate (2.20) holds true and that f † ∈
dom(F) ∩ Z . Let f̂α be the minimizer of the Tikhonov functional (2.21) where α is chosen
such that there exist two constants 0 < c ≤ c < ∞ and cδ2 ≤ α ≤ cδ2. Then there exists a
constant c > 0 such that ∥∥∥ f̂α − f †

∣∣∣X ∥∥∥ ≤ cΨ(δ) as δ→ 0.

The main idea of the proof is to find a $ that is large enough to ensure that
f̂α, f † ∈ BZ$ and then apply the stability estimate.

One important difference to classical Tikhonov regularization is that the parameter
choice rule violates the conditions of Theorem 1.8. Hence we cannot guarantee that
f̂α → f † in Z for the given parameter choice rule.

In order to get a feeling on how this approach compares to spectral source condi-
tions, we return to Example 2.7.

Example 2.18. For s ∈ R define `2
s (N) as the set of sequences for which the norm

‖ f | `2
s‖ :=

(
∑

n∈N
|ns fn|2

) 1
2

is finite. Then for f † and T as in Example 2.7 we obtain that f † ∈ `2
s (N) for s < 1/2.

Results for two different stability estimate will be discussed here:
(a) For X = Y = `2(N) and with Z = `2

s (N) for some s ∈ (0, 1/2) the stability
estimate ∥∥∥ f

∣∣∣ `2(N)
∥∥∥ ≤ c$

1
s+1

∥∥∥T f
∣∣∣ `2(N)

∥∥∥ s
s+1



42 2. Convergence Rates Theory

holds true and the exponents in this inequality are optimal. Thus Theorem
2.17 implies the same rate as we obtained in Example 2.7. Note, however, that
we need to know the smoothness of f † (that is the fact that f † ∈ `2

s (N) = Z)
in advance, while the rate in Example 2.7 can be achieved with a-posteriori
parameter choice rules without knowing the specific spectral source condition.

(b) Besides the previous stability estimate, T is also Lipschitz stable, namely∥∥∥ f
∣∣∣ `2
−1(N)

∥∥∥ =
∥∥∥T f

∣∣∣ `2(N)
∥∥∥ ∀ f ∈ `2(N).

So by changing the functional setting to X = `2
−1(N) and Z = `2(N) we obtain

a convergence rate of∥∥∥ f̂α − f †
∣∣∣ `2
−1(N)

∥∥∥ ≤ cδ as δ→ 0

which is the rate of a well-posed problem and therefore faster than the rate
obtainable by classical Tikhonov regularization with an ill-posed operator. It
is, however, obtained in a weaker norm and we do not know whether f̂α → f †

with respect to `2(N). Note that the knowledge f † ∈ `2
s (N) for 0 < s < 1/2 is

not used in this result.

To summarize the results so far: From the first estimate we could get the con-
vergence rates as before but we would need to know the exact smoothness of f † in
advance which is unrealistic in practical applications. From the second estimate we
achieve a faster rate but this rate is obtained in a weak norm and we cannot use the full
smoothness of our true solution. These shortcomings have recently been addressed in
[EH18]. They assume that the involved spaces are part of a so called Hilbert scale (for
the usage of Hilbert scales in regularization theory see e.g. [Nat84, Neu92]): given a
Hilbert space X and a compact operator L : X → X we define Xt for t ∈ R as the
set of all elements such that ‖ f | Xt‖ := ‖L−t f | X ‖ is finite. An example of a Hilbert
scale was already given in Example 2.18, further examples are L2-Sobolev spaces on
Td.

Theorem 2.19 (see [EH18, Thm. 2.1]). Let (Xt)t∈R be a Hilbert scale and assume that
(2.20) holds true with X = X−a and Z = Xb and Ψ(δ) = δγ with −a ≤ b, a ≥ 0 and
0 < γ ≤ 1. Assume that f † ∈ dom(F)∩Xs for b ≤ s ≤ 2b + a and let f̂α be the minimizer
of the Tikhonov functional (2.21), then there exists a constant c > 0 depending on ‖ f † | Xs‖
such that ∥∥∥ f̂α − f †

∣∣∣Xr

∥∥∥ ≤ cδγ s−r
s+a as δ→ 0 for all − a ≤ r ≤ b

holds true for the parameter choice α = δ2−2γ s−b
s+a .

The same rates can be obtained via an a-posteriori parameter choice rule based on
the discrepancy principle. The advantage of this result compared to Theorem 2.17 is
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that smoothness of the exact solution has to be known only roughly. Coming back to
Example 2.18(b) we see that we recover again the rate∥∥∥ f̂α − f †

∣∣∣ `2(N)
∥∥∥ ≤ cδ

s
s+1 for s ∈ (0, 1/2)

with c depending on s which is not surprising as the parameter choice rule coincides
with the rule of Theorem 2.5. It was however derived quite differently. Especially if
the operator would have been nonlinear, none of the conditions discussed in Section
2.1.4 would have been needed. We will sketch the proof of a similar result in Section
2.4.3.3 with the help of variational source conditions and in Section 6.3.1 extend it to a
scale of Besov spaces.

2.4 Variational Source Conditions

Up to now we have seen several different approaches to achieve convergence rates
for Tikhonov regularization:

(a) In Section 2.1 we have seen how to obtain rates for classical Tikhonov regu-
larization via spectral source conditions. However, this theory builds heavily
on functional calculus, hence generalizing these results in a form such that we
get rates for the general Tikhonov functional (1.3) seems impossible. Already
turning to nonlinear problems as discussed in Section 2.1.4 turns out to be quite
difficult as the forward operator F does not only have to be differentiable but
also needs to fulfill nonlinearity conditions which often are very hard to verify
or may not even hold true.

(b) Section 2.2 provided a way to prove rates in the more general setting. However,
the scale of rates which can be obtained is rather limited. The conditions (2.17)
and (2.19) allow to recover the rates for spectral source conditions with Hölder-
type source function ϕH

ν for ν = 1 and ν = 2 respectively. But Example 2.3 has
shown that these are rather special cases even in a Hilbert space setting, and
might not have a meaningful interpretation.

(c) We obtained a large set of convergence rates in Section 2.3 by deriving them
from stability estimates which are often quite well known for inverse problems.
While the nonlinearity of the operator was not restricted, the main problem
was that in general the smoothness of the solution needed to be known at least
roughly a priori.

A key step to overcome the shortcomings of these ansatzes have been provided in
[HKPS07]: Here a condition of the form〈

f ∗, f − f †
〉
≤ β1∆ f ∗

R ( f , f †) + β2

∥∥∥F( f )− F( f †)
∥∥∥
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has been used where f ∗ ∈ ∂R( f †) with some parameters β1 ∈ (0, 1), β2 ∈ [0, ∞). If
S(g1, g2) =

1
q‖g1 − g2‖q for some q > 1 this lead to the convergence rate

∆ f ∗

R ( f̂α, f †) = O(δ)

for the parameter choice α = δq−1. This idea has been further developed in a series
of papers [BH10, Fle10, Gra10] leading to the following: We say that f † fulfills a
variational source condition (for short: VSC) for a loss function E , and a concave index
function ψ if

∀ f ∈ D : E( f , f †) ≤ R( f )−R( f †) + ψ
(
Tg†(F( f ))

)
. (2.22)

As with spectral source conditions the difficulty lies in the interpretation of the
condition which is the main subject of this thesis. In the following we will first
present the corresponding convergence rates result before providing a strategy to
verify variational source conditions which will be an important tool later on. This
strategy is also one of the main tools to relate variational source conditions to the
previous convergence rates results.

2.4.1 Convergence rates
This assumption now allows to easily derive convergence rates.

Theorem 2.20 (convergence rates under VSC, see [WH12, Thm. 3.3]). Assume that
f † fulfills (2.22) for a nonnegative loss function E and extend ψ to a function on R by
ψ(t) = −∞ for t < 0. Let f̂α be a minimizer of the Tikhonov functional (1.3)

(a) Then f̂α fulfills the error estimate

E( f̂α, f †) ≤
err
(

F( f̂α)
)

α
+ (−ψ)∗

(
− 1

Cerrα

)
. (2.23a)

Further the following rate is obtained in the image space

Tg†

(
F( f̂α)

)
≤ 2Cerr err

(
F( f̂α)

)
+ 2Cerrα(−ψ)∗

(
− 1

2Cerrα

)
. (2.23b)

(b) If there exists err such that err ≥ err(F( f̂α)), then the infimum of the right hand side
of (2.23a) with err(F( f̂α)) replaced by err is attained at α = ᾱ if and only if

− 1
Cerrᾱ

∈ ∂(−ψ)(Cerr err). (2.24a)

For this choice of the regularization parameter one obtains the convergence rate

E( f̂ᾱ, f †) ≤ Cerrψ(err). (2.24b)
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Proof. (a) Since f † fulfills (2.22) we have the estimate

E( f̂α, f †) ≤ R( f̂α)−R( f †) + ψ
(
Tg†(F( f̂α))

)
.

For convinience abbreviate T := Tg†(F( f̂α)). As f̂α is a minimizer of the
Tikhonov functional we obtain together with the definition of the noise level
that

E( f̂α, f †) ≤ 1
α

[
S
(

g†, gobs
)
− S

(
F( f̂α), gobs

)]
+ ψ(T )

≤ 1
α

[
err
(

F( f̂α)
)
− 1

Cerr
T
]
+ ψ(T )

≤ 1
α

err
(

F( f̂α)
)
− λ

Cerrα
T +

[
−1− λ

Cerrα
T + ψ(T )

]
for all λ ∈ [0, 1). Replacing T = Tg†(F( f̂α)) inside the square bracket by τ and
taking the supremum over all τ ≥ 0 this yields

E( f̂α, f †) ≤
err
(

F( f̂α

)
α

− λ

Cerrα
Tg†

(
F( f̂α)

)
+ sup

τ≥0

[
− (1− λ)τ

Cerrα
− (−ψ)(τ)

]

=
err
(

F( f̂α)
)

α
− λ

Cerrα
Tg†

(
F( f̂α)

)
+ (−ψ)∗

(
−1− λ

Cerrα

)
.

For λ = 0 this gives (2.23a), if λ = 1/2 we get (2.23b) by nonnegativity of the
loss function and rearranging terms.

(b) Note that the condition on ψ and its extension imply that

(−ψ)∗(t) = ∞, ∀t > 0, and (−ψ)∗∗ = −ψ.

Hence replacing err(F( f̂α)) by err we obtain that

inf
α>0

[
err
α

+ (−ψ)∗
(
− 1

Cerrα

)]
= − sup

τ∗≤0
[Cerr err τ∗ − (−ψ)∗(τ∗)]

= −(−ψ)∗∗(Cerr err) = ψ(Cerr err).

The condition (2.24a) for equality follows from Young’s inequality A.14. As ψ is
concave and ψ(0) = 0 we can further estimate ψ(Cerr err) ≤ Cerrψ(err) since
Cerr ≥ 1 to get (2.24b).

Remark 2.21. Let there exist err such that err ≥ err(F( f̂α)). Then in order to get
convergence rates one does not necessarily need the VSC (2.22) for all f ∈ D, instead
any of the following is sufficent:
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(a) If one can characterize the set { f̂α : f̂α is a minimizer of Tgobs,α} in advance, then
it is enough that (2.22) is fulfilled on this set.

(b) Assume that E( f , f †) = β∆ f ∗

R ( f , f †) for some β > 0. Then it is sufficent if
(2.22) is satisfied for all f ∈ B∆

ρ ( f †) := { f ∈ X : ∆R( f , f †) ≤ ρ} for any ρ > 0,
since by Theorem 1.8 we know that if err → 0 we will get eventually that
∆R( f̂α, f †) ≤ ρ and afterwards we can proceed as above.

For the two most common index function introduced in (2.3) the functions gov-
erning the convergence rate in (2.23a) are given by

ψ(t) = tν/2 =⇒ (−ψ)∗
(
−1

t

)
= cνt

ν
2−ν (2.25a)

for Hölder type functions with ν ∈ (0, 2) and for logarithmic functions the limiting
behavior

ψ(t) = (− log(t))−p(1 + o(1)), as t→ 0

=⇒ (−ψ)∗
(
−1

t

)
= (− log(t))−p(1 + o(1)), as t→ 0,

(2.25b)

holds true, see [Fle11].

2.4.2 A meta-theorem to prove variational source conditions with
Bregman loss

If the loss function is given by a multiple of the Bregman distance, that is E( f , f †) =

β∆ f ∗

R ( f , f †) and the constant β satisfies β ∈ (0, 1) we can rewrite the variational
source condition into the following form:

∀ f ∈ D : 〈 f ∗, f † − f 〉 ≤ (1− β)∆ f ∗

R ( f , f †) + ψ
(
Tg†(F( f ))

)
.

Note that by Theorem 2.20 the constant β does only play a minor role; it influences
the constant in front of the convergence rate O(ψ(err)), but not the limiting behavior
which is only determined by ψ. Further a VSC with constant β implies a VSC with
constant β̃ ∈ (0, β) for the same function ψ. Therefore we will focus on verifying
variational source conditions with β = 1/4 in the form above, that is inequalities of
the form

∀ f ∈ D : 〈 f ∗, f † − f 〉 ≤ 3
4

∆ f ∗

R ( f , f †) + ψ
(
Tg†(F( f ))

)
. (2.26)

In principle our strategy presented below could be used to show that a VSC for any
β ∈ (0, 1) is fulfilled, but we choose β = 1/4 for consistency with Section 2.4.4.3. A
main ingredient of our strategy will be the following assumption.
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Assumption 2.22. There exist constants C∆ > 0 and r > 1 such that

C∆‖ f1 − f2 | X ‖r ≤ ∆ f ∗

R ( f2, f1) for all f1, f2 ∈ D.

Example 2.23. The following provides a list of examples where Assumption 2.22 is
fulfilled:

(a) Let X be a Hilbert space, then choosingR( f ) = 1
2‖ f − f0 | X ‖2 for some f0 ∈ X

one obtains that
∆ f ∗

R ( f1, f2) =
1
2
‖ f1 − f2 | X ‖2.

(b) Let X be a Banach space which is r-convex, see Definition B.1. Then there exists
a constant CX depending only on r such that

CX
r
‖ f1 − f2 | X ‖r ≤ ∆ f ∗

R ( f2, f1), forR(·) = 1
r
‖· | X ‖r (2.27)

see [XR91] (or more explicitly [BKM+08, Lemma 2.7]) and hence Assumption
2.22 is again fulfilled. For estimates with different norm powers see [Spr18,
Cor. 4.5].

(c) Let X = L1(Ω) andR be the Kullback-Leibler divergence given by

R( f ) := KL( f , f0) :=
∫

Ω
f0 − f + f ln

(
f
f0

)
dx.

Then the corresponding Bregman distance is given by

∆ f ∗

R ( f2, f1) = KL( f2, f1).

If f1 and f2 are probability density functions, then the Kullback-Leibler diver-
gence fulfills the estimate∥∥∥ f1 − f2

∣∣∣ L1
∥∥∥2
≤ 2KL( f2, f1),

see [BL91, Lemma 2.2], showing that Assumption 2.22 is met with r = 2 and
C∆ = 1

2 . A similar estimate for positive, uniformly bounded functions with
X = L2(Ω) is proven by the same authors.

(d) An example where Assumption 2.22 is not fulfilled is given by X = `1(N) and
R( f ) = ‖ f | `1‖. In this case

∆ f ∗

R ( f2, f1) = ∑
n∈N

∣∣∣ f (n)2

∣∣∣− ∣∣∣ f (n)1

∣∣∣− sgn( f (n)1 )
(

f (n)2 − f (n)1

)
= ∑

n∈N

(
sgn( f (n)2 )− sgn( f (n)1 )

)
f (n)2

and thus if sgn( f (n)1 ) = sgn( f (n)2 ) for all n ∈ Nwe have ∆ f ∗

R ( f2, f1) = 0 which
cannot be bounded from below in the desired form for f1 6= f2.



48 2. Convergence Rates Theory

Our main tool for the derivation of variational source conditions will be the
following generalization of [HW17a, Thm. 2.1] and [WSH18, Thm. 3.3]:

Theorem 2.24. Let X and Y be Banach spaces andR a penalty term such that Assumption
2.22 is fulfilled. Let f † ∈ D and f ∗ ∈ ∂R( f †). Suppose that there exists a family of operators
Pj : X ∗ → X ∗ for j ∈ J an index set such that for some functions κ, σ, γ : J → [0, ∞), a
constant ϑ ∈ (0, r) and some index functions φ, φ̃ such that φ and φ̃r/(r−ϑ) are concave the
following holds true for all j ∈ J:∥∥(I − Pj) f ∗

∣∣X ∗∥∥ ≤ κ(j), (2.28a)

inf
j∈J

κ(j) = 0, (2.28b)

and

〈
Pj f ∗, f † − f

〉
≤ σ(j)φ(T ) + γ(j)

∥∥∥ f † − f
∣∣∣X ∥∥∥ϑ

φ̃(T )

for all f ∈ D with
∥∥∥ f † − f

∣∣∣X ∥∥∥ ≤ ( 4
3C∆
‖ f ∗ | X ∗‖

) r′
r

.
(2.28c)

with T := Tg†(F( f )). Then f † fulfills a variational source condition (2.26) with the concave
index function ψvsc(t) := ψ(t) where

ψ(t) := inf
j∈J

σ(j)φ(t) +
1
r′

(
8

3rC∆

) r′
r

κ(j)r′ +
r− ϑ

r

(
8

3rC∆

) 1
r−ϑ

(γ(j)φ̃(t))
r

r−ϑ

.

(2.29)

Condition (2.28a) describes the smoothness of the solution (actually rather the
smoothness of the subdifferential, but in the examples considered later one of the
two uniquely determines the other, see Section 4.2), whereas (2.28c) describes the local
degree of ill-posedness of the problem. Of course the two are not independent of each
other: given estimates of the form 2.28 any reparametrization of the set J provides
new estimate with different functions κ, σ and γ.

Example 2.25. We now justify these interpretations.
(a) Consider the case that X ,Y are Hilbert spaces and T is an injective, compact

operator with the singular system ( fk, gk, σk)k∈N. Set Pj f = ∑{k : σ2
k≥j}〈 f , fk〉 fk

for J = (0, ∞). As f ∗ = f †, we obtain that (2.28a) holds true with

∥∥∥(I − Pj) f †
∣∣∣X ∥∥∥ =

 ∑
{k : σ2

k <j}
|〈 f †, fk〉|2

1/2

=: κ(j),

i.e. κ measures the decay rate of the coefficients of f † in the system ( fk)k∈N.
When fk are trigonometric polynomials this measures classical smoothness.
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We get an inequality of the form (2.28c) by

〈Pj f †, f † − f 〉 = 〈(T∗)−1Pj f †, T( f † − f )〉 ≤
∥∥∥(T∗)−1Pj f †

∣∣∣Y∥∥∥∥∥∥T( f † − f )
∣∣∣Y∥∥∥

with σ(j) := ‖(T∗)−1Pj f † | X ‖, φ(t) = t1/2 and γ ≡ 0. Note that

σ(j) =

 ∑
{k : σ2

k≥j}

1
σ2

k
|〈 f †, fk〉|2

1/2

≤
∥∥ f †

∣∣X ∥∥
min{σk : σ2

k ≥ j}
,

i.e. σ measures the decay rate of the singular values of T relative to the decay
rate of the coefficients of f † in the singular system; therefore it measure the local
degree of ill-posedness. In contrast the upper bound only depends on the norm
of f † and the decay of the singular values, thus it measures the global degree of
ill-posedness, further possible definitions of this term are discussed in [HK10].

(b) In [HS94] the following construction is used to define the local degree of ill-
posedness for nonlinear operators F acting between Hilbert spaces: Denote by
Gρ( f †) the set of all compact operators G : X → Y such that

F( fk)→ F( f †) implies G fk → G f † (2.30a)

for any sequence ( fn)n∈N ⊂ Bρ( f †) := { f ∈ X : ‖ f − f † | X ‖ ≤ ρ}. Choose
from this class the operator Ĝ with the smallest nullspace (to avoid G ≡ 0)
and the slowest decay of singular values. Then the decay rate of the singular
values of Ĝ is the local degree of ill-posedness of the operator.3 A condition that
guarantees that G ∈ Gr( f †) is∥∥∥G( f − f †)

∣∣∣Y∥∥∥ ≤ c
∥∥∥F( f )− F( f †)

∣∣∣Y∥∥∥β
for all f ∈ Bρ( f †) (2.30b)

for some c > 0 and β > 0. If such an estimate holds true for Ĝ and β ∈ (0, 2)
then we can proceed as in the first part of the example (at least in a small
enough neighborhood, see Remark 2.21) with Ĝ instead of T and obtain σ(j)
as above with the singular values of Ĝ replacing those of T; however, we will
get φ(t) = tβ/2. Thus our definition of the local degree of ill-posedness extends
[HS94].
This definition of local degree of ill-posedness is also connected to the non-
linearity conditions studied earlier. If (2.13) is fulfilled for some a > 0 then
F′[ f †] ∈ Gρ( f †) for ρ small enough, if even a = 1 then Ĝ = F′[ f †] and (2.30b)
is fulfilled with β = 1 (see [HS94, Cor. 2 and Prop. 6]). Hence we can conclude
that the nonlinearity of F is already included into our condition.

3The more precise definition only makes sense in case of polynomial decay of the singular values, as for
exponential decay we would get an ill-posedness of ∞.
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(c) The notion local degree of ill-posedness was for noncompact, linear operators
acting between Hilbert spaces also defined in [HK10, Sec. 4]. We will discuss
the compatibleness of this definition with ours after Lemma 2.29.

Before proving the theorem we first show that a function defined of the form (2.29)
always gives rise to a concave index function.

Lemma 2.26. Let J be an index set, κ̂ : J → [0, ∞) be a function such that infj∈J κ̂(j) = 0
and (φ̂j)j∈J be a set of concave index function. Then

ψ(t) = inf
j∈J

[
φ̂j(t) + κ̂(j)

]
is a concave index function.

Proof. Since ψ is defined as an infimum over concave monotonically increasing
functions, ψ is itself a concave monotonically increasing function. As φ̂j is continuous
for all j ∈ J, ψ is upper semicontinuous and hence continuous on (0, ∞) (see Lemma
A.3). Furthermore infj∈J κ̂(j) = 0 ensures that ψ(0) = 0. As we have ψ(t) ≥ 0 for all t
we get that

0 ≤ lim inf
t→0

ψ(t) ≤ lim sup
t→0

ψ(t) ≤ ψ(0) = 0.

This shows that ψ is continuous at t = 0 and therefore indeed a concave index
function.

Proof of Theorem 2.24: First assume that

∥∥∥ f † − f
∣∣∣X ∥∥∥ ≥ ( 4

3C∆
‖ f ∗ | X ∗‖

)r′/r

or equivalently that ‖ f ∗ | X ∗‖ ≤ 3C∆
4 ‖ f † − f | X ‖r−1. Then

〈
f ∗, f † − f

〉
≤ ‖ f ∗ | X ∗‖‖ f † − f | X ‖ ≤ 3C∆

4
‖ f † − f | X ‖r ≤ 3

4
∆R( f , f †),

that is the variational source condition holds true even with ψ ≡ 0.
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Otherwise using (2.28a), (2.28c) and Young’s inequality we get for each j ∈ J that〈
f ∗, f † − f

〉
=
〈

Pj f ∗, f † − f
〉
+
〈
(I − Pj) f ∗, f † − f

〉
≤ σ(j)φ

(
Tg†(F( f ))

)
+ γ(j)

∥∥∥ f † − f
∣∣∣X ∥∥∥ϑ

φ̃
(
Tg†(F( f ))

)
+ κ(j)

∥∥∥ f † − f
∣∣∣X ∥∥∥

≤ 3C∆

4

∥∥∥ f † − f
∣∣∣X ∥∥∥r

+ σ(j)φ
(
Tg†(F( f ))

)
+

1
r′

(
8

3rC∆

)r′/r
κ(j)r′

+
r− ϑ

r

(
8

3rC∆

) 1
r−ϑ (

γ(j)φ̃
(
Tg†(F( f ))

)) r
r−ϑ

≤ 3
4

∆R( f , f †) + σ(j)φ
(
Tg†(F( f ))

)
+

1
r′

(
8

3rC∆

)r′/r
κ(j)r′

+
r− ϑ

r

(
8

3rC∆

) r
r−ϑ (

γ(j)φ̃
(
Tg†(F( f ))

)) r
r−ϑ .

Taking the infimum over the right hand side with respect to j ∈ J yields (2.29) with
t = Tg†(F( f )). Setting

φ̂j(t) := σ(j)φ(t) +
r− ϑ

r

(
8

3rC∆

) r
r−ϑ

(γ(j)φ̃(t))
r

r−ϑ

we see that φ̂j is a concave index function for all j ∈ J, thus the claim follows by
Lemma 2.26 with κ̂(j) = cκ(j)r′ for c as above.

For linear operators one can often choose γ ≡ 0, φ(t) = t1/2 and the additional
restriction that one needs (2.28c) only if ‖ f † − f | X ‖ is small is not necessary as
already seen in the specific example. For some nonlinear operators however the more
general case turns out to be useful, see e.g. [HW15, HW17b] as well as Chapter 5 and
6.

Remark 2.27. Besides using E( f , f †) = β∆ f ∗

R ( f , f †) with β ∈ (0, 1) and f ∗ ∈ ∂R( f †)
two different choices of error functionals E are commonly used in the literature:

(a) Starting with [Kin16] the so called skewed Bregman distance

E( f , f †) = ∆ f∗
R( f †, f ) with f∗ ∈ ∂R( f )

gained some attention. In this case convergence rates can (in a different manner
than above) be derived in the case that the VSC holds true with E( f , f †) in (2.22)
replaced by β∆ f∗

R( f †, f ) for some β ≥ 0. A further advantage of this condition
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is that converse results are available, see [Fle17]. As a VSC of this form can
equivalently be written as

〈β f∗ + (1 + β) f ∗, f † − f 〉 ≤ (1 + β)∆ f ∗

R ( f , f †) + ψ
(
Tg†(F( f ))

)
,

we can use Theorem 2.24 with some small modifications to verify VSCs with
this loss function. For β = 0 it can be proven as before and for β > 0 additional
information on f∗ is needed. As we need the VSC only on minimizers of
Tikhonov functionals (see Remark 2.21) these information can be obtained from
the first order optimality conditions. If for example X = Y = L2(Td) for the
classical Tikhonov functional and T = T∗ is such that ran(T) = Ha(Td), then
f∗ = (T∗T + αI)−1T∗gobs ∈ Ha for all possible data gobs and thus the rate of
decay of κ depends on whether f ∗ or f∗ is less smooth.

(b) In case X = `1 and R(·) := ‖· | `1‖ the corresponding Bregman distance is
not very informative, as seen in Example 2.23. However, the choice E( f , f †) =
‖ f − f † | `1‖was successfully used in a series of papers, see [FG18] and reference
therein.

Further strategies or explicit verifications for VSCs are given in the following:

Remark 2.28. Besides our results the following verifications of VSCs are known:

• For a phase retrieval and an option pricing problem VSCs with ψ(t) =
√

t were
derived in [HKPS07].

• Spectral source conditions, range conditions and stability estiamates all imply
that VSCs hold true, see Section 2.4.3 for details. However, then the VSC does
not yield additional information.

• In case X = `1 , R(·) := ‖· | `1‖, E( f , f †) = ‖ f − f † | `1‖ and linear forward
operator convergence are often derived based on sparsity (i.e. the true solution
has only many nonzero coefficients) assumptions, see e.g. [LT08, GHS08]. An
analysis where the sparsity assumption is violated was developed in a series
of papers starting with [BFH13] and leading to [FG18]. For an analysis in the
spirit of the setup presented here that extends to the nonlinear case see [HM18].
Furthermore, the results have been extended to elastic net regularization in
[CHZ17].

• Based on a sparsity assumption a VSC was verified for the autoconvolution
problem in [BFH16].

The choice of operators in Example 2.25(a) extends to linear operator acting
between Hilbert spaces in general by setting J = (0, ∞) and Pj := I − Ej where
Ej := Ej(T) denotes the spectral family of T∗T; that is

Ej(T) f = 1[0,j)(T
∗T) f . (2.31)
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For this choice of the operator family the notions of smoothness and local ill-posedness
are often equivalent.

Lemma 2.29. Let X and Y be Hilbert spaces, T : X → Y be linear and injective, f † ∈ X
and κ an index function.

(a) If ‖Ej f † | X ‖ ≤ κ(j) for all j ∈ [0, ∞) and κ is such that t 7→ tµ−1κ(t)2 is decreasing
for some µ ∈ (0, 1), then

〈(I − Ej) f †, f † − f 〉 ≤ c
κ(j)√

j

∥∥∥T( f † − f )
∣∣∣Y∥∥∥. (2.32)

for c = ( 1
µ − 1)1/2.

(b) Assume that for all j ∈ [0, ∞) and all f ∈ X the inequality 2.32 holds true with
c = 1. If κ(j) is of the form κ(j) = cν jν for some cν, ν > 0, then ‖Ej f † | X ‖ ≤(

2
22ν−1

)1/2
κ(j).

Proof. The proof relies on the functional calculus.
Proof of (a): Since I − Ej is a projection we obtain〈

(I − Ej) f †, f † − f
〉
=
〈
(T∗)†(I − Ej) f †, T(I − Ej)

(
f † − f

)〉
≤
∥∥∥(T∗)†(I − Ej) f †

∣∣∣Y∥∥∥∥∥∥T(I − Ej)
(

f † − f
) ∣∣∣Y∥∥∥

≤
∥∥∥(T∗)†(I − Ej) f †

∣∣∣Y∥∥∥∥∥∥T
(

f † − f
) ∣∣∣Y∥∥∥,

where (T∗)† denotes the pseudoinverse of T∗. Partial integration yields

∥∥∥(T∗)†(I − Ej) f †
∣∣∣Y∥∥∥2

=
∫ ∞

j−

1
λ

d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
=
∫ ∞

j−

∥∥Eλ f †
∣∣X ∥∥2

λ2 dλ−
∥∥Ej f †

∣∣X ∥∥2

j
.

The assumptions ‖Eλ f † | X ‖ ≤ κ(λ) and the monotonicity of tµ−1κ(t)2 then imply

∫ ∞

j−

∥∥Eλ f †
∣∣X ∥∥2

λ2 dλ ≤
∫ ∞

j−

κ(λ)2

λ1−µ

1
λ1+µ

dλ

≤κ(j)2

j1−µ

∫ ∞

j−

1
λ1+µ

dλ ≤ κ(j)2

µj
.

Combining the last two inequalities and taking the square root yields the claim.
Proof of (b): Splitting the interval (0, j) uniformly on a logarithmic scale we get that∥∥∥Ej f †

∣∣∣X ∥∥∥2
= ∑

k∈N0

∥∥∥(Ej/2k − Ej/2k+1

)
f †
∣∣∣X ∥∥∥2

.



54 2. Convergence Rates Theory

Evaluating 2.32 at j = j/2k+1 and f = [I − (Ej/2k − Ej/2k+1)] f † we get that

〈(I − Ej/2k+1) f †, f † − f 〉 = 〈(I − Ej/2k+1) f †, (Ej/2k − Ej/2k+1) f †〉

=
∥∥∥(Ej/2k − Ej/2k+1

)
f †
∣∣∣X ∥∥∥2

while the right hand side can be estimated byκ(j/2k+1)√
j/2k+1

∥∥∥T
(

Ej/2k − Ej/2k+1

)
f †
∣∣∣Y∥∥∥

2

=
κ(j/2k+1)2

j/2k+1

∫ j/2k

j/2k+1
λ d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

≤ κ(j/2k+1)2

j/2k+1
j

2k

∫ j/2k

j/2k+1
1 d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

≤ 2κ(j/2k+1)2
∥∥∥(Ej/2k − Ej/2k+1

)
f †
∣∣∣X ∥∥∥2

.

Thus the estimate ∥∥∥(Ej/2k − Ej/2k+1

)
f †
∣∣∣X ∥∥∥ ≤ √2κ(j/2k+1)

holds true. Inserting into the expression for ‖Ej f † | X ‖ and using the expression for κ
then yields

∥∥∥Ej f †
∣∣∣X ∥∥∥2

≤ ∑
k∈N0

2κ(j/2k+1)2 = ∑
k∈N0

2c2
ν

(
j

2k+1

)2ν

= 2c2
ν j2ν2−2ν ∑

k∈N0

2−νk =
2

22ν − 1
c2

ν j2ν.

Let us check the requirement of (a) for Hölder type functions κ(j) = ϕH
ν (j) =

cν jν/2: it holds that jµ−1κ(j)2 is decreasing if and only if ν ∈ (0, 1) and µ ∈ (0, 1− ν).
Hence for these cases our notions of smoothness and local ill-posedness given by
(2.28a) and (2.28c) are actually equivalent.

In [HK10] a measure of local ill-posedness was defined by the decay behavior4 of
‖Ej f † | X ‖ as j→ 0 which we call smoothness of f †. The theorem above thus shows
that our definition by (2.28c) is an extension of theirs. Indeed Lemma 2.29(a) does
not only hold for Hölder type index functions but also for logarithmic index function
κ(j) = ϕL

p(j) = cp(− log(min{j, t0}))−p, as we observe that there always exists a t0
depending on p such that the condition on κ is fulfilled.

4The precise definition is again only meaningful for polynomial decay of the singular values.
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2.4.3 Relation to previous convergence rate results
Next we study the relation between variational source conditions and the concepts
presented in Sections 2.1 to 2.3 to show that they are a generalization of these concepts.

2.4.3.1 Relation to spectral source conditions

We will now use Theorem 2.24 to derive VSCs from spectral source conditions. That
this is possible has been known for some time, see [HY10, Fle11], however it required
a far more complicated proof.

Theorem 2.30 (see [HW17a, Prop. A.1]). Let T be injective and f † fulfill a spectral source
condition (2.2) such that ϕ2 is concave. Then f † fulfills a VSC (2.26) with index function

ψ(t) := 2$ϕ

(
Θ−1

(√
t

$

))2

where Θ(t) =
√

tϕ(t) is defined as in Theorem 2.5.

Proof. We proceed similar to the proof of Lemma 2.29 and set J = (0, ∞), Pj := I− Ej
where Ej := Ej(T) denotes the spectral family of T∗T defined in (2.31).

Then on the one hand we obtain that∥∥∥(I − Pj
)

f †
∥∥∥2

=
∥∥Ej ϕ(T∗T)w

∥∥2
=
∫ j−

0
ϕ(t)2 d‖Etw‖2 ≤ $2 ϕ(j)2

as ϕ is monotonically increasing. Hence we fulfill (2.28a) with κ(j) = $ϕ(j). As
ϕ is an index function we note that (2.28b) is satisfied since for injective operators
limj→0‖

(
I − Pj

)
f †‖ = 0.

On the other hand we can rewrite

〈Pj f †, f † − f 〉 = 〈w, Pj ϕ(T∗T)( f † − f )〉

since the two operators Pj and ϕ(T∗T) are self-adjoint and commute. With the
Cauchy-Schwarz inequality we therefore obtain

〈Pj f †, f † − f 〉 ≤ $

[∫ ∞

j+
ϕ(t)2 d‖Et( f † − f )‖2

]1/2

≤ $

[(
sup
τ>j

ϕ(τ)2

τ

) ∫ ∞

j+
t d‖Et( f † − f )‖2

]1/2

≤ $
ϕ(j)√

j

∥∥∥T( f † − f )
∥∥∥
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where the last estimate follows from the fact that ϕ2 is concave and ϕ(0) = 0. There-
fore we get (2.28c) with

σ(j) = $
ϕ(j)√

j
, φ(t) =

√
t, and γ ≡ 0.

As a consequence a variational source condition holds true with

ψ(t) = inf
j>0

$

[
ϕ(j)√

j

√
t + $ϕ(j)2

]
.

Choosing j such that ϕ(j)
√

t/
√

j = $ϕ(j)2 or equivalently j = Θ−1(
√

t/$) the two
terms in the square brackets are equal and hence the claim follows.

Note that the spectral source condition allows again to derive an ill-posedness
estimate similar to Lemma 2.29(a) but under slightly relaxed assumptions on the
index function. Indeed the above theorem allows Hölder index functions with ν ≤ 1.

As the Bregman distance in the Hilbert space setting is given by the square of the
norm we immediately see that by using Theorem 2.20 we obtain the same convergence
rates as implied by Theorem 2.5. To illustrate that variational source conditions are
indeed a weaker condition we return to the problem discussed in Example 2.7 and
2.18.
Example 2.31. Using the calculations of Example 2.25(a) we know that we can set

κ(j)2 = ∑
n : 1

n2 <j

(
1
n

)2
≤
∫ ∞

1√
j

(
1
x

)2
dx =

√
j,

hence by Lemma 2.29(a) there is a c > 0 such that we get (2.28c) with

σ(j) = c
κ(j)√

j
= cj−1/4

as well as φ(t) =
√

t and γ ≡ 0. Therefore we obtain by Theorem 2.24 that a VSC
holds true with ψ(t) = ct1/3 by the choice j = t2/3. Now using Theorem 2.20 we see
that there exists a parameter choice rule ᾱ such that even the convergence rate∥∥∥ f † − f̂ᾱ

∥∥∥ ≤ cδ
1
3

holds true – a rate which we could not prove with the help of spectral source condi-
tions.

Corollary 2.32. Let F fulfill the tangential cone condition (2.13) with a = 1, b = 0 and
some η > 0, assume that F′[ f †] is injective and that f † fulfills (2.12) such that ϕ2 is concave.
Then f † fulfills a variational source condition.
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Proof. By Theorem 2.30 we see that f † fulfills (2.22) with ‖F′[ f †]( f † − f )‖2 replacing
Tg†(F( f )). By the triangle inequality and the tangential cone condition we obtain that∥∥∥F′[ f †]( f † − f )

∥∥∥ ≤ (1 + η)
∥∥∥F( f †)− F( f )

∥∥∥,

hence we can resubstitute while just loosing a constant.

Similar to Example 2.25(b), this result underlines that variational source conditions
are well suited for getting a convergence rate in the nonlinear case since they combine
source condition and nonlinearity assumption into one condition.

2.4.3.2 Relation to range conditions

If Tg†(g) = 1
q‖g − g†‖q for some q > 1, then we have seen that we can bound

err ≤ 2
q δq. Thus Theorem 2.20 implies the convergence rate

∆R( f̂α, f †) ≤ O(ψ(δq))

and therefore a rate of O(δ) for the specific cases ψ(t) = ct1/q or ψ(Tg†(g)) = c‖g−
g†‖. This is the same rate we obtained in Section 2.2 under the condition of (2.17).
The connection between those two conditions has already been studied in [HKPS07]
and is one of the motivations for the introduction of VSCs in the given form.

Proposition 2.33 ([SGG+09, Prop. 3.35-3.38]). LetR be Gateaux differentiable at f † and
f ∗ ∈ ∂R( f †).

(a) If T : X → Y , then the following are equivalent:

(i) there exists p̄ ∈ Y∗ such that f ∗ = T∗ p̄;
(ii) there exists c > 0 such that 〈 f ∗, f 〉 ≤ c‖T f ‖ for all f ∈ X ;

(iii) there exists c > 0 such that 〈 f ∗, f 〉 ≤ 1
2 ∆R( f † + f , f †) + c‖T f ‖ for all f ∈ X .

(b) Assume F : D ⊂ X → Y fulfills the Lipschitz condition∥∥∥F( f )− F( f †)− F′[ f †]
(

f − f †
)∥∥∥ ≤ γ∆R( f , f †) ∀ f ∈ D

and define:

(i) There exist some constants β1, β2 > 0 such that〈
f ∗, f − f †

〉
≤ β1∆R( f , f †) + β2

∥∥∥F( f )− F( f †)
∥∥∥ ∀ f ∈ D

holds true.
(ii) There is p̄ ∈ Y∗ such that f ∗ = F′[ f †] p̄.

Then (i) implies (ii), and if in addition γ‖ p̄‖ < 1 then also (ii) implies (i).
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Note that (a)(iii) is equivalent to (2.26). One of the main downsides of VSCs is that
the previous proposition gives a limit on which convergence rates are achievable.

Proposition 2.34 ([Fle11, Prop. 12.10]). Let Tg†(g) = 1
q‖g− g†‖q for some q > 1 and

F : D ⊂ X → Y be Gateaux-differentiable at f †. Assume that (2.22) with E( f , f †) =

∆R( f , f †) holds true for some index function ψ such that limt↘0
ψ(tq)

t = 0. Then f † ∈
arg minR.

This further illustrates that the restriction to concave index function for (2.22) is
a natural one, as we even need ψ(tq) to be concave in order to not end up in this
particular case.

2.4.3.3 Relation to stability estimates

Variational source conditions are also closely connected with stability estimates.
Assume for a moment that for a whole class of functions K ⊂ D a variational source
condition with uniform constant β and function ψ holds true. We will see later that
this is a quite mild assumption and can often be achieved for K = BZ$ ∩ dom(F) with
BZ$ as in Section 2.3. Then, if Tg†(g) = 1

q‖g† − g‖q for some q > 1, for two elements
f1, f2 ∈ K we have that

βE( f1, f2) ≤ R( f1)−R( f2) + ψ

(
1
q
‖F( f1)− F( f2)‖q

)
,

βE( f2, f1) ≤ R( f2)−R( f1) + ψ

(
1
q
‖F( f1)− F( f2)‖q

)
.

by (2.22). If further the loss function is either symmetric or bounded from below by
a symmetric loss functional Ẽ (e.g. if it fulfills Assumption 2.22) then we obtain the
stability estimate

Ẽ( f1, f2) ≤ ψ

(
1
q
‖F( f1)− F( f2)‖q

)
∀ f1, f2 ∈ K. (2.33)

since one of the two terms ±(R( f1)−R( f2)) will be bounded from above by 0. On
the other hand it is unclear how to verify a VSC from (2.33) for the same penalty term
R directly, as the termR( f )−R( f †) might be negative and we further require the
VSC to hold on the set D which is usually much larger then K.

However, if K = BZ$ ∩ dom(F), then a stability estimate can indeed be used to
verify a VSC where the penalty term is given by the a norm power of Z . We will
use this in order to prove Theorem 2.19 for the choice r = b. To stay simple we will
stick to the case of a Hilbert scale generated by a compact operator L, later on we
will apply the same ideas in a Besov space setting, see Sections 4.4 and 6.3.1. We will
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assume as in (2.20) that the stability estimate

‖ f1 − f2 | X0‖ ≤ R(r)Ψ(‖F( f1)− F( f2) | Y‖) ∀ f1, f2 ∈ dom(F) ∩ BXs
r ,

holds true, where R : [0, ∞) → [0, ∞) is a monotonically increasing function and Ψ
is an index function such that Ψ ◦

√
· is concave. Further the true solution fulfills

f † ∈ X1 with ‖ f † | X1‖ ≤ $ where 1/2 ≤ s < 1. Note that the numbering of the scales
is no restriction, since via redefining which space we consider as X0 and replacing L
by Lν for some ν > 0 this is always possible and we are immediately in the setting of
Theorem 2.19.

As in Example 2.25(a) let ( f j, gj, σj)j∈N be the singular system of L. Set Pj f =
∑k≤j〈 f , fk〉 fk (note that this is just a reparametrization of the choice in Example
2.25(a), however, it allows a more explicit calculation). Setting R( f ) = 1

2‖ f | Xs‖2

we see by Example 2.23 that Assumption 2.22 holds true for X = Xs with r = 2
and C∆ = 1/2. Moreover we get that f ∗ = f † and hence can use that f ∗ ∈ X1. This
provides the estimate∥∥∥(I − Pj) f †

∣∣∣Xs

∥∥∥2
= ∑

k>j
σ−2s

k

∣∣∣〈 f †, fk〉
∣∣∣2 ≤ σ2−2s

j ∑
k>j

σ−2
k

∣∣∣〈 f †, fk〉
∣∣∣2 ≤ σ2−2s

j

∥∥∥ f †
∣∣∣X1

∥∥∥2

showing that we obtain (2.28a) fulfilling (2.28b) with κ(j) = σ1−s
j $. As

〈Pj f †, f † − f 〉Xs×Xs = 〈Pj f †, f † − f 〉X2s×X0 ≤
∥∥∥Pj f †

∣∣∣X2s

∥∥∥∥∥∥ f † − f
∣∣∣X0

∥∥∥
and 2s ≥ 1 an estimate as above gives∥∥∥Pj f †

∣∣∣X2s

∥∥∥ ≤ σ1−2s
j $.

Since (2.28c) needs only be fulfilled for f with ‖ f † − f | Xs‖ ≤ 8
3‖ f † | Xs‖ we can

assume the bound ‖ f | Xs‖ ≤ 4$ which with the previous estimates gives us (2.28c)
with γ ≡ 0,

σ(j) = σ1−2s
j $R(4$), and φ(t) = Ψ(

√
t).

Choosing j such that σj ≈ φ(t) then shows that a VSC holds true with

ψ(t) = c$ max{$, R(4$)}
[
Ψ(
√

t)
]2−2s

.

Note that as explained above this VSC implies again a stability estiamte. The
derived VSC yields for all f1, f2 ∈ dom(F) ∩ BX1

$ the stability estimate

‖ f1 − f2 | Xs‖ ≤ c
√

$ max{$, R(4$)}[Ψ(‖F( f1)− F( f2) | Y‖)]1−s

which is not the estimate we started with. Hence a direction of further research is
given by whether or under which conditions these two stability estiamtes are actually
equivalent.
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2.4.4 Further results on variational source conditions
Lastly we want to discuss some further properties of convergence rates analysis
assuming that a VSC holds true. First we will focus on a question arising from
Proposition 2.34, namely if it is also possible to obtain convergence rate of δ

ν
ν+1 for

ν ∈ (1, 2] as it is possible with Hölder type spectral source conditions. In case of linear
operators we will see that imposing a VSC on the dual problem allows such enhanced
convergence rates. The second issue extends Section 2.1.3; we will point out that the
two a posteriori parameter choice rules presented there also provide convergence rate
of the same order as the a priori parameter choice (2.24a). Lastly we show a result
similar to Proposition 2.8, namely that VSC with Bregman loss are always fulfilled if
the forward operator is injective.

2.4.4.1 Higher order rates

The question arises whether faster rates up to O(δ4/3) as seen in Theorem 2.5 are
achievable with VSCs. For linear operators this question has been answered in [Gra13],
see also [SH18] for even faster rates by using Bregman iteration as a regularization
method. The idea is roughly the following: If we want to achieve faster rates than
O(δ) then at least the condition that guarantees the rate of O(δ) should hold true and
hence by Proposition 2.33 we should have f ∗ = T∗ p̄ for f ∗ ∈ ∂R( f †). Further we
will see that p̄ is itself a minimizer of a Tikhonov type functional and thus we suppose
that p̄ fulfills a VSC for this problem.

Recall from Section 2.2 that the motivation for the condition f ∗ = T∗ p̄ was strong
duality for the problem

f̂ ∈ arg min
T f=g†

R( f ).

This implies that p̄ is a solution to the dual problem which has the form

p̄ ∈ arg min
p∈Y∗

[
R∗(T∗p) + 〈−p, g†〉

]
.

If S(g1, g2) = Tg1(g2) =
1
q‖g1 − g2‖q for some q > 1, then

R∗(T∗p) + 〈−p, g†〉 = lim
α→0

[
R∗(T∗p) +

1
α

(
〈−αp, g†〉+ 1

q′
‖−αp‖q′

)]
= lim

α→0

[
R∗(T∗p)− 〈T∗p, f †〉+ αq′−1

q′
‖p‖q′

]
.

Hence adding 〈 f †, T∗ p̄〉 −R∗(T∗ p̄) which does not depend on p we see that p̄ solves

p̄ ∈ arg min
p∈Y∗

lim
α→0

[
∆ f †

R∗(T
∗p, T∗ p̄) +

αq′−1

q′
‖p‖q′

]
.
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This can be understood as a Tikhonov functional with forward operator T∗, true data

fidelity term ∆ f †

R∗(·, T∗ p̄) and penalty term 1
q′ ‖·‖

q′ . Therefore a VSC for p̄ will take
the form

〈p∗, p̄− p〉 ≤ 1
2

∆ 1
q′ ‖·‖

q′ (p, p̄) + ψ
(
∆R∗(T∗p, T∗ p̄)

)
∀p ∈ Y∗ (2.34)

where p∗ ∈ ∂ 1
q′ ‖ p̄‖q′ .

Theorem 2.35 ([SH18, Rem. 4.2] and [Gra13, Cor. 4.6]). Let f ∗ = T∗ p̄ for f ∗ ∈ ∂R( f †)
and let p̄ fulfill (2.34). Assume that Y is q-smooth, then

∆R( f̂α, f †) ≤ αq′−1(−ψ)∗
(
− 1

αq′−1

)
+ c

δq

α
.

Especially if ψ(t) = t1/r for some r > 1, then for

ᾱ = δ
q

(q′−1)r′+1

the convergence rate

∆R( f̂ᾱ, f †) = O
(

δ
q′r′

(q′−1)r′+1

)
as δ→ 0

holds true.

Note that in the case where ψ(t) = t1/r we always obtain a convergence rate with
∆R( f̂ᾱ, f †) = o(δ) but again we cannot be arbitrarily fast.

Lemma 2.36 ([Gra13, Lem. 5.1]). Let the assumptions of Theorem 2.35 be fulfilled and
assume thatR∗ is twice differentiable at T∗ p̄.

(a) If ψ(t) = o(t1/2) as t→ 0, then f † minimizesR.

(b) If ψ(t) ∼ t1/2 as t → 0, then the source condition f † ∈ ∂R∗(T∗ jYTw) for some
w ∈ X holds true.

Hence the VSC on p̄ fills the gap between the two range conditions (2.17) and (2.19).
Therefore if f † does not minimize R convergence range of O(δµ) with µ ∈ (1, 4/3]
are still achievable by requiring a VSC on the dual solution.

2.4.4.2 A posteriori parameter choice rules

The main convergence rate theorem 2.20 for VSCs states convergence rates under
the a priori parameter choice rule (2.24a). However, as explained in Section 2.1.3 a
posteriori parameter choice rules are favorable. We have already seen two of these
methods in Section 2.1.3 and will explain how these two can be adapted to the setting
of VSCs and more general Tikhonov functionals.
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Discrepancy principle The sequential discrepancy principle has been studied for the
choices S(g1, g2) = Tg1(g2) =

1
q‖g1 − g2‖q for q > 1 in [HM12, AHM14]. Together

with a classical noise model we have a well defined noise level δ, thus for some
parameter τ > 0 choosing ᾱd according to (2.9) is well defined. Assuming that the
true solution fulfills a VSC of the form (2.22) then yields the convergence rate

E( f̂ᾱd , f †) ≤ cψ(δq) for δ→ 0

if the following two criteria are met. In order to ensure that ᾱd < ∞ we have to ensure
again some kind of data compatibility; one needs that τδ ≤ ‖gobs − F( fmin)‖ for all
fmin ∈ arg minR. Further the case of exact penalization has to be excluded, that is
that the Tikhonov functional recovers the true solution f † from exact data g† for α
small enough. This is e.g. guaranteed if F andR are Gateaux-differentiable or more
generally ifR is convex and there exists a bounded linear operator T[ f ] for all f ∈ D
such that

T[ f ]h = lim
t↘0

F( f + th)− F( f )
t

for all h ∈ X such that f + t0h ∈ D for a sufficiently small t0 > 0. This case is
especially of interest where R( f ) = ∞ for f 6∈ C when C ⊂ X is a convex set with
empty interior and hence a derivative of F is not well defined.

Lepskĭı principle The essence of the Lepskiı̆ principle is the error split (2.10). Note
that the same analysis as in Section 2.1.3.2 can be carried out if the left hand side is
replaced by some metric d, see [Mat06]. The error split for an analysis of the Lepskiı̆
principle under a VSC is provided by (2.23a). Again we have an approximation error
of the form Φ̃app = (−ψ)∗(− 1

Cerrα ) depending on the unknown smoothness charac-
terized by ψ of f † and a propagated data noise error of the form Φ̃noi =

1
α err(F( f̂α)).

If E is a metric and the error is globally bounded by err, then this split provides a
convergence rate of E( f̂ jLep , f †) ≤ Cψ(err) as err→ 0 as shown in [HM12].

When E is given by the Bregman distance, a similar analysis has been carried out
under Assumption 2.22. As the validity of (2.22) with Bregman loss then implies
a VSC with the same function ψ and E( f1, f2) ≥ C∆‖ f1 − f2‖r one obtains an error
decomposition of the form (2.10) with

Φapp(j) =

(
1

C∆
(−ψ)∗

(
− 1

Cerrαj

)) 1
r

and Φnoi(j) =
(

1
C∆

1
α

err(F( f̂αj))

) 1
r
.

This decomposition then implies again the convergence rate∥∥∥ f̂ᾱLep − f †
∥∥∥r
≤ Cψ(err) as err→ 0

when the error is globally bounded by err, see [Wer12, Cor. 3.43]. An analysis of the
Lepskiı̆ principle where the error is not globally bounded but only bounded with
high probability can be found in [WH12, Thm. 5.1].
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2.4.4.3 Validity of variational source conditions with Bregman loss

We have seen in Proposition 2.8 that for linear and injective forward operators a
spectral source condition (2.2) always holds true. Combined with Theorem 2.30
this implies that also a variational source condition will hold true if ϕ2 is concave.
Hence the question arises whether a similar result is obtainable for the more general
situation.

It was recently shown in [Fle18] that if F is injective and Tg1(g2) =
1
q‖g1 − g2‖q

for q > 1 this is indeed the case under the general Assumptions 1.4 for some β > 0.
Following the same ideas we show that this generalizes to general Tg† and fixed
β = 1/4.

The main idea of the proof is to use approximate variational source conditions – a
concept which also leads to convergence rates for general Tikhonov regularization. It
was however shown in [Fle11, Sec. 12.4] that this concept is equivalent to the concept
of variational source conditions, therefore we will only study the basics here. The
main idea behind approximate source conditions is to choose a benchmark function Φ,
which has to be a concave index function, and then try to measure how close f † is
to fulfilling a VSC with ψ = rΦ for all r ≥ 0. This gives rise to the definition of the
distance function

D(r) := sup
f∈X

D̃( f , r)

where D̃( f , r) :=
1
4

∆ f ∗

R ( f , f †)−R( f ) +R( f †)− rΦ
(
Tg†(F( f )

)
.

Obviously D is a monotonically decreasing function and D(r) ≥ D̃( f †, r) = 0. Before
showing how to obtain a VSC from the distance function D we first need some further
properties of this function.

Lemma 2.37. Let f ∗ ∈ ∂R( f †), then for all f ∈ X the inequality

1
2

∆ f ∗

R ( f , f †)−R( f ) ≤ R∗( f ∗)

holds true.

Proof. Writing out the left hand side we get

1
2

∆ f ∗

R ( f , f †)−R( f ) = −1
2
R( f )− 1

2
R( f †)− 1

2
〈 f ∗, f − f †〉.

Using Young’s inequality A.14 on 〈 f ∗, f 〉 and 〈 f ∗, f †〉 with the functionalsR andR∗
we get

1
2

∆ f ∗

R ( f , f †)−R( f ) ≤ 1
2

(
−R( f )−R( f †) +R( f ) +R∗( f ∗) + 〈 f ∗, f †〉

)
= R∗( f ∗).
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Lemma 2.38. Let F be injective, then limr→∞ D(r) = 0.

Proof. By the properties of D stated above we will assume that D(r) > 0 for all r ≥ 0.
We then first show that the supremum in the definition of D is attained for each r ≥ 0.
Let ( fn)n∈N be a maximizing sequence. We may assume without loss of generality
that D̃( fn, r) > 0. Using Lemma 2.37 we have

1
2
R( fn) ≤

1
2
R( fn) +

1
2

(
−1

2
∆ f ∗

R ( fn, f †) +R( fn) +R∗( f ∗)
)

≤ −1
4

∆ f ∗

R ( fn, f †) +R( fn)−R( f †) + rΦ
(
Tg†(F( fn)

)
+R( f †) +

1
2
R∗( f ∗)

= −D̃( fn, r) +R( f †)− 1
2
R∗( f ∗) ≤ R( f †) +

1
2
R∗( f ∗)

hence R( fn) is uniformly bounded. As R is lower semicompact this implies the
existence of a subsequence ( f̃n)n∈N converging to some f̃ . As f 7→ R( f ) is lower
semicontinuous the mapping f 7→ 1

4 ∆ f ∗

R ( f , f †)−R( f ) is upper semicontinuous and
so f̃ fulfills D̃( f̃ , r) ≥ lim supn∈N D̃( f̃n, r) = D(r), that is f̃ is a maximizer.

Now let (rn)n∈N be a sequence such that limn→∞ rn = ∞ and define a new se-
quence ( fn)n∈N ⊂ X by D(rn) = D̃( fn, rn). As above we obtain the bound

1
2
R( fn) ≤ −D̃( fn, rn) +R( f †)− 1

2
R∗( f ∗) ≤ R( f †) +

1
2
R∗( f ∗).

Using again lower semicompactness the sequence of maximizers has a convergent
subsequence denoted by ( f̃n)n∈N with associated (r̃n)n∈N. We claim that f̃n → f †.
Indeed, as D(r̃n) > 0 this leads to

r̃nΦ
(
Tg†(F( f̃n)

)
≤ 1

4
∆ f ∗

R ( f̃n, f †)−R( f̃n) +R( f †) ≤ R∗( f ∗) +R( f †)

by the nonnegativity of the Bregman distance and Lemma 2.37. As r̃n → ∞ this
implies that Φ(Tg†(F( f̃n))→ 0. Because f 7→ Φ(Tg†(F( f )) is lower semicontinuous
we get F( f̃n)→ g† and by continuity and injectivity of F that f̃n → f †. Therefore

lim sup
n→∞

D(r̃n) = lim sup
n→∞

D̃( f̃n, r̃n)

= lim sup
n→∞

[
1
4

∆ f ∗

R ( f̃n, f †)−R( f̃n) +R( f †)− r̃nΦ
(
Tg†(F( f̃n)

)]
≤ lim sup

n→∞

[
1
4

∆ f ∗

R ( f̃n, f †)−R( f̃n) +R( f †)

]
≤ 1

4
∆ f ∗

R ( f †, f †)−R( f †) +R( f †) = 0.

This implies D(r)→ 0 when r → ∞ since D(r) is monotonically decreasing (as noted
earlier).
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Now it is very easy to prove that a VSC is fulfilled for all f †.

Theorem 2.39 (Existence of VSC, compare [Fle18, Sec. 4.2]). Let F be injective and D the
distance function of f † for the benchmark function Φ. Then f † fulfills a VSC with Bregman
loss, β = 1/4 and index function

ψ(t) := inf
r≥0

[D(r) + rΦ(t)].

Proof. By Lemma 2.38 we know that limr→∞ D(r) = 0. Therefore the function ψ as
defined above is a concave index function by Lemma 2.26, as we can set κ̂(r) = D(r)
and φ̂r(t) = rΦ(t) for r ≥ 0. As

1
4

∆ f ∗

R ( f , f †) = R( f )−R( f †) + D̃( f , r) + rΦ
(
Tg†(F( f )

)
≤ R( f )−R( f †) + D(r) + rΦ

(
Tg†(F( f )

)
for all r ≥ 0 the claim follows by minimizing the right hand side with respect to r.

Note that the proof of this theorem is, with Lemma 2.38, in principle constructive.
The main challenge here is to compute the function D(r). In a Hilbert space setting a
good choice of the benchmark function is Φ(t) = t – also we know that a VSC with
ψ(t) = rΦ(t) will only be fulfilled if f † ∈ arg minR (see Proposition 2.34) – as then
the computation of D(r) is reduced to a quadratic optimization problem.

For the simple example considered in this chapter starting with Examples 2.7 the
optimization problem can be solved explicitly.

Example 2.40. Setting Φ(t) = t, a simple calculation shows that D̃( f̂ , r) = D(r) if
and only if

f̂n = − n2 − 4r
3n2 + 4r

f †
n .

Therefore one obtains

D(r) = ∑
n∈N

2n2

3n2 + 4r

∣∣∣ f †
n

∣∣∣2.

Inserting f †
n = 1/n hence yields

D(r) = ∑
n∈N

2
3n2 + 4r

≤
∫ ∞

0

2
3x2 + 4r

dx =
π

2
√

3
1√
r

which shows that a variational source condition with ψ(t) = ct
1
3 is fulfilled (as already

seen in Example 2.31).

For non-Hilbert space settings however solving the involved optimization problem
is a difficult task on its own as the computation of D(r) for each r is equivalent to
solving a Tikhonov functional. Hence verifying VCSs from the explicit computation
of D(r) seems not to be a viable strategy.





CHAPTER III
EQUIVALENCE RESULTS IN
HILBERT SPACES

An old French mathematician said: A mathematical theory is
not to be considered complete until you have made it so clear

that you can explain it to the first man whom you meet on the
street. This clearness and ease of comprehension, here insisted
on for a mathematical theory, I should still more demand for a
mathematical problem if it is to be perfect; for what is clear and

easily comprehended attracts, the complicated repels us.

DAVID HILBERT in “Mathematical Problems”

In this chapter we study the simplest setup of inverse problems, namely linear inverse
problems in Hilbert spaces as published in [HW17a]. As reviewed in Section 2.1
convergence rate theory for such problems has been studied for some time. Most
importantly several conditions have been shown to be equivalent to convergence
rates, the first major results are in [Neu97] for Tikhonov regularization with Hölder
rates. Combining results of [FHM11, Fle12] shows that for certain index function
one of these conditions is that a VSC is fulfilled. The proof requires the concept of
approximate source conditions we briefly touched in Section 2.4.4.3.

In Section 3.1 we will show equivalence of VSCs to a generalization of a condition
introduced in [Neu97]; namely the decay of the spectral projections. By showing
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equivalence of VSCs on the one hand and the speed of the spectral decay on the other
we sidestep the usage of approximate source conditions. Neubauer further proved
that the speed of the spectral decay is equivalent to the approximation quality of
Tikhonov regularization. The approximation property can be seen as a noise-free
convergence rate as it measures how fast f̂α → f † with respect to α where the observed
data is given by gobs = g†. This equivalence result was recently extended to more
general regularization methods and index functions measuring the approximation
rate in [AEdHS16]. These new results, however, exclude iterative regularization
methods. In Section 3.2 we illustrate that under slightly different assumptions on the
regularization methods which include prominent iterative methods the equivalence
remains valid.

By Theorem 2.20 we hence know that the three conditions VSC, spectral decay
and approximation quality are all sufficient in order to get convergence rates. We will
show in Section 3.3 that for the deterministic error model they are even necessary.
Results of this type – showing that a sufficient condition is even necessary – are
called converse results. Our proof will be done in a two step approach: first we prove
equivalence to convergence rates with an oracle parameter choice and then to rates
for more general parameter choice rules.

Another converse results is due to [And15]. It shows that the set of functions
where the spectral decay is of Hölder type can be characterized as an interpolation
space. We point out in Section 3.5 that for many interesting applications these interpo-
lation spaces are actually Besov spaces even for infinitely smoothing operators. This
underlines the typical interpretation of source conditions as smoothness assumption
as discussed in Example 2.3 and extends it to VSCs.

We further derive a converse result for the white noise error model in Section 3.4.
In statistics one is typically interested in the following converse result: one wants to
characterize the maxisets of the estimator, i.e. the maximal set where the considered
estimators converge with a certain speed. However this is already covered by our
result and we can characterize the maxisets for many estimators as Besov spaces.
This fits well into known results as in statistics maxisets of wavelet methods for
the estimation of the density of i.i.d. random variables have been characterized as
Besov spaces in [KP93]. Furthermore for thresholding and more general wavelet
estimators maxisets have been investigated in [KP00, KP02], and their results have
been generalized in [Riv04] for inverse problems in a sequence space model and again
Besov spaces were obtained as maxisets.

Lastly, in Section 3.6 we summarize our results of this chapter by applying them to
a set of important inverse problems. Thereby we connect VSCs, smoothness assump-
tions and convergence rates for deterministic and white noise errors respectively.
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3.1 Spectral Tail Condition

We start by recalling Theorem 2.30 which shows that for certain index functions ϕ a
spectral source condition (2.2) implies that a VSC is fulfilled. In the proof we use the
spectral source condition to obtain the estimate∥∥∥(I − Pj

)
f †
∥∥∥ =

∥∥∥Ej f †
∥∥∥ ≤ $ϕ(j)

where the operator Pj is given by the spectral projection

Pj := I − Ej and Ej f = 1[0,j)(T
∗T) f

for j ∈ (0, ∞).1 By Theorem 2.20, this leads to a convergence rate of O(ψϕ(δ2)) with
ψϕ(t) = ϕ(Θ−1

ϕ (
√

t)).2 Specifying to the Hölder case this means that the spectral
source condition f † = (T∗T)ν/2w implies ‖Ej f †‖ ≤ cjν/2 and a convergence rate
of δν/(ν+1). Between the two implications the following relation was observed in
[Neu97] for ν ∈ (0, 2]:

sup
‖gobs−g†‖≤δ

inf
α>0

∥∥∥ f̂α − f †
∥∥∥ = O

(
δ

ν
ν+1

)
as δ→ 0 ⇐⇒

∥∥∥Ej f †
∥∥∥ = O

(
j

ν
2

)
as j→ 0

and sup
‖gobs−g†‖≤δ

inf
α>0

∥∥∥ f̂α − f †
∥∥∥ = o

(
δ

ν
ν+1

)
as δ→ 0 ⇐⇒

∥∥∥Ej f †
∥∥∥ = o

(
j

ν
2

)
as j→ 0,

that is the decay rate of the spectral distribution function j 7→ ‖Ej f †‖ is necessary and
sufficient in order to obtain Hölder convergence rates. It was further shown that
‖Ej f †‖ = O(jν/2) implies a Hölder-type source condition f † = (T∗T)µ/2w with
0 < µ < ν, but not with µ = ν. As a specific case for this we refer to the Examples 2.7
and 2.31.

But combining Lemma 2.29 and Theorem 2.24 shows that already an estimate of
the form ‖Ej f †‖ ≤ $ϕ(j) is enough in order to get a VSC. As VSCs are sufficient for
(not only Hölder-) rates we will – motivated by [Neu97] and Lemma 2.29 – investigate
the relation between VSCs and the decay of the spectral distribution function. To this
end we define for an index function ϕ the space

X T
ϕ :=

{
f ∈ X :

∥∥∥ f
∣∣∣X T

ϕ

∥∥∥ < ∞
}

, with
∥∥∥ f
∣∣∣X T

ϕ

∥∥∥ = sup
j>0

∥∥Ej f
∣∣X ∥∥

ϕ(j)

1Here we will suppress the dependence of Ej on T; if necessary we make it explicit later on.
2Recall from Theorem 2.5 that given some index function ϕ, the index function Θϕ is defined by

Θϕ(t) :=
√

tϕ(t).
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that measures the decay rate of the tail of the spectral distribution of elements in X .
The nomenclature “tail” here is rooted in considering compact operators where I − Ej
for j > 0 is a projection operator onto a finite dimensional subspace of X .

Theorem 3.1 ([HW17a, Thm. 3.1]). Let ϕ be an index function such that t 7→ tµ−1 ϕ(t)2 is
decreasing for some µ ∈ (0, 1) and ϕ2 is concave. Then for f † ∈ X the following statements
are equivalent:

(a) f † satisfies a VSC with ψ(t) = Aψϕ(t) = Aϕ(Θ−1
ϕ (
√

t))2.

(b) f † ∈ X T
ϕ with ‖ f † | X T

ϕ ‖ ≤ B < ∞.
Furthermore the estimates

A ≤ 2 max

{
B2, B

(
1
µ
− 1
)1/2

}
and B ≤ max

{√
8A
5

,
8A
5

}
hold true.

Proof. (a) =⇒ (b): Inserting f = (I − Ej) f † into the VSC (2.26) implies that∥∥∥Ej f †
∣∣∣X ∥∥∥2

≤ 3
8

∥∥∥Ej f †
∣∣∣X ∥∥∥2

+ Aψϕ

(∥∥∥TEj f †
∥∥∥2
)

.

As ∥∥∥TEj f †
∥∥∥2

=
∫ j−

0
λ d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
≤ j

∫ j−

0
1 d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
= j
∥∥∥Ej f †

∣∣∣X ∥∥∥2
,

this implies that κ(j) := ‖Ej f † | X ‖ satisfies

5
8

κ(j)2 ≤ Aψϕ

(
jκ(j)2

)
∀j > 0. (3.1)

Note that ψ−1
ϕ (t) = t(ϕ · ϕ)−1(t) since

(ψϕ(t))(ϕ · ϕ)−1(ψϕ(t)) = ϕ(Θ−1
ϕ (
√

t))2Θ−1
ϕ (
√

t) = Θϕ(Θ−1
ϕ (
√

t))2 = t

and thus
t

ψϕ(t)
= (ϕ · ϕ)−1(ψϕ(t)) = Θ−1

ϕ (
√

t).

Hence we have

(3.1) ⇔ jκ(j)2

ψϕ(jκ(j)2)
≤ 8Aj

3
∀j > 0,

⇔ Θ−1
ϕ (Θκ(j)) ≤ 8Aj

5
∀j > 0,

⇔ κ(j) ≤
√

8A
5

ϕ

(
8A
5

j
)

∀j > 0,
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since Θϕ is monotonically increasing. The concavity of ϕ2 yields the inequality
ϕ2(ct) ≤ max{1, c}ϕ2(t) which applied to the last line of the previous equation
provides the claim.

(b) =⇒ (a): The main idea is to use Theorem 2.24 and Lemma 2.29(a).
Setting Pj = I − Ej we immediately get (2.28a) with κ(j) = Bϕ(j) due to the

definition of X T
ϕ . Due to the monotonicity of tµ−1 ϕ(t)2 we can apply Lemma 2.29(a)

to achieve (2.28c) with σ(j) = B( 1
µ − 1)1/2 ϕ(j)√

j
, φ(t) = t1/2 and γ ≡ 0

Thus we can conclude by the meta-theorem that a VSC is fulfilled with

ψ(t) = inf
j>0

[
B2 ϕ(j)2 + B

(
1
µ
− 1
)1/2 ϕ(j)√

j

√
t

]
≤ 2 max

{
B2, B

(
1
µ
− 1
)1/2

}
ψϕ(t)

due to the choice
√

t√
j
= ϕ(j) or equivalently j = Θϕ(

√
t).

Recall the remarks after Lemma 2.29 and Theorem 2.30: if ϕ is a Hölder type index
functions, then ϕ2 is concave for ν ∈ (0, 1] and tµ−1 ϕν(t) is decreasing if and only if
ν ∈ (0, 1) and µ ∈ (0, 1− ν), while logarithmic type index functions alway fulfill both
conditions.

3.2 Approximation Property of Regularization Methods

Up to now we only considered Tikhonov regularization. If f0 = 0, then it is given by

f̂α = (T∗T + αI)−1T∗gobs.

More generally a large class of regularization methods in a Hilbert space setting is
given by

f̂α = Rαgobs, where Rα = qα(T∗T)T∗.

The function qα is called a filter, e.g. the filter for Tikhonov regularization is given by
qα(λ) =

1
λ+α . While further examples are discussed below we mention that e.g. the

conjugate gradient method applied to the normal equation with a stopping rule is
not of this form as this is nonlinear in the input data. Closely related to the filter is
the residual function rα(λ) := 1− λqα(λ) which measures the approximation error (or
bias in the statistical context) of the regularization method given by

f † − RαT f † = rα(T∗T) f †.

In order to ensure the regularization property and favorable characteritics of the
method we will impose the following assumption throughout the rest of this chapter
on the filter and residual function:
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Assumption 3.2. There exist constants C1 > 0, 0 < C2 ≤ C3 < 1 and α̂ ∈ (0, ∞] such
that

(a) |qα(λ)| ≤ C1
α for all λ ∈ [0, ‖T∗T‖],

(b) λ 7→ rα(λ) is decreasing and continuous for all α > 0 and rα(λ) ≥ 0,

(c) limα→0 rα(λ) = 0 for all λ ∈ (0, ‖T∗T‖],
(d) α 7→ rα(λ) is increasing for all λ ∈ (0, ‖T∗T‖],
(e) C2 ≤ rα(α) ≤ C3 for all 0 < α ≤ α̂.

Part (a)-(c) are assumptions that guarantee regularization properties. Indeed Rα

is a bounded operator due to (a) and as a result we have stability. Furthermore we
obtain that rα(0) = 1 by definition and therefore

0 ≤ rα(λ) ≤ 1 ∀α > 0, λ ≥ 0 (3.2)

with (b). Combined with (c) this implies that limα→0‖ f † − RαT f † | X ‖ = 0 and thus
the desired convergence property. While (a) and (c) are standard assumptions usually
instead of (b) only a relaxed version of (3.2) – namely |rα(λ)| ≤ C4 for C4 ∈ (0, ∞)
– is demanded to ensure the regularization property. However, we require later on
that rα and qα do not change sign which is guaranteed by (b). Items (d) and (e)
will be similarly needed for converse results. They require a smooth transition at
λ = α between modes that are accurately reconstructed, i.e. modes with rα(λ) ≈ 0 or
equivalently qα(λ) ≈ 1

λ , and modes of the order rα(λ) ≈ 1 which are neglected for
stability reasons.

Example 3.3. The following provides a list of regularization methods which fulfill
Assumption 3.2. If not stated otherwise we have α̂ = ∞.
• Tikhonov regularization: As mentioned above we have qα(λ) = (λ + α)−1 and

hence rα(λ) = α/(α + λ) which leads to C1 = 1 and C2 = C3 = 1/2.

• k-times iterated Tikhonov regularization: Here one has for some prescribed k ∈ N
that rα(λ) = αk/(α + λ)k leading to C1 = k and C2 = C3 = 2−k.

• Showalter’s method: This method is given by rα(λ) = exp(−λ/α) and therefore
C1 = 1 and C2 = C3 = exp(−1).

• modified spectral cut-off: We have qα(λ) = min{1/λ, 1/(2α)} or equivalently
rα(λ) = max{0, 1− λ/(2α)} implying C1 = C2 = C3 = 1/2.

• Landweber iteration: For α > 0 define kα := min{n ∈ N0 : n + 1 > 1/α}; then
kα is the number of iterations. Landweber iteration is defined by rα(λ) =

(1− µλ)kα and qα(λ) = ∑kα−1
i=0 (1− µλ)j where 0 < µ ≤ ‖T∗T‖−1 is the step

length parameter. Obviously we have C1 = 1. If α = 1/(n + ε) for some
ε ∈ [0, 1), then kα = n and hence (1 − µ/(n + 1))n ≥ rα(α) ≥ (1 − µ/n)n.
Both bounds are monotonically increasing in n by the inequality of geometric
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and arithmetic mean if n > µ, thus we choose α̂ < min{1, ‖T∗T‖} and get
C2 = (1− µ/kα̂)

kα̂ and C3 = limn→∞(1− µ/(n + 1))n = exp(−µ).

• Lardy’s method: For some fixed β > 0 we have rα(λ) = βkα /(λ + β)kα for kα

defined as in the Landweber method. We get C1 = 1 and with α̂ = min{1, β}we
obtain C3 = exp(−1/(2β)). With the choice of α as in the Landweber method
we can estimate rα(α) ≥ (1 + 1/(βn))−n which is monotonically increasing in
n and hence C2 = exp(−1/β).

More information on these methods can be found in [EHN96]. Well-known
methods which do not satisfy the assumptions above are spectral cut-off (that is
rα(λ) = 1 if λ ≤ α and rα(λ) = 0 else) as it violates (e) as well as the continuity in (b)
and the ν-methods as they violate the monotonicity requirements in (b) and (d).

In [AEdHS16, Def. 2.1] similar assumptions on filter functions are imposed in
order to obtain results as in the current and following section. Whereas (b) requires
nonnegativity of rα they only impose that r2

α is monotonically decreasing. At the
same time they require continuity of α 7→ rα(λ) which rules out iterative methods.
Further k-times iterated Tikhonov regularization for k ≥ 3 does not fulfill their
assumptions, as they require qα(λ) ≤ C2/

√
αλ, which has been relaxed to rα(α) ≥ C2

in Assumption 3.3.

Theorem 3.4 ([AEdHS16, Prop. 2.3] and [HW17a, Thm. 3.3]). Let a regularization
method fulfill Assumption 3.2. Moreover, let ϕ be an index function such that there exist
C > 0 and µ > 1 such that

rα(λ)ϕ(λ)µ ≤ Cq ϕ(α)µ (3.3)

for all λ > 0, α ∈ (0, α̂]. Then the following are equivalent for all f † ∈ X :
(a) f † ∈ X T

ϕ with A := ‖ f † | X T
ϕ ‖ < ∞,

(b) B := sup
0<α≤α̂

1
ϕ(α)

‖rα(T∗T) f † | X ‖ < ∞.

Furthermore the estimates

A ≤ max

{
B
C2

,

∥∥ f †
∣∣X ∥∥

ϕ(α̂)

}
and B ≤ max

 ‖ f † | X ‖
ϕ(‖T‖2)

, Cq
‖ f † | X ‖
ϕ(‖T‖2)

+ A + A
C

1
µ
q C

1− 1
µ

3√
1− 1

µ


hold true.

Proof. (a) =⇒ (b): Assume at first that α ≥ ‖T‖2, then we have ϕ(‖T‖2) ≤ ϕ(α) as
ϕ is an index function and therefore

1
ϕ(α)

∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥ ≤ 1

ϕ(‖T‖2)

∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥ ≤ 1

ϕ(‖T‖2)

∥∥∥ f †
∣∣∣X ∥∥∥

where the last inequality follows from (3.2).
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Let from now on α ∈ (0, ‖T‖2). Then using integration by parts we get

∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥2

=
∫ ‖T‖2+

0
rα(λ)

2 d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

= r2
α(‖T‖2)

∥∥∥ f †
∣∣∣X ∥∥∥2

+
∫ ‖T‖2+

0

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)

The integral on the right hand side will now be split into two terms:

∫ ‖T‖2+

0

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)
=
∫ α−

0

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)

+
∫ ‖T‖2+

α−

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)

.

For the first integral note that λ 7→ (−rα(λ)2) and λ 7→ ‖Eλ f † | X ‖2 are monotonically
increasing, which implies

∫ α−

0

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)
≤
∥∥∥Eα f †

∣∣∣X ∥∥∥2 ∫ α−

0
1 d
(
−rα(λ)

2
)

=
∥∥∥Eα f †

∣∣∣X ∥∥∥2(
1− rα(α)

2
)
≤ A2 ϕ(α)2

by (3.2). For the second integral we have

∫ ‖T‖2+

α−

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

d
(
−rα(λ)

2
)
≤ A2

∫ ‖T‖2+

α−
ϕ(λ)2 d

(
−rα(λ)

2
)

≤ A2C
2
µ
q ϕ(α)2

∫ ‖T‖2+

α−

(
rα(λ)

2
)− 1

µ d
(
−rα(λ)

2
)

= A2C
2
µ
q ϕ(α)2 1

1− 1
µ

(
rα(α)

2−2/µ − rα(‖T‖2)2−2/µ
)

≤ A2 ϕ(α)2 C
2
µ
q C2(1−1/µ)

3

1− 1
µ

,

where in the estimates we use ‖ f † | X T
ϕ ‖ ≤ A, (3.3) and Assumption 3.2(b) and (e)

respectively. Combining the previous estimates we arrive at

∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥2

≤ r2
α(‖T‖2)

∥∥∥ f †
∣∣∣X ∥∥∥2

+ A2 ϕ(α)2

1 +
C

2
µ
q C2(1−1/µ)

3

1− 1
µ

.
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Using again (3.3) we get the estimate

rα(‖T‖2) ≤ Cq
ϕ(α)µ

ϕ(‖T‖2)µ = Cq

(
ϕ(α)

ϕ(‖T‖2)

)µ−1 ϕ(α)

ϕ(‖T‖2)
≤ Cq

ϕ(α)

ϕ(‖T‖2)

since ϕ is an index function and µ > 1 which implies the claim.
(b) =⇒ (a): Let 0 < j ≤ α̂. By Assumption 3.2(b) the mapping λ 7→ rα(λ) is

decreasing and hence

∥∥∥Ej f †
∥∥∥2

=
∫ j−

0
1 d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
≤
(

sup
0<t≤j

1
rj(t)2

) ∫ j−

0
rj(λ)

2 d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

≤ 1
rj(j)2

∥∥∥rj(T∗T) f †
∣∣∣X ∥∥∥2

≤ B2 ϕ(j)2

C2
2

.

If on the other hand j > α̂, then ‖Ej f † | X ‖ ≤ ‖ f † | X ‖ and ϕ(j) ≥ ϕ(α̂) which
finishes the proof.

Remark 3.5. Let ϕ(λ) = λ1/2, then the largest number µ0 > 0 for which (3.3) holds
true is called the classical qualification of the regularization method. Considering
the regularization methods in Example 3.3, we have µ0 = 2k for k-times iterated
Tikhonov regularization and µ0 = ∞ for the other presented regularization methods,
see [EHN96]. It has been shown in [MP03, Prop. 3] that if ϕµ < idµ̃/2 for some
µ̃ ∈ (0, µ0], then (3.3) holds true. So if ϕ is of the form (2.3) with ϕ = ϕH

ν of Hölder
type then (3.3) can be fulfilled if ν < µ0 and for ϕ = ϕL

p of logarithmic type (3.3) it is
fulfilled for all p > 0.

3.3 Convergence Rates Results

The previous two sections have pointed out that we have equivalence of VSCs, the
decay of the spectral tail and approximation properties of regularization methods.
We already know that the first condition implies optimal convergence rates under
certain parameter choice rules for Tikhonov regularization by Theorem 2.20. In this
section we go along the other direction: for certain classes of parameter choice rules
optimal convergence rates in the deterministic setting imply optimal approximation
properties.

3.3.1 Convergence rates for an oracle parameter choice

Under our assumptions on the filter function the following bounds hold on the norm
of the corresponding regularization method.
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Lemma 3.6. Let a spectral regularization method satisfy Assumption 3.2, then the bounds

(1− C3)
2

α
≤ ‖Rα‖2 ≤ C1

α

hold true.

Proof. The upper bound follows by Assumption 3.2(a) and (3.2) since we deduce

‖Rα‖2 = ‖R∗αRα‖ =
∥∥∥qα(T∗T)2TT∗

∥∥∥ = ‖qα(TT∗)(1− rα(TT∗))‖

≤ ‖qα‖∞‖1− rα‖∞ ≤
C1

α
.

For the lower bound note that

‖Rα‖2 = sup
λ>0

λ|qα(λ)|2 = sup
λ>0

(1− rα(λ))2

λ
≥ (1− rα(α)2

α
≥ (1− C3)

2

α
,

where we used Assumption 3.2(e).

Both bounds will be used to derive the following theorem:

Theorem 3.7 ([HW17a, Thm. 4.1]). Let a spectral regularization method satisfy Assumption
3.2 and let ϕ be an index function such that there exists a p ≥ 1 such that

ϕ(rα) ≤ rp ϕ(α) for all α > 0 and r ≥ 1 (3.4)

(i.e. ϕ does not grow faster than polynomially). Then for f † ∈ X the following are equivalent:

(a) A := sup
0<α≤α̂

1
ϕ(α)2 ‖rα(T∗T) f † | X ‖2 < ∞,

(b) B := sup
0<δ≤Θϕ(α̂)

1
ψϕ(δ2)

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

‖Rα(T f † + ξ)− f † | X ‖2 < ∞.

Furthermore the estimates

A ≤ max

B max

{
1,
(

2B
(1− C3)2

)2p
}

,

∥∥ f †
∣∣X ∥∥2

ϕ
(
(1−C3)2

2B α̂
)2

 and B ≤ 2(A + C1)

hold true.

Proof. (a) =⇒ (b): Using the upper bound of Lemma 3.6 the standard error split
leads to

sup
‖ξ | X ‖≤δ

‖Rα(T f † + ξ)− f † | X ‖2 ≤
(∥∥∥rα(T∗T) f †

∣∣∣X ∥∥∥+ ‖Rα‖δ
)2

≤ 2Aϕ(α)2 + 2C1
δ2

α
.
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For δ ≤ Θϕ(α̂) choose α = Θ−1
ϕ (δ) ≤ α̂, then we have

√
Θ−1

ϕ (δ)ϕ
(

Θ−1
ϕ (δ)

)
= Θϕ

(
Θ−1

ϕ (δ)
)
= δ

and hence
δ2

Θ−1
ϕ (δ)

= ϕ
(

Θ−1
ϕ (δ)

)2
= ψϕ(δ

2).

This immediately implies

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≤ 2(A + C1)ψϕ(δ
2)

for all δ ∈ (0, Θϕ(α̂)].
(b) =⇒ (a): Expanding

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

=
∥∥∥rα(T∗T) f † + Rαξ

∣∣∣X ∥∥∥2

=
∥∥∥rα(T∗T) f †

∣∣∣X ∥∥∥2
+ 2
〈

rα(T∗T) f †, Rαξ
〉
+ ‖Rαξ | X ‖2,

we notice that only the middle term on the right is affected by a sign change of ξ. So if
we take the supremum over ξ we may assume that this term is positive and therefore
obtain the lower bound

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≥
∥∥∥rα(T∗T) f †

∣∣∣X ∥∥∥2
+ ‖Rα‖2δ2.

Replacing ‖Rα‖2 with the lower bound of Lemma 3.6 we note that

∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥2

is monotonically increasing in α by Assumption 3.2(d),

(1− C3)
2 δ2

α
is monotonically decreasing in α,

which implies that for all α∗ ∈ (0, α̂] we get

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≥ min
{∥∥∥rα∗(T∗T) f †

∣∣∣X ∥∥∥2
, (1− C3)

2 δ2

α∗

}
.
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As the left hand side is bounded from above by Bψϕ(δ2) we see that choosing α∗(δ) =
(1−C3)

2

2B Θ−1
ϕ (δ) leads to

Bψϕ(δ
2) ≥ min

{∥∥∥rα∗(δ)(T
∗T) f †

∣∣∣X ∥∥∥2
, (1− C3)

2 δ2

α∗(δ)

}
= min

{∥∥∥rα∗(δ)(T
∗T) f †

∣∣∣X ∥∥∥2
, 2B

δ2

Θ−1
ϕ (δ)

}

= min
{∥∥∥rα∗(δ)(T

∗T) f †
∣∣∣X ∥∥∥2

, 2Bψϕ(δ
2)

}
.

This immediately proves Bψϕ(δ2) ≥ ‖rα∗(δ)(T∗T) f † | X ‖2 as it would contradict the
inequality otherwise. Solving the definition of α∗ for δ yields δ = Θϕ(

2B
(1−C3)2 α∗)

which implies∥∥∥rα∗(T∗T) f †
∣∣∣X ∥∥∥2

≤ Bψϕ

((
Θϕ

(
2B

(1− C3)2 α∗
))2

)
= B

(
ϕ

(
2B

(1− C3)2 α∗
))2

≤ B max

{
1,
(

2B
(1− C3)2

)2p
}

ϕ(α∗)2

for all α∗ ∈ (0, (1−C3)
2

2B α̂] where we used (3.4). Applying monotonicity of ϕ and (3.2)

for α∗ ∈ ( (1−C3)
2

2B α̂, α̂] shows∥∥rα∗(T∗T) f †
∣∣X ∥∥2

ϕ(α∗)2 ≤
∥∥ f †

∣∣X ∥∥2

ϕ
(
(1−C3)2

2B α̂
)2

which finishes the proof.

Note that the previous theorem involves a very strong performance concept, as

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

‖Rα(T f † + ξ)− f † | X ‖ = inf
0<α≤α̂

DRα

(
δ,
{

f †
})

,

where DRα

(
δ,
{

f †}) denotes the worst case error (see Definition 2.9). A parameter
choice rule for which the infimum is attained is an oracle parameter choice (compare
Section 2.1.3.2) as it requires a-priori knowledge of the true solution and therefore
it is not implementable. Hence our result is weaker then similar results in [Neu97,
Thm. 2.6] and [AEdHS16, Prop. 3.3] where the order of the infimum and supremum
is interchanged as clearly

sup
‖ξ | X ‖≤δ

inf
0<α≤α̂

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥ ≤ inf

0<α≤α̂
sup

‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥.
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The advantage of our result is that it holds without further assumptions relating
the index function ϕ with the chosen filter, see [AEdHS16, eqs. (23)&(24)]. We will
however show in the next section that the above inequality can often be reversed
while loosing only a constant and therefore gain the results of [Neu97, AEdHS16]
with little further assumptions.

3.3.2 Convergence rates for quasioptimal parameter choice rules
The following characterization of parameter choice rules is due to [RH07]:

Definition 3.8. A parameter choice rule ᾱ : [0, ∞)×Y → [0, ∞) is called:
• weakly quasioptimal for the regularization method (Rα)α if there exists a constant

c > 0 and δ0 > 0 such that

DRᾱ

(
δ,
{

f †
})
≤ c inf

0<α
sup

‖ξ | X ‖≤δ

‖Rα(T f † + ξ)− f † | X ‖+O(δ) ∀δ ≤ δ0,

• and it is called strongly quasioptimal for the regularization method (Rα)α if there
exists a constant c > 0 and δ0 > 0 such that

DRᾱ

(
δ,
{

f †
})
≤ c sup

‖ξ | X ‖≤δ

inf
0<α
‖Rα(T f † + ξ)− f † | X ‖+O(δ) ∀δ ≤ δ0.

In many cases the constant c appearing in the definition can be calculated explicitly.
Example 3.9. For the two parameter choice rules introduced in Section 2.1.3 the
following was validated in [RH07]:
• The discrepancy principle is strongly quasioptimal for regularization methods

with infinite classical qualification, see end of Section 3.2 for examples. It is
however not even weakly quasioptimal for (iterated) Tikhonov regularization.

• The Lepskiı̆ principle is weakly quasioptimal for all methods considered in
Example 3.3.

The following lemma shows that for continuous regularization methods the notion
of weak and strong quasioptimality coincide.

Lemma 3.10 (see [HW17a, Lem. 4.2]). Let Assumption 3.2 hold true, then

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥ ≤ 2

√
2 sup
‖ξ | X ‖≤δ

inf
0<α≤α̂

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥

holds true for all

δ ∈ ∆( f †) :=

{∥∥rα(T∗T) f †
∣∣X ∥∥

‖Rα‖
: 0 < α < α̂

}
.

Further the set ∆( f †) has the following properties
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(a) If Eα f † 6= 0 for all α > 0, then 0 is always a cluster point of ∆( f †).

(b) If α 7→ rα is continuous for all λ ∈ σ(T∗T), ᾱ = ∞ and f † 6= 0, then ∆( f †) = (0, ∞).

(c) Let Rα be given either by Landweber iteration with µ‖T∗T‖ < 1 or by Lardy’s method.
If f † 6= 0 the size of the gaps of ∆( f †) on a logarithmic scale is bounded by ln γ with

γ := sup
{

b
a

: a, b ∈ ∆( f †) with 0 < a < b and (a, b) ∩ ∆( f †) = ∅
}

< ∞. (3.5)

Proof. Let δ ∈ ∆( f †). Then there exists α′ ∈ (0, α̂) such that∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥ = ‖Rα‖δ.

By definition of the operator norm for every ε ∈ (0, 1) (even for ε = 0 if T is compact)
there exists a ξ ′ ∈ Y such that ‖ξ ′ | Y‖ ≤ δ and ‖Rα′ξ

′ | X ‖ ≥ (1− ε)‖Rα′‖δ. We
claim that there is a choice of ξ ′ (depending on f †) such that〈

rα(T∗T) f †, Rαξ ′
〉
≥ 0 ∀α ∈ (0, α̂]. (3.6)

Indeed let T = U(T∗T)1/2 be the polar decomposition of T with a unitary operator
U : X → ran(T) ⊂ Y . As (ker(Rα))⊥ ⊂ ran(T) we may assume that ξ ′ ∈ ran(T). Let
ζ ′ ∈ X be such that ξ ′ = Uζ ′, then〈

rα(T∗T) f †, Rαξ ′
〉
=
〈

rα(T∗T) f †, qα(T∗T)(T∗T)1/2ζ ′
〉

.

By Halmos version of the spectral theorem (see [Hal63]) T∗T is unitary equivalent
to a multiplication operator Mg : L2(Ω, µ) → L2(Ω, µ), (Mgh)(x) = g(x)h(x) for all
x ∈ Ω on a locally compact space Ω with positive Borel measure µ and a nonnegative
function g ∈ L∞(Ω, µ), that is T∗T = W∗MgW for some unitary operator W : X →
L2(Ω, µ). Therefore we have

〈
rα(T∗T) f †, Rαξ ′

〉
=
∫

Ω
rα(g(x))

(
W f †

)
(x) qα(g(x))

√
g(x)

(
Wζ ′

)
(x)dµ(x).

By (3.2) we have rα ≥ 0 and qα ≥ 0 for all α > 0, hence nonnegativity of the right
hand side of the previous equation can be ensured if (W f †)(x)(Wζ ′)(x) ≥ 0 for
µ-almost all x ∈ Ω. This can be achieved by replacing (Wζ ′)(x) by s(x)(Wζ ′)(x)
where s : Ω→ {−1, 1}. Hence replacing ξ ′ be UW∗(s · (Wζ ′)) shows that (3.6) holds
true.
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With these choices of α′, ξ ′ we then obtain

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥

≤ inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

[∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥+ ‖Rαξ | X ‖

]
≤
∥∥∥rα′(T

∗T) f †
∣∣∣X ∥∥∥+ sup

‖ξ | X ‖≤δ

‖Rα′ξ | X ‖

≤
∥∥∥rα′(T

∗T) f †
∣∣∣X ∥∥∥+ 1

1− ε

∥∥Rα′ξ
′ ∣∣X ∥∥.

As ‖rα′(T∗T) f † | X ‖ is monotonically increasing in α and ‖Rα′ξ
′ | X ‖monotonically

decreasing in α we get that∥∥∥rα′(T
∗T) f †

∣∣∣X ∥∥∥+ 1
1− ε

∥∥Rα′ξ
′ ∣∣X ∥∥ ≤ 2

1− ε
inf

0<α<α̂

[∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥+ ∥∥Rαξ ′

∣∣X ∥∥]
since ‖rα′(T∗T) f † | X ‖ ≤ 1

1−ε‖Rα′ξ
′ | X ‖ ≤ 1

1−ε‖rα′(T∗T) f † | X ‖ by the choice of α′

and ξ ′. As for x, y such that 〈x, y〉 ≥ 0 the inequality (‖x‖+ ‖y‖)2 ≤ 2‖x + y‖2 holds
true we thus obtain by (3.6) that

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥≤ 2

√
2

1− ε
inf

0<α<α̂

∥∥∥Rα(T f † + ξ ′)− f †
∣∣∣X ∥∥∥

≤ 2
√

2
1− ε

sup
‖ξ | X ‖≤δ

inf
0<α<α̂

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥.

As the above holds for all ε ∈ (0, 1) this shows the first claim.
It remains to investigate the properties of ∆( f †):
Proof of (a): By Lemma 3.6 we have that (1− C3)

2/α ≤ ‖Rα‖2 ≤ C1/α. We have
‖rα(T∗T) f † | X ‖ ≤ ‖ f † | X ‖ by (3.2) so we only have to ensure that rα(T∗T) f † 6= 0
for all α close to 0 in order to get the claim. By Assumption 3.2(a) we have that

rα(λ) > 0 for α > C1λ since then qα(λ) ≤
C1

α
<

1
λ

.

Hence if Eα f † 6= 0 for all α we have ‖rα(T∗T) f † | X ‖ ≥ ‖rα(T∗T)Eα/(2C1)
f † | X ‖ > 0.

Proof of (b): If α 7→ qα(λ) is continuous then also α 7→ rα(λ) is continuous and by
Lebesgue dominated convergence theorem α 7→ ‖rα(T∗T) f † | X ‖ and α 7→ ‖Rα‖ are
continuous as well. As the above estimate on rα(λ) for α > C1λ implies for f † 6= 0
that rα(T∗T) f † 6= 0 the statement follows from the intermediate value theorem and
Lemma 3.6.
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Proof of (c): For Landweber iteration and Lardy’s method we can rewrite

∆( f †) =

{
δn( f †) =

∥∥r1/n(T∗T) f †
∣∣X ∥∥

‖R1/n‖
: n ∈ N

}
and γ = sup

n∈N

δn( f †)

δn+1( f †)
.

Using Lemma 3.6 we obtain the bound ‖R1/(n+1)‖/‖R1/n‖ ≤
√

C1/(1− C3), which
gives a bound on the quotient of the denominators of neighboring δn( f †).

For Landweber iteration quotients of enumerators of δn( f †) are bounded by∥∥r1/n(T∗T) f †
∣∣X ∥∥2∥∥∥r1/(n+1)(T∗T) f †
∣∣∣X ∥∥∥2 =

∫ ‖T∗T‖+
0 (1− µλ)2n d

∥∥Eλ f †
∣∣X ∥∥2∫ ‖T∗T‖+

0 (1− µλ)2n+2 d‖Eλ f † | X ‖2
≤ 1

(1− µ‖T∗T‖)2

since (1− µλ) ≥ 1− µ‖T∗T‖ for all λ ≤ ‖T∗T‖. Similarly, we use β/(β + λ) ≥
β/(β + ‖T∗T‖) for all λ ≤ ‖T∗T‖ for Lardy’s method to obtain

∥∥r1/n(T∗T) f †
∣∣X ∥∥2∥∥∥r1/(n+1)(T∗T) f †
∣∣∣X ∥∥∥2 =

∫ ‖T∗T‖+
0

(
β

β+λ

)2n
d
∥∥Eλ f †

∣∣X ∥∥2

∫ ‖T∗T‖+
0

(
β

β+λ

)2n+2
d‖Eλ f † | X ‖2

≤
(

1 +
‖T∗T‖

β

)2

.

This shows that γ is finite in both cases.

While Theorem 3.7 has shown equivalence of approximation error and conver-
gence rates for oracle parameter choice rules this can now be extended to quasioptimal
parameter choice rules.

Theorem 3.11 ([HW17a, Thm. 4.3]). Let a spectral regularization method satisfy Assump-
tion 3.2 and let ϕ be an index function such that (3.4) holds true and ψϕ is concave. Further
let ᾱ be a weakly quasioptimal parameter choice rule. Then for f † ∈ X for which ∆( f †)
satisfies (3.5) the following are equivalent:

(a) sup
0<α≤α̂

1
ϕ(α)2 ‖rα(T∗T) f † | X ‖2 < ∞.

(b) For any δ0 > 0 we have

sup
0<δ≤δ0

1
ψϕ(δ2)

sup
‖ξ | X ‖≤δ

∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †
∣∣∣X ∥∥∥2

< ∞.

Proof. (a) =⇒ (b): By Theorem 3.7 and the definition of a weakly quasioptimal
parameter choice rule (see Definition 3.8) we know that there exists a constant C > 0
such that for all δ > 0 the estimate

sup
‖ξ | X ‖≤δ

∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≤ C
(

ψϕ(δ
2) + δ2

)
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holds true. As ψϕ is concave we have that limt↘0 t/ψϕ(t) < ∞. This shows that (b)
holds true for every finite δ0 > 0.

(b) =⇒ (a): Suppose first that ᾱ(δ, gobs) > α̂, then

1
ϕ(ᾱ)2

∥∥∥rᾱ(T∗T) f †
∣∣∣X ∥∥∥2

≤ 1
ϕ(α̂)2

∥∥∥ f †
∣∣∣X ∥∥∥2

< ∞

hence we may assume that ᾱ(δ, gobs) ≤ α̂. In this case we have by Lemma 3.10 that

inf
0<α≤α̂

sup
‖ξ | X ‖≤δ

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≤ 8 sup
‖ξ | X ‖≤δ

inf
0<α≤α̂

∥∥∥Rα(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≤ 8 sup
‖ξ | X ‖≤δ

∥∥∥Rᾱ(T f † + ξ)− f †
∣∣∣X ∥∥∥2

≤ 8C( f †, δ0)ψϕ(δ
2)

for all δ ∈ ∆( f †) ∩ [0, δ0].

Let δ0 = Θϕ(
2Bβ

(1−C3)2 ) where B = 8C( f †, δ0) and β = min{α̂, ‖T∗T‖} as in the

second part of the proof in Theorem 3.7. Assuming that ∆( f †) ∩ (0, δ0] = (0, δ0] we
obtain sup0<α≤β

1
ϕ(α)2 ‖rα(T∗T) f † | X ‖2 < ∞. This implies (a) as ‖rα(T∗T) f † | X ‖ ≤

‖ f † | X ‖ for all α > 0.
If ∆( f †) has gaps but (3.5) holds true, then for all δ ∈ (0, δ0] there exists a δ ∈

[δ/γ, δ] with δ ∈ ∆( f †). Using the concavity of ψϕ we have ψϕ(δ2)/ψϕ(δ
2) ≤ γ2.

This way replacing the supremum over δ ∈ ∆( f †) ∩ (0, δ0] with a supremum over
δ ∈ (0, δ0] increases the value at most by a factor of γ2.

3.4 White Noise Error Model

The previous section has dealt with the case of deterministic noise gobs = T f † + ξ for
some ξ ∈ Y . We will now look into the case of white noise meaning the observed data
is given by

gobs = g† + εZ

with a white noise process Z on Y as introduced in Example 1.3. Note that ‖ f̂α −
f † | X ‖2 is a random variable in this case and hence not a useful error measure if one
wants to evaluate the performance of the regularization method as ε↘ 0. We will use
the expected square error as a loss function. This leads to the following bias-variance
decomposition which replaces the splitting of the error into an approximation and a
propagated data noise part:

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥2
]
=
∥∥∥E
[

f̂α

]
− f †

∣∣∣X ∥∥∥2
+ ε2E

[
‖RαZ‖2

]
. (3.7)
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By the linearity of the expectation and the properties of Z we have that

E
[

f̂α

]
= E

[
Rα(T f † + εZ)

]
= RαT f † + εE[RαZ] = RαT f †,

so by Section 3.2 the bias term can be controlled by assuming that f † ∈ X T
ϕ for some

index function ϕ. As Cov[RαZ] = RαCov[Z]R∗α = RαR∗α we can conclude that

E
[
‖RαZ‖2

]
= trace(Cov[RαZ]) = trace(RαR∗α)

Note that as RαR∗α = q2
α(T∗T)T∗T this requires the forward operator T to be at least

compact3, as it has to be of trace class. Thus the main difference between this and the
previous section is that the noise is not described by the maximum but the sum of the
eigenvalues of RαR∗α. Often the sum grows faster than the maximum as α→ 0 and the
rate does not only depend on the regularization method but also on the distribution
of the eigenvalues of T.

To handle the variance term we will therefore assume that there exists a constant
D ≥ 1 and a continuous, monotonically decreasing function v : (0, ∞)→ R such that

1
D

v(α)2 ≤ E
[
‖RαZ‖2

]
≤ Dv(α)2 ∀ 0 < α ≤ α̂ (3.8a)

with limits limα→0 v(α) = ∞ and limα→∞ v(α) = 0. In comparison with the deter-
ministic case in Lemma 3.6, we see that if we replace E[‖RαZ‖2] by ‖Rα‖2 we could
choose v(α) = 1/

√
α with a constant D depending on the specific regularization

method. Moreover, we will assume that v does not grow faster than polynomially as
α↘ 0 or, equivalently, that the inverse function v−1 : (0, ∞)→ (0, ∞) does not decay
faster than polynomially at infinity, i.e. it satisfies

v−1(rt) ≥ r−qv−1(t) ∀ t > 0, r ≥ 1 (3.8b)

for some q ≥ 1. A way to calculate v has been given in [BHMR07]; under certain
conditions one gets that E[‖RαZ‖2] ∼ E[‖(I − Eα)T∗‖2], that is the variance of the
estimator behaves like the variance of the spectral cut-off estimator for which explicit
expressions have been derived.

Theorem 3.12 (see [HW17a, Thm. 5.1]). Let Assumption 3.2 and (3.8) hold true and define

ψϕ,v(t) := ϕ
(

Θ−1
ϕ,v

(√
t
))

with Θϕ,v(α) =
ϕ(α)

v(α)
.

Let ϕ be an index function such that (3.4) holds true. Then for f † ∈ X the following
statements are equivalent:

3For an analysis with noncompact operators that leads to convergence rates but not to converse results
see [BHMR07].
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(a) A := sup
0<α≤α̂

1
ϕ(α)2 ‖rα(T∗T) f † | X ‖2 < ∞,

(b) B := sup
0<ε≤Θϕ,v(α̂)

1
ψϕ,v(ε2)

inf
0<α≤α̂

E
[
‖Rα(T f † + εZ)− f † | X ‖2

]
< ∞.

Furthermore the estimates

A ≤ max

{
B, B(2BD)pq,

∥∥ f †
∣∣X ∥∥2

ϕ
(
max

{
1, (2BD)−q/2

}
α̂
)2

}
and B ≤ A + D

hold true.

Proof. (a) =⇒ (b): Setting f̂α = Rα(T f † + εZ) and using the bias-variance decom-
position we obtain by (a) as well as (3.8a) that

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥2
]
≤ Aϕ(α)2 + Dε2v(α)2.

The infimum of the right hand side is approximately attained if ϕ(α) = εv(α) or
equivalently if α = Θ−1

ϕ,v(ε). As ψϕ,v(ε2) = ϕ(Θ−1
ϕ,v(ε)) = ε2v(Θ−1

ϕ,v(ε))
2 we get that

inf
0<α≤α̂

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥2
]
≤ (A + D)ψϕ,v(ε

2).

(b) =⇒ (a): Using again bias-variance decomposition and the lower bound in
(3.8a) yields that

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥2
]
≥
∥∥∥rα(T∗T) f †

∣∣∣X ∥∥∥2
+

ε2

D
v(α)2.

Note that by Assumption 3.2(d) the first term is increasing in α while by our assump-
tions on v the second term is decreasing. Hence

Bψϕ,v(ε
2) ≥ inf

0<α≤α̂

[∥∥∥rα(T∗T) f †
∣∣∣X ∥∥∥2

+
ε2

D
v(α)2

]
≥ min

{∥∥∥rα∗(T∗T) f †
∣∣∣X ∥∥∥2

,
ε2

D
v(α∗)2

}
for all α∗ ∈ (0, α̂]. For the choice

α∗ = v−1
(√

2BDv
(

Θ−1
ϕ,v(ε)

))
one gets that

ε2

D
v(α∗)2 = 2Bε2v

(
Θ−1

ϕ,v(ε)
)2

= 2Bψϕ,v(ε
2),
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so the minimum has to be attained at the first argument. Solving α∗ for ε, abbreviating
z := v−1

(
v(α∗)√

2BD

)
= Θ−1

ϕ,v(ε) and inserting into the resulting equation yields

∥∥∥rα∗(T∗T) f †
∣∣∣X ∥∥∥2

≤ Bψϕ,v(ε
2) = Bψϕ,v

((
Θϕ,v(z)

)2
)

= B
(
Θϕ,v(z)

)2v
(

Θ−1
ϕ,v
(
Θϕ,v(z)

))2
= Bϕ(z)2

by the definition of ψϕ,v. The growth restrictions (3.8b) and (3.4) now imply that∥∥∥rα∗(T∗T) f †
∣∣∣X ∥∥∥2

≤ Bϕ
(

max
{

1, (2BD)q/2
}

α∗
)2
≤ B max{1, (2BD)pq}ϕ(α∗)2

showing (a) for all α of the given form.
If α ∈ (0, α̂] is not of this form, then – as ε ≤ Θϕ,v(α̂) – we get by (3.8b) and

monotonicity that α ≥ v−1(
√

2BD v(α̂)) ≥ max
{

1, (2BD)−q/2
}

α̂. Thus for these α

we obtain
1

ϕ(α)2

∥∥∥rα∗(T∗T) f †
∣∣∣X ∥∥∥2

≤
∥∥ f †

∣∣X ∥∥2

ϕ
(
max

{
1, (2BD)−q/2

}
α̂
)2

finishing the proof.

Note that the previous proof is essentially the same as the proof of Theorem 3.7,
the only difference being that the latter treats the special case v(α) = 1/

√
α.

Remark 3.13. If Assumption (3.8a) is relaxed to

v−(α)2 ≤ E
[
‖RαZ‖2

]
≤ v+(α)2

with v± functions with the properties as v in (3.8) where possibly limα→0(
v+
v− )(α) = ∞,

then an inspection of the proof shows that

Theorem 3.12(a) ⇒ sup
0<ε≤Θϕ,v+ (α̂)

1
ψϕ,v+(ε

2)
inf

0<α≤α̂
E
[
‖Rα(T f † + εZ)− f † | X ‖2

]
< ∞,

Theorem 3.12(a) ⇐ sup
0<ε≤Θϕ,v− (α̂)

1
ψϕ,v−(ε

2)
inf

0<α≤α̂
E
[
‖Rα(T f † + εZ)− f † | X ‖2

]
< ∞.

This is especially relevant for operators T with exponentially decaying singular values.
While (3.8a) can be verified for polynomially decaying singular values by results in
[BHMR07], for the asymptotic behavior σj = exp(−cjβ) for some c, β > 0 one can
only verify the relaxed condition above with

v−(α) = c−α−1/2 and v+(α) = c+α−1/2−ν (3.9)
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for any ν > 0 and some c−, c+ > 0 easily. However, for such operators Theorem
3.12(a) is typically only fulfilled for ϕ of logarithmic type, that is of the form (2.3b) for
some p > 0, see Example 2.3. In these cases one has

ψϕ,v−(t) = c(− ln t)−2p(1 + o(1)), as t→ 0,

and ψϕ,v+(t) = c(− ln t)−2p(1 + o(1)), as t→ 0

independent of the choice of ν ∈ (0, ∞), see [Mai94]. Therefore the equivalence in
Theorem 3.12 still holds true with either v = v±.

3.5 Interpretation of Maxisets

The previous sections have illustrated that f † ∈ X T
ϕ does not only yield convergence

rates results but converse results also hold true. So the question arises whether
these spaces have a more natural, that is operator independent characterization. We
will start with results from [And15] showing that the spaces can be regarded as
interpolation spaces in Hilbert scales before showing that these spaces are Besov
spaces for a wide class of operators.

We will build on the ideas and notation of Section B.2: we set X0 := X and
X1 := (T∗T)kX , that is ‖ f | X1‖ := ‖(T∗T)−k f | X ‖, for some k ∈ (0, ∞). As X1 ⊂ X0
the spaces are obviously compatible. Then for fixed t > 0 we get that

K(t, f †)2 = inf
f∈X1

(∥∥∥ f † − f
∣∣∣X0

∥∥∥2
+ t2‖ f | X1‖2

)
.

As this is a convex and coercive minimization problem we know that there exists a
unique solution f̂t of the minimization problem. The first order optimality conditions
establish

f † =
(

I + t2(T∗T)−2k
)

f̂t

or f † =
(

I + t2(T∗T)−2k
)−1

t2(T∗T)−2k f † +
(

I + t2(T∗T)−2k
)−1

f †.

Using the spectral measure we hence obtain

K(t, f †)2 =
∫ ∞

0

( t2λ−2k

1 + t2λ−2k

)2

+ t2λ−2k 1(
1 + t2λ−2k

)2

d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

=
∫ ∞

0

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
.
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Therefore for any θ ∈ (0, 1) this results in

∥∥∥ f †
∣∣∣ (X0,X1)θ,∞

∥∥∥ =

[
sup
t>0

t−2θ
∫ ∞

0

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
]1/2

. (3.10)

This form will be used to prove the following:

Lemma 3.14 (see [And15, Prop. 2.2]). Let k > s > 0 and set ϕ(t) = ts. Then we have
X T

ϕ = (X0,X1)s/k,∞ with equivalent norms.

Proof. Note that for j > 0 we have

j−2s =

(( s
k

)s/k(
1− s

k

)1−s/k
)2

t−2s/k t2

t2 + j2k for t = jk

√
k− s

s
.

Thus we get for f † ∈ (X0,X1)s/k,∞, that

∥∥Ej f
∣∣X ∥∥2

ϕ(j)2 = j−2s
∫ j−

0
d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

=

(( s
k

)s/k(
1− s

k

)1−s/k
)2

t−2s/k
∫ j−

0

t2

t2 + j2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

≤
(( s

k

)s/k(
1− s

k

)1−s/k
)2

t−2s/k
∫ j−

0

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

since λ ≤ j and the integrand is monotonically decreasing in λ. Furthermore it
follows that

∥∥Ej f †
∣∣X ∥∥2

ϕ(j)2 ≤
(( s

k

)s/k(
1− s

k

)1−s/k
)2∥∥∥ f †

∣∣∣ (X0,X1)s/k,∞

∥∥∥2

by (3.10). Taking the supremum over j > 0 on the left hand side reveals f † ∈ X T
ϕ .

If on the other hand f † ∈ X T
ϕ , we have for each t > 0 that

t−2s/k
∫ ∞

0

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
≤ t−2s/k

[∥∥Ej f
∣∣X ∥∥2

+
∫ ∞

j−

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2
]

.
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Setting j = t1/k yields

t−2s/k
∫ ∞

0

t2

t2 + λ2k d
∥∥∥Eλ f †

∣∣∣X ∥∥∥2

≤ j−2s
[∥∥Ej f

∣∣X ∥∥2
+ j2k

∫ ∞

j−
λ−2k d

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

]
≤ j−2s

[∥∥Ej f
∣∣X ∥∥2

+ j2k
(
−j−2k∥∥Ej f

∣∣X ∥∥2
+ 2k

∫ ∞

j−
λ−2k−1

∥∥∥Eλ f †
∣∣∣X ∥∥∥2

dλ

)]
≤ 2kj2k−2s

∫ ∞

j−
λ2s−2k−1

∥∥∥ f †
∣∣∣X T

ϕ

∥∥∥2
dλ =

k
k− s

∥∥∥ f †
∣∣∣X T

ϕ

∥∥∥2
.

As this holds for all t > 0 we obtain f † ∈ (X0,X1)s/k,∞ by (3.10).

Recall that by (B.1) that for θ ∈ (0, 1) and l ∈ R

(L2, Hl)θ,∞ = Bθl
2,∞

if the underlying manifold is smooth enough. Hence if ran((T∗T)k) = Hl , then we
get that X T

ids = Bls/k
2,∞ , that is we found an interpretation of the spectral decay space in

terms of more classical smoothness spaces.
We will extend this result further by assuming that T : X = L2(M)→ Y , where

M fulfills Assumption B.17, is such that

T∗T = Λ(−∆) (3.11)

with Λ meeting the following conditions:

Assumption 3.15. Let Λ : [0, ∞)→ (0, ∞) be such that
(a) Λ is continuous,

(b) Λ|[t0,∞) is strictly decreasing for some t0 ≥ 0,

(c) limt→∞ Λ(t) = ∞.

For such operators we obtain the subsequent characterization of maxisets:

Theorem 3.16 (see [HW17a, Thm. 6.3]). LetM fulfill Assumption B.17, Λ Assumption
3.15, T be of the form (3.11) and s > 0. Define

ϕ(j) :=


0 if j = 0((

Λ|[t0,∞)

)−1
(j)
)−1/2

if j ∈ (0, Λ(t0)]

t−1/2
0 if j > Λ(t0)

,

then X T
ϕs = Bs

2,∞ with equivalent norms.
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Proof. Define the operator S := ϕ(T∗T)1/2 : L2(M)→ L2(M), then

S∗S = ϕ(T∗T) = (ϕ ◦Λ)(−∆).

As (ϕ ◦Λ)(t) = t−1/2 for t ≥ t0 and inf0≤t≤t0(ϕ ◦Λ)(t) > 0 by continuity we get that
ran((S∗S)k) = Hk(M) with equivalent norms for all k ∈ R.

Denote by ET
λ the spectral projection with respect to the operator T∗T and by ES

λ

the spectral projection with respect to the operator S∗S. For t ∈ (0, t−1/2
0 ) we then

obtain by the substitution t = ϕ(j) that

t−s
∥∥∥ES

t f
∣∣∣X ∥∥∥ = ϕ(j)−s

∥∥∥ES
ϕ(j) f

∣∣∣X ∥∥∥ = ϕ(j)−s
∥∥∥ET

j f
∣∣∣X ∥∥∥.

As for t ≥ t−1/2
0 we get

t−s
∥∥∥ES

t f
∣∣∣X ∥∥∥ ≤ ts/2

0 ‖ f | X ‖ = ((ϕ ◦Λ)(t0))
−s
∥∥∥ET

Λ(t̄) f
∣∣∣X ∥∥∥

= ((ϕ ◦Λ)(t̄))−s
∥∥∥ET

Λ(t̄) f
∣∣∣X ∥∥∥ ≤ ∥∥∥ f

∣∣∣X T
ϕs

∥∥∥
with t̄ = arg maxt∈[0,t0]

Λ(t). Taken together the last two inequalities illustrate that
‖ f | X S

ids‖ ≤ ‖ f | X T
ϕs‖. As on the other hand for j ≥ Λ(t0)

ϕ(j)−s
∥∥∥ET

j f
∣∣∣X ∥∥∥ ≤ ts/2

0 ‖ f | X ‖ =
(

t−1/2
0

)−s
∥∥∥∥ES

t−1/2
0

f
∣∣∣∣X ∥∥∥∥ ≤ ∥∥∥ f

∣∣∣X S
ids

∥∥∥
we can conclude by using the first inequality that ‖ f | X S

ids‖ ≥ ‖ f | X T
ϕs‖. Therefore

X S
ids = X T

ϕs and the norms coincide.

In summary this implies that if we choose k > s then

X T
ϕs = X S

ids = (L2, Hk)s/k,∞ = Bs
2,∞

by Lemma 3.14.

3.6 Examples

The previous sections have yielded several equivalence results for convergence rate
theory in Hilbert spaces. In order to conclude this chapter we now apply these results
to a set of well studied inverse problems in order to illustrate our findings.

Operators in Sobolev scales In the following we describe a fairly general class of
problems. It contains convolution operators (ifM = Rd orM = Td), for which the
convolution kernel has a certain type of singularity at 0 as well as boundary integral
operators, injective elliptic pseudo-differential operators and compositions of such
operators.



3.6. Examples 91

Theorem 3.17 ([HW17a, Thm. 7.1]). LetM be a d-dimensional manifold satisfying As-
sumption B.17, and let T be an operator which is a-times smoothing (a > d/2) in the sense
that T : Ht(M) → Ht+a(M) is well-defined, bounded and has a bounded inverse for all
t ∈ R. We will consider T as an operator from L2(M) into itself, i.e. X = Y = L2(M)
and a spectral regularization method with classical qualification (see Remark 3.5) µ0 ≥ 1
satisfying Assumption 3.2. Then the following statements are equivalent for all f † ∈ X \ {0}
and s ∈ (0, a):

(a) f † satisfies a VSC (2.26) with ψ(t) = ct
s

s+a for some c > 0.

(b) f † ∈ Bs
2,∞(M).

(c) For a quasioptimal parameter choice rule ᾱ and a regularization method for which ∆( f †)
meets (3.5) we have

sup{
∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †

∣∣∣ L2
∥∥∥ :
∥∥∥ξ
∣∣∣ L2
∥∥∥ ≤ δ} = O(δ

s
s+a ), δ→ 0.

(d)
(

infα>0 E
[∥∥Rα(T f † + εW)− f †

∣∣ L2
∥∥2
])1/2

= O
(

ε
s

s+a+d/2

)
, ε→ 0.

In addition, (b)–(d) are equivalent for all s ∈ (0, 2aµ0), and furthermore the assumption
a > d/2 can be relaxed to a > 0 if (d) is neglected.

Proof. Note that ψ = ψϕ with

ϕ(t) = c′ts/2a for some c′ > 0.

• (a)⇔ f † ∈ X T
ϕ : The assumption s ∈ (0, a) ensures that ϕ satisfies the conditions

of Theorem 3.1.

• f † ∈ X T
ϕ ⇔ (b): It follows from Lemmas 3.14 and (B.1) that

X T
ϕ =

(
L2(M), (T∗T)(L2(M))

)
s/2a,∞ =

(
L2(M), H2a(M)

)
s/2a,∞ = Bs

2,∞(M).

• f † ∈ X T
ϕ ⇔ (3.12) below: For s/2a < µ0 Theorem 3.4 yields equivalence to

sup
α>0

α−s/2a
∥∥∥rα(T∗T) f †

∣∣∣ L2(M)
∥∥∥ < ∞. (3.12)

• (3.12)⇔ (c): This follows from Theorem 3.11.

• (3.12) ⇔ (d): It has been shown in [BHMR07, § 5.3] that (3.8a) holds true for
v(α) = α−(a+d/2)/(2a) and hence (3.8b) is satisfied with q = 2a/(a + d/2) > 1.
Therefore we can apply Theorem 3.12.
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Example 3.18. We will now have a look at the example studied in the Examples
2.7, 2.18 and 2.31 in the light of the previous theorem. IfM = S, then the Fourier
transform F is a mapping from L2(S) → `2(Z) and a convolution operator Th f =

h ∗ f can be written as Th f = F ∗(ĥ · f̂ ). Via relabeling we can identify `2(Z) and
`2(N) and hence we see that T as in the examples can be seen as a convolution
operator with the desired properties which is 1-times smoothing. As (after relabelling)
(∑n∈N n2s| f̂ (n)|2)1/2 is an equivalent norm on Hs(S) we see by Example 2.7 that
a spectral source condition f = (T∗T)ν/2w for some w ∈ L2(S) is equivalent to
f ∈ Hν. Therefore we can infer for the considered f † that f † ∈ Hs for s < 1/2.
On the other hand Example 2.31 illustrates that f † ∈ Bs

2,∞ if and only if s ≤ 1
2 as

(j2s ∑n>j| f̂ (n)|2)1/2 is an equivalent norm on Bs
2,∞. This shows that the convergence

rates obtained from the variational source condition are optimal.

Backward Heat Equation Let us consider the heat equation on a manifold M
satisfying Assumption B.17:

∂tu = ∆u inM× (0, τ)

u(·, 0) = f onM
(3.13)

The backward heat equation is the inverse problem to estimate the initial temperature
f from observations of the final temperature g† = u(·, τ). This fits into the framework
(3.11) with the function

ΛBH(t) = exp(−2τt).

We gain the following equivalence result:

Theorem 3.19 ([HW17a, Thm. 7.3]). LetM be a compact manifold satisfying Assumption
B.17. For spectral regularization methods meeting Assumption 3.2 and the forward operator
T : L2(M)→ L2(M) with T∗T = ΛBH(−∆) of the backward heat equation the following
statements for s > 0 and f † ∈ L2(M) \ {0} are equivalent:

(a) f † ∈ B2s
2,∞(M).

(b) f † satisfies a VSC (2.26) with index function ψ(t) = c(− log(t))−2s(1 + o(1)) as
t→ 0 for some c > 0.

(c) For a quasioptimal parameter choice rule ᾱ and a regularization method for which ∆( f †)
satisfies (3.5) we have

sup
{∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †

∣∣∣ L2
∥∥∥ : ‖ξ | L2‖ ≤ δ

}
= O

(
ln(δ−1)−s

)
, δ→ 0.

(d)
(

infα>0 E
[∥∥Rα(T f † + εW)− f †

∣∣ L2
∥∥2
])1/2

= O
(
ln(ε−1)−s), ε→ 0.
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Proof. Let ϕ(α) = ((1/2τ) ln α−1)−1/2 for 0 < α ≤ ΛBH(t0) and any t0 > 0.
• (a) ⇔ f † ∈ X T

ϕ2s : By Theorem 3.16 we have f † ∈ B2s
2,∞(M) if and only if

f † ∈ X T
ϕ2s .

• f † ∈ X T
ϕ2s ⇔ (b): This results from Theorem 3.1 and (2.25b).

• f † ∈ X T
ϕ2s ⇔ (c): This can be inferred from Theorems 3.4 and 3.11.

• f † ∈ X T
ϕ2s ⇔ (d): Using the results of [BHMR07, § 5.1] and applying Remark

3.13 and Theorem 3.12 it is evident that (3.9) is fulfilled for any ν > 0.

Example 3.20. We want to highlight again the difference between spectral and varia-
tional source conditions. It has been shown in [Hoh00] that for the backwards heat
equation on S we have

f † = ϕp(T∗T)w ⇐⇒ f † ∈ H2p(S)

with ϕp as in (2.3b). At the same time the previous theorem shows that the conver-
gence rate as the one implied by the spectral source condition with ϕp is obtained on

the set B2p
2,∞(S), hence spectral source conditions fail to predict the convergence rate

for functions f † ∈ Bs
2,∞ \ Hs correctly. Due to the embeddings Hs ⊂ Bs

2,∞ ⊂ Hs−ε for
all ε > 0 this difference seems small but nevertheless contains important functions.
If we consider the case of f †(t) = 1, if t ∈ (−π/2, π/2) and f †(t) = 0 else as a
prototypical function that is smooth up to jumps we see that it Fourier coefficients
f̂ †(n) ∼ 1

n for n 6= 0. As argued in Example 3.18 this shows that f † ∈ B1/2
2,∞ \ H1/2 and

hence for this class of functions spectral source conditions fail to predict the correct
rate.

Sideways Heat Equation We now consider the heat equation in the interval [0, 1].
We may think of [0, 1] as the wall of a furnace where the right boundary 1 is the
inaccessible interior side and 0 the accessible outer side. We assume the left boundary
is insulated and impose the no-flux boundary condition ∂xu(0, t) = 0. The forward
problem reads

ut = uxx in [0, 1]×R,
u(1, t) = f (t), t ∈ R,
ux(0, t) = 0, t ∈ R.

(3.14)

We will consider the inverse problem to estimate the temperature f (t) = u(1, t) at
the inaccessible side from measurements of the temperature g(t) = u(0, t) at the
accessible side for all times t ∈ R. As shown in [Hoh00] this fits into the framework
(3.11) if we set

ΛSH(t) =
∣∣∣∣cosh

√
i
√

t
∣∣∣∣−2

, M = R.
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Theorem 3.21 ([HW17a, Thm. 7.4]). For spectral regularization methods satisfying As-
sumption 3.2 and the forward operator T : L2(R) → L2(R) such that T∗T = ΛSH(−∆)
of the sideways heat equation the following statements for s > 0 and f † ∈ L2(R) \ {0} are
equivalent:

(a) f † ∈ Bs/2
2,∞(R).

(b) f † satisfies a VSC (2.26) with an index function ψ(t) = c(− log(t))−2s(1+ o(1)) for
some c > 0.

(c) For a quasioptimal parameter choice rule ᾱ and a regularization method for which ∆( f †)
meets (3.5) we have

sup
{∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †

∣∣∣ L2
∥∥∥ : ‖ξ | L2‖ ≤ δ

}
= O

(
ln(δ−1)−s

)
, δ→ 0.

(d)
(

infα>0 E
[∥∥Rα(T f † + εW)− f †

∣∣ L2
∥∥2
])1/2

= O
(
(ln ε−1)−s), ε→ 0.

Proof. Let ϕ be of the form ϕ(α) = 2(ln α−1)−2(1 + o(α)) as α → 0. Then we
obtain the equivalence of f † ∈ X T

ϕs/2 to (a)–(d) as in the proof of Theorem 3.19, since

ΛSH(t) = (1/4) exp(−
√

2t1/4)(1 + o(t)) as t→ ∞ as shown in [Hoh00].

Satellite Gradiometry Let us assume that the earth is a perfect ball of radius 1. The
gravitational potential u of the earth is determined by its values f at the surface by
the exterior boundary value problem

∆u = 0 in {x ∈ R3 : |x| > 1},
|u| → 0 |x| → ∞,

u = f on S2.

(3.15)

In satellite gradiometry one studies the inverse problem to determine f from satellite
measurements of the rate of change of the gravitational force in radial direction at
height R > 0, i.e. the data is described by the function g = d2u

dr2 |RS2 . As shown in
[Hoh00] this fits into the framework (3.11) if we set

ΛSG(t) :=
(

1
2
+ λ

)2(3
2
+ λ

)2
R−2λ, λ =

√
1
2
+ t, M = S2.

Note that ΛSG (unlike ΛBH and ΛSH) is not globally monotonically decreasing unless
R is large enough (one needs R ≥ exp((4

√
2 + 2)/(

√
2 + 5)) ≈ 3.3, which is not

realistic in application).

Theorem 3.22 ([HW17a, Thm. 7.5]). For spectral regularization methods satisfying As-
sumption 3.2 and the forward operator T : L2(S2)→ L2(S2) such that T∗T = ΛSG(−∆) of



3.6. Examples 95

the satellite gradiometry problem the following statements for s > 0 and f † ∈ L2(S2) \ {0}
are equivalent:

(a) f † ∈ Bs
2,∞(S2).

(b) f † satisfies a VSC (2.26) with an index function ψ(t) = c(− log(t))−2s(1+ o(1)) for
some c > 0.

(c) For a quasioptimal parameter choice rule ᾱ and a regularization method for which ∆( f †)
meets (3.5) we have

sup
{∥∥∥Rᾱ(δ,T f †+ξ)(T f † + ξ)− f †

∣∣∣ L2
∥∥∥ : ‖ξ | L2‖ ≤ δ

}
= O

(
ln(δ−1)−s

)
, δ→ 0.

(d)
(

infα>0 E
[∥∥Rα(T f † + εW)− f †

∣∣ L2
∥∥2
])1/2

= O
(
(ln ε−1)−s), ε→ 0.

Proof. Even if R < exp((4
√

2 + 2)/(
√

2 + 5)), then ΛSG(t) is still strictly decreasing
for t large enough. Therefore, if ϕ is given by ϕ(α) = 2 ln R(ln α−1)−1(1 + o(1)) as
α→ 0, the equivalence of f † ∈ X T

ϕs to (a)–(d) follows as in the proof of Theorem 3.19,

since ΛSG(t) = exp(−2t1/2 ln R)(1 + o(1)) as t→ ∞.





CHAPTER IV
OPTIMAL CONVERGENCE RATES
IN BESOV SPACES ON THE TORUS

In Riemann, Hilbert or in Banach space
Let superscripts and subscripts go their ways.

Our asymptotes no longer out of phase,
We shall encounter, counting, face to face.

Verse of “Love and Tensor Algebra” from “The
Cyberiad” by STANISŁAW LEM.

In this chapter we study Tikhonov regularization in the scale of Besov spaces on the
torus. For readers unfamilar with Besov spaces we recommend to read Appendix B.3
first. Besov space regularization is often implicitly employed when using the weighted
sum of a wavelet expansion as a penalty term, as the Besov norm can be expressed via
wavelet coefficients as defined in (B.5). Such penalties with wavelet Besov norms with
small index p are frequently applied to enforce sparsity (see e.g. [DDDM04, RR10]).
For arbitrary p ∈ (1, 2] and q ∈ (1, ∞) choose the functional setting given by

X = B0
p,q(T

d), R(·) = 1
r
‖· | B0

p,q‖r
W and Y = B0

2,2(T
d) = L2(Td).

The idea behind picking p ∈ (1, 2] is to keep the idea of “sparse” representations of
the minimizers of the Tikhonov functional. In this case sparse means a faster decay
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of the coefficients and not necessarily only a finite number of nonzero coefficients.
On how to choose q no guideline seems to exist in the literature; the most common
choice seems to be q = p for simplicity. Here we will study the whole range of
possible values. Recall that our strategy Theorem 2.24 to verify a VSC relies on
Assumption 2.22 which allows us to bound the Bregman distance from below by a
norm power. This assumption can be fulfilled if X is r-convex (see (2.27)), so we set
r := max{2, p, q} as Besov spaces Bs

p,q are known to be convex of power type r (see
[Kaz13]).

In the deterministic setting Tikhonov regularization will hence be given by

f̂α ∈ arg min
f∈dom(F)

1
2α

∥∥∥F( f )− gobs
∣∣∣ L2
∥∥∥2

+
1
r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r

W
,

where gobs := F( f †) + ξ, with
∥∥∥ξ
∣∣∣ L2
∥∥∥ ≤ δ.

(4.1a)

Convergence properties of minimizers of this functional were already studied in
[DDDM04] but no convergence rates were obtained. Rates of the order O(

√
δ) and

O(δ2/3) based on the range conditions of Section 2.2 have been derived in [LT08] and
[RR10] respectively.

As our goal is to derive order optimal convergence rates we will first study lower
bounds on regularization methods in Section 4.1 whose derivation will be similar to
Lemma 2.11 and present an idea on how to compute them.

The application of Theorem 2.24 requires knowledge of subgradients. Therefore
we will study whether additional smoothness on f † leads to additional smoothness
of f ∗ ∈ ∂R( f †) in Section 4.2.

In Section 4.3 we move to a statistical setting where the error is given by Gaussian
white noise. Hence the Tikhonov functional has to to be altered as described in
Example 1.3(b) to

arg min
f∈dom(F)

1
2α

∥∥∥F( f )
∣∣∣ L2
∥∥∥2
− 〈F( f ), gobs〉+ 1

r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r

W
,

with gobs = F( f †) + εZ, where Z is a white noise process on L2(Td).
(4.1b)

For statistical inverse problems convergence rates have been considered for methods
based on wavelet shrinkage. Here minimax optimal rates under Besov smoothness
assumptions have been achieved, see [CHR04, DJKP95, KPPW07, KMR06]. The
advantage of our appoach, however, is that fewer assumptions on the operator are
required – it even works for nonlinear operators.

In Sections 4.4 and 4.5 we then derive convergence rates via variational source
conditions for finitely and infinitely smoothing operators respectively. It will turn out
that our strategy leads to order optimal rates for q ≥ 2.
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4.1 Lower Bounds on Convergence Rates

Recall that the modulus of continuity was defined as

ω(δ,K) := sup{‖ f1 − f2‖ : f1, f2 ∈ K, ‖F( f1)− F( f2)‖ ≤ δ}.

In a certain sense the modulus of continuity gives the best possible stability estimate
fulfilled by F−1 on the set K. If F = T is linear, then the modulus of continuity is
alternatively often defined as

ωlin(δ,K) := sup{‖ f ‖ : f ∈ K, ‖T f ‖ ≤ δ}.

Note that these moduli behave quite similarly since

ω(δ,K) = ωlin(δ,K−K)

and if K is given by some ball around 0, then K−K = 2K.

Lemma 4.1. Let R(·) = 1
q‖· | X ‖q for some q > 1, T : X → Y linear and K ⊂ X such

that K = −K. Then any reconstruction method R : Y → X fulfills the following lower
bound:

inf
R

sup
{

∆R
(

R(gobs), f †) : f † ∈ K, gobs ∈ Y ,
∥∥∥T f − gobs

∥∥∥ ≤ δ
}
≥ 1

q′
(
ωlin(δ,K)

)q

Proof. Let f ∈ K such that ‖T f ‖ ≤ δ and set f ∗ ∈ ∂R( f ). Setting gobs = 0 we see
that ‖T f − gobs‖ ≤ δ is fulfilled. By symmetry of K and linearity of T we also have
− f ∈ K with ‖T(− f )− gobs‖ ≤ δ and − f ∗ ∈ ∂R(− f ). Hence

sup
{

∆R
(

R(gobs), f †) : f † ∈ K, gobs ∈ Y ,
∥∥∥T f − gobs

∥∥∥ ≤ δ
}

≥ sup
f∈K,‖T f ‖≤δ

1
2
[
∆R
(

R(0), f
)
+ ∆R

(
R(0),− f

)]
= sup

f∈K,‖T f ‖≤δ

1
2
[
2R
(

R(0)
)
+ 2R∗

(
f ∗
)
+ 〈 f ∗, R(0)〉+ 〈− f ∗, R(0)〉

]
= R

(
R(0)

)
+ sup

f∈K,‖T f ‖≤δ

R∗
(

f ∗
)

by the equality condition in Young’s inequality. By Theorem B.7 we get

R∗
(

f ∗
)
=

1
q′
∥∥ f ∗

∣∣X ′∥∥q′
=

1
q′
‖ f | X ‖q

and as infRR(R(0)) = 0 this proves the claim.
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For a nonlinear operator F where the penalty term meets Assumption 2.22 one
can obviously conclude with Lemma 2.11 that

inf
R

sup
{

∆R
(

R(gobs), f †) : f † ∈ K, gobs ∈ Y ,
∥∥∥F( f )− gobs

∥∥∥ ≤ δ
}
≥ C∆

2r

(
ω(δ,K)

)r.

In order to prove lower bounds one hence needs to find good estimates from
below of the modulus of continuity. The following theorem is built upon [DDDM04,
Prop. 4.6] and estimates the decay of the modulus of continuity in the case where the
data has a nice representation in the Fourier domain.

Theorem 4.2 ([WSH18, Prop. 2.9]). Let 1 ≤ p, p̃ ≤ ∞, 1 ≤ q, q̃ ≤ ∞, s > 0 such
that Bs

p̃,q̃ ⊂ B0
p,q. Set X := B0

p,q(T
d), K := { f ∈ Bs

p̃,q̃ : ‖ f | Bs
p̃,q̃‖ ≤ $}, Y := L2(Td).

Assume that there exists (bz)z∈Zd ⊂ R with bz > 0 for all z ∈ Zd such that∥∥∥F( f1)− F( f2)
∣∣∣ L2
∥∥∥2
≤ ∑

z∈Zd

bz

∣∣∣ f̂1(z)− f̂2(z)
∣∣∣2.

Then, if F(0) = 0, the modulus of continuity satisfies

ω(δ,K) ≥ sup
k∈N0

{
min

{
2−ks$,

(
max
z∈Γk

bz

)− 1
2
δ

}}
with Γk introduced in (B.3).

Proof. For w ∈ Zd let k ∈ N0 be uniquely defined by w ∈ Γk and set

fw := F ∗ ĥw where ĥw(z) := δz,w min

{
2−ks$,

(
max
z∈Γk

bz

)− 1
2
δ

}
.

One immediately calculates that∥∥∥ fw

∣∣∣ B0
p,q

∥∥∥ =
∣∣∣ĥw(w)

∣∣∣ = min

{
2−ks$,

(
max
z∈Γk

bz

)− 1
2
δ

}
,∥∥∥ fw

∣∣∣ Bs
p,∞

∥∥∥ = 2ks
∣∣∣ĥw(w)

∣∣∣ ≤ $,∥∥∥F fw

∣∣∣ L2
∥∥∥ = (bz)

1
2

∣∣∣ĥw(w)
∣∣∣ ≤ δ.

Hence fw ∈ K for all w ∈ Zd and since 0 ∈ K we obtain

ω(δ,K) ≥ sup
w∈Zd

∥∥∥ fw

∣∣∣ B0
p,q

∥∥∥ = sup
k∈N0

{
min

{
2−ks$,

(
max
z∈Γk

bz

)− 1
2
δ

}}
.

Note that this theorem can be easily adapted to any other orthonormal system in
L2 that provides an unconditional basis for Besov spaces.
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4.2 Subgradient Smoothness

The general strategy to verify VSCs formulated in Theorem 2.24 requires knowledge
on the subgradient f ∗ ∈ ∂R( f †) at the true solution. It is, however, more natural
to assume a priori knowledge on the true solution f †. If X is a Hilbert space and
R(·) = 1

2‖· | X ‖2, then (and only then) the mapping f † 7→ f ∗ is equal to the identity
mapping and hence a priori knowledge on one function immediately transfers to
the other. In the more general case thatR(·) = h(‖· | X ‖) we get that f ∗ ∈ JX ,h′( f †)
under mild assumptions, see Theorem B.7. The continuity properties of the duality
mapping have been studied for some time, see e.g. [CSZ07] and references therein
(recall from Proposition B.8 that a different choice of h only results in a different
scaling of the mapping). Much less is however known about the following question:

If f † ∈ X̃ ∩ X for some space X̃ , does there exist a space X̂ such that
f ∗ ∈ X̂ ∩ X ∗?

In the language of convex analysis we can rephrase this as: Are there linear subspaces
that are mapped into linear subspaces by the duality mapping? In the inverse prob-
lems context this means: Does the a priori knowledge of f † ∈ X̃ give some insight
on f ∗? This question is not only of interest for the proposed strategy, it also appears
naturally in the study of the range conditions introduced in Section 2.2.

4.2.1 Smoothness of Besov norm subgradients

Before answering the question in the context of Besov spaces, we will take a look at
sequence spaces. For this let I = I1 × I2 be an index set and w : I1 → R be a weight
function (that is w(α) > 0 for all α ∈ I1). Define for p, q ∈ [1, ∞] the space `

q
w(`

p) as
the set of all sequences λ = (λα,β)(α,β)∈I for which the norm

∥∥∥λ
∣∣∣ `q

w(`
p)
∥∥∥ =

∑
α∈I1

w(α)q

(
∑

β∈I2

∣∣λα,β
∣∣p) q

p


1
q

is finite with the usual modification if p = ∞ or q = ∞. Note that this definition can
also be extended to p, q ∈ (0, 1), although the spaces are then no longer Banach spaces.

For p, q ∈ [1, ∞) one easily checks that the dual space is given by (`
q
w(`

p))′ = `
q′
v (`

p′)
where v : I1 → R is given by v(α) = w−1(α) for all α ∈ I1.

In the context of subgradients, one sees that if p, q ∈ (1, ∞), then 1
r ‖· | `

q
w(`

p)‖r

is Gateaux differentiable for all r > 0. Thus Lemma A.7 yields µ = (µα,β)(α,β)∈I ∈
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∂ 1
r ‖λ | `

q
w(`

p)‖r if and only if

µα,β =
∂

∂λα,β

1
r

∥∥∥λ
∣∣∣ `q

w(`
p)
∥∥∥r

=
∥∥∥λ
∣∣∣ `q

w(`
p)
∥∥∥r−q

w(α)q

 ∑
β′∈I2

∣∣∣λα,β′
∣∣∣p


q
p−1

λα,β∣∣λα,β
∣∣2−p .

(4.2)
This allows us to answer the initial question of this section in the following way:

Proposition 4.3. Let p1, q1 ∈ (1, ∞), p2, p3, q2, q3, r > 0 and w1, w2, w3 be weight func-
tions. Let λ ∈ `

q1
w1(`

p1) and µ ∈ ∂ 1
r ‖λ | `

q1
w1(`

p1)‖r. Assume that the parameters are related
as follows: p3 = p2

p1−1 , q3 = q2
q1−1 , w3 = wq1−1

2 w−q1
1 and

(a) either q1 = p1

(b) or p2 = p1.
Then

λ ∈ `
q2
w2(`

p2) ⇐⇒ µ ∈ `
q3
w3(`

p3).

In both cases the norm of µ in `
q3
w3(`

p3) is given by

∥∥∥µ
∣∣∣ `q3

w3(`
p3)
∥∥∥ =

∥∥∥λ
∣∣∣ `q1

w1(`
p1)
∥∥∥r−q1

∥∥∥λ
∣∣∣ `q2

w2(`
p)
∥∥∥q1−1

.

Proof. Let λ ∈ `
q2
w2(`

p2), then by using the explicit form of the subgradient (4.2) we
see that A := ‖µ | `q3

w3(`
p3)‖q3 /‖λ | `q1

w1(`
p1)‖q3(r−q1) is given by

A = ∑
α∈I1

w3(α)
q3 w1(α)

q1q3

(
∑

β∈I2

∣∣λα,β
∣∣p1

) q3
p1
(q1−p1)

(
∑

β∈I2

∣∣λα,β
∣∣p3(p1−1)

) q3
p3

.

If (a) holds, then the first sum over I2 will be taken to the power zero and therefore
not influence the product. The relation of the parameters then yields

A = ∑
α∈I1

w1(α)
q1q3 w3(α)

q3

(
∑

β∈I2

∣∣λα,β
∣∣p3(p1−1)

) q3
p3

= ∑
α∈I1

w2(α)
q2

(
∑

β∈I2

∣∣λα,β
∣∣p2

) q2
p2
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which implies the expression for the norm. If we have (b), then

A = ∑
α∈I1

w1(α)
q1q3 w3(α)

q3

(
∑

β∈I2

∣∣λα,β
∣∣p1

) q3
p1
(q1−p1)+

q3
p3

= ∑
α∈I1

w2(α)
q2

(
∑

β∈I2

∣∣λα,β
∣∣p2

) q2
p2

and hence the norm results holds true.
For the reverse direction use that

µ ∈ ∂
1
r
‖λ | `q1

w1(`
p1)‖r if and only if λ ∈ ∂

1
r′
‖µ | `q′

w−1
1
(`p′)‖r′

by Corollary A.15 and replace the parameters accordingly.

The result of Proposition 4.3(a) has already been worked out for q2 = p2 indepen-
dently in [RR10] and [LT08] in the context of range conditions of Section 2.2. While
the former focuses more on the aspect of the form of abstract sequence spaces as we
did here the latter provides a more specific interpretation for Besov spaces; however,
both results miss the reverse direction.

Let S : Z → X be a linear and bounded mapping, then for all h ∈ Z the subdiffer-
ential chain rule (see Proposition A.8(b)) yields

∂(R ◦ S)|h = S∗(∂R|Sh).

We can now extend the result into the scale of Besov spaces and unify the results of
[LT08, RR10] with [WSH18, Thm 3.5]. Recall that the wavelet norm on Besov spaces
is given by

∥∥∥ f
∣∣∣ Bs

p,q

∥∥∥
W

:=

 ∑
j∈N0

Lj

∑
l=1

2jsq2jd( 1
2−

1
p )

 ∑
m∈Pd

j

|λl
j,m|p


q
p


1
q

,

where λ =W f andW is the wavelet transform defined in (B.5a) for either Rd or Td.

Corollary 4.4. Let p1, q1 ∈ (1, ∞), r > 0, p2, p3, q2, q3 ∈ (0, ∞] and s1, s2, s3 ∈ R such
that p3 = p2

p1−1 , q3 = q2
q1−1 and s3 = −s1 + (s2 − s1)(q1 − 1). Assume that the wavelet

system is at least max{|s1|, |s2|, |s3|} smooth. Let f ∗ ∈ ∂ 1
r ‖ f † | Bs1

p1,q1‖r
W , then if either

q1 = p1 or p2 = p1 we have that

f † ∈ Bs1
p1,q1 ∩ Bs2

p2,q2 ⇐⇒ f ∗ ∈ B−s1
p′1,q′1
∩ Bs3

p3,q3 .
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Furthermore ∥∥ f ∗
∣∣ Bs3

p3,q3

∥∥
W =

∥∥∥ f †
∣∣∣ Bs1

p1,q1

∥∥∥r−q1

W

∥∥∥ f †
∣∣∣ Bs2

p2,q2

∥∥∥q1−1

W
.

Proof. Using the wavelet norm we see that ‖ f | Bs
p,q‖W = ‖W f | `q

w(`
p)‖ for

w(α) := ws,p((j, l)) := 2js2d( 1
2−

1
p ),

where I1 :=

{
(j, l) ∈ N2

0 with

{
l = 1 j = 0
1 ≤ l ≤ 2d − 1 else

}
.

Setting λ :=W f let µ be uniquely defined by µ ∈ ∂ 1
r ‖λ | `

q
w(`

p)‖r. By the subgradient
chain rule we hence have f ∗ = W∗µ and therefore ‖ f ∗ | Bs̃

p̃,q̃‖ = ‖µ | `q̃
ws̃,p̃(`

p̃)‖ as
WW∗ = I. Now the result follows from Proposition 4.3.

The consideration above does not only hold for Besov spaces on Rd or Td but
whenever a wavelet system with the properties of (B.4) exists. If e.g. Ω ⊂ Rd is a
sufficently nice open domain one can show that a wavelet system carrying over the
main properties of (B.4) exists, see [Tri08, Thm. 2.33], and that the characterization of
Besov spaces (B.5) remains valid, see [Tri08, Thm. 3.13 and Prop. 3.21]. The difficult
part is to compute this wavelet system explicitly.

The interesting case of the corollary above is if Bs2
p2,q2 ⊂ Bs1

p1,q1 as in these cases
Bs3

p3,q3 is also a proper subspace of B−s1
p′1,q′1

; otherwise the explicit expression of the

norm might still be useful. Note that if q2 = ∞, that is f † is in the largest space
with smoothness s2, then also q3 = ∞, so f ∗ is again in the largest space with fixed
smoothness s3.

From now on we will always assume sufficient smoothness of the wavelet system
in the sense of the previous corollary without further mentioning.

As the definition of the norm influences the form of the subgradient an immediate
question that arises is whether the result holds true for other norm definitions as well.
While we cannot give a complete answer we will show that at least for the norm
defined via (B.3) one obtains the same smoothness results for Td and Rd with the
help of multiplier theorems, see the remark below. Hence the advantage of using
the norm definition via orthogonal wavelets is in this case to provide a simple and
self-contained proof of the subgradient smoothness result.

Remark 4.5. Let pj, qj, sj, r for j ∈ {1, 2, 3} as in Corollary 4.4. Using the norm
(B.3) on Bs

p,q one calculates similarly to (4.2) with the help of the chain rule that
f ∗ ∈ ∂ 1

r ‖ f † | Bs1
p1,q1‖r if and only if

f ∗ =
∥∥∥ f †

∣∣∣ Bs1
p1,q1

∥∥∥r−q1
∑

j∈N0

2js1q1
∥∥∥F ∗ϕjF f †

∣∣∣ Lp1
∥∥∥q1−p1

(F ∗ϕjF )
(

F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

)
.
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In comparison with the proof of Proposition 4.3 the difficulty lies in the fact that∥∥∥∥∥F ∗ϕjF
(

F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

) ∣∣∣∣∣ Lp3

∥∥∥∥∥ 6=
∥∥∥∥∥ F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

∣∣∣∣∣ Lp3

∥∥∥∥∥ =
∥∥∥F ∗ϕjF f †

∣∣∣ Lp2
∥∥∥ p2

p3 .

The first idea that may come to one’s mind is to use the convolution theorem in order
to estimate∥∥∥∥∥(F ∗ϕjF )

(
F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

) ∣∣∣∣∣ Lp3

∥∥∥∥∥ ≤ ∥∥∥F ∗ϕj

∣∣∣ L1
∥∥∥∥∥∥∥∥ F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

∣∣∣∣∣ Lp3

∥∥∥∥∥.

This is, however, an insufficient approach: OnTd we would obtain that ‖F ∗ϕj | L1‖ ∼
jd by [Ton10] which would have to be compensated by a loss of ε-smoothness for
some ε > 0. Even worse on Rd we get that F ∗ϕj 6∈ L1 for all j ∈ N0 so this ansatz
would not be useful at all. The remedy is the usage of multiplier theorems which
follow from the Marcinkiewicz multiplier theorem:

(a) OnTd we know by [Gra14, Thm. 4.3.16] that there exists a constant cp,d such that
‖F ∗χ{z : |zi |≤n,i=1,...,d}F f | Lp(Td)‖ ≤ cp,d‖ f | Lp(Td)‖ uniformly for all n > 0,
therefore∥∥∥∥∥(F ∗ϕjF )

(
F ∗ϕjF f †

|F ∗ϕjF f †|2−p1

) ∣∣∣∣∣ Lp3(Td)

∥∥∥∥∥ ≤ 2cp,d

∥∥∥F ∗ϕjF f †
∣∣∣ Lp2(Td)

∥∥∥ p2
p3 .

(b) On Rd by [Gra14, Thm. 6.3.2] there exists again a constant cp,d such that

‖F ∗χ{z : |zi |≤n,i=1,...,d}F f | Lp(Rd)‖ ≤ cp,d‖ f | Lp(Rd)‖

uniformly for all n > 0, so the claim follows as above.
Hence for both cases the result of Corollary 4.4 remains true.

4.2.2 Jackson-type inequality

We now return to our motivation for studying properties of subgradients. If one
chooses as an operator familiy Pj in Theorem 2.24 a projection onto subspaces whose
elements have compact support in Fourier domain, then explicit bounds on κ in
(2.28a) follow from exploiting the smoothness of the subgradients. In order to do so
choose J = N0 and define

Pj : B0
p′ ,q′ → B0

p′ ,q′ , Pj f :=
j−1

∑
k=0

fk (4.3)
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with fk := F ∗ϕkF f and P0 f := 0 with ϕk as in (B.3). Note that these operators fulfill

f j = (Pj+1 − Pj) f and PjPk f = Pmin{j,k} f .

To distinguish different norms on Besov spaces Bs
p,q, we will write ‖· | Bs

p,q‖F for
the norm in (B.3); in case it does not matter which norm definition we use we will
drop the subscripts of the norm. The following Jackson-type inequality will give an
immediate expression for κ.

Lemma 4.6. Let 1 < p, q < ∞, r = max{2, p, q} and s > 0. Let f † ∈ Bs
p,∞ and

f ∗ ∈ ∂ 1
r ‖ f † | B0

p,q‖r
W . Then there exists some constant c > 0 such that

∥∥∥ f †
∣∣∣ Bs

p,∞

∥∥∥
W
≤ $ =⇒

 f ∗ ∈ Bs(q−1)
p′ ,∞ and

∥∥∥ f ∗
∣∣∣ Bs(q−1)

p′ ,∞

∥∥∥
F
≤ c$r−1∥∥∥(I − Pj) f ∗

∣∣∣ B0
p′ ,q′

∥∥∥
F
≤ c$r−12−js(q−1)

.

Proof. We can infer ‖ f ∗ | Bs(q−1)
p′ ,∞ ‖F ≤ c$r−1 from Corollary 4.4 and the equivalence

of the norms. Hence, expressing the B0
p′ ,q′ -norm via (B.3) we obtain∥∥∥(I − Pj) f ∗

∣∣∣ B0
p′ ,q′

∥∥∥q′

F
= ∑

k∈N0

∥∥∥(Pk+1 − Pk)(I − Pj) f ∗
∣∣∣ Lp′

∥∥∥q′

=
∞

∑
k=j

∥∥∥(Pk+1 − Pk) f ∗
∣∣∣ Lp′

∥∥∥q′

≤ c

[
∞

∑
k=j

2−ks(q−1)q′
]∥∥∥ f ∗

∣∣∣ Bs(q−1)
p′ ,∞

∥∥∥q′

F

≤ c2−js(q−1)q′$(r−1)q′ ,

which proves the second part of the claim.

In other words, our choice of (Pj)j∈N0 fulfills (2.28a) with κ(j) := c$r−12−js(q−1)

which satisfies (2.28b). Note that the constant c > 0 only depends on the wavelet
system and the parameters s, p, q. The proof just requires r ≥ q but the additional
Assumption on r guarantees that Assumption 2.22 will be met.

Keeping the notation of Corollary 4.4, a different approach for the choice of the
operator family is the projections P̃j defined by

P̃j f ∗ = ∑
k≤j

∑
l

∑
m

µl
k,mφl

k,m

which would give the same bounds as in the lemma. The difference then lies in
how to prove an estimate of the form (2.28c): if the operator has good properties in
Fourier domain it makes sense to use Pj; however, if it is easier to study the operator
in wavelet domain one should use P̃j.
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4.3 Abstract Convergence Rates for Gaussian White
Noise

In this section we will extend the convergence rate theory of Theorem 2.20 to the white
noise model (4.1b). In comparison to the deterministic case we have two difficulties
to deal with:

(a) The Tikhonov functional will not meet Assumption 1.4 as we cannot guarantee
that inf f∈dom(F) S(F( f ), gobs) ∈ R. Hence the existence of minimizers has to be
shown.

(b) Another difficulty in the application of Theorem 2.20 is that no global bound err
on the noise level exists. As seen in Example 1.3 we only know that err(g) =
ε〈Z, g− g†〉 is a Gaussian random variable with E[err(g)] = 0 and V[err(g)] =
ε2‖g− g† | Y‖2.

It turns out that both problems can be overcome by a further assumption. In order to
motivate this property we address the second issue first.

Assume that Y = L2(Td). Then a Gaussian white noise process can be seen
as a mapping Z : Ω → D ′(Td) where (Ω, Σ, P) is the underlying probability space
and D ′(Td) the space of distributions on Td. In this case the following deviation
inequality is known for white noise Z:

Lemma 4.7 (see [Ver11, Thm. 3.4, Cor. 3.7]). Let p̃ ∈ (1, ∞). Then Z ∈ Bs
p̃,∞ almost

surely if and only if s ≤ −d/2. Further there exists a constant CZ > 0 depending on p̃ and
d, such that

∀t > 0 : P
[∥∥∥Z

∣∣∣ B−d/2
p̃,∞

∥∥∥ > MZ + t
]
≤ exp(−CZt2).

where MZ is the median of ‖Z | B−d/2
p̃′ ,∞ ‖.

As err(g) = ε〈Z, g− g†〉 it is natural in the light of the previous lemma to estimate
the error functional for p ∈ (1, 2] via

|err(g)| = ε
∣∣∣〈Z, g− g†

〉∣∣∣ ≤ ε
∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥∥∥∥g− g†
∣∣∣ Bd/2

p,1

∥∥∥ (4.4)

and the right hand side will be bounded almost surely if g, g† ∈ Bd/2
p,1 . Since we only

need a bound on the error functional if g = F( f̂α) this can be achieved by assuming
that F(X ) ⊂ Bd/2

p,1 . Still finiteness of ‖F( f̂α)− F( f †) | Bd/2
p,1 ‖ is not enough as control

over the factor is needed. To formulate a general error bound as well as to establish
existence of minimizers we will hence assume that the second factor can be estimated
as follows:
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Assumption 4.8. The operator F, regarded as F : dom(F) ⊂ B0
p,q → Bd/2

p,1 is compact.
Furthermore there exist constants Ccom, β, γ > 0 with β < 2 and γ < 1− β/2 such
that the inequality∥∥∥F( f1)− F( f2)

∣∣∣ Bd/2
p,1

∥∥∥ ≤ Ccom

∥∥∥F( f1)− F( f2)
∣∣∣ L2
∥∥∥β

∆R( f1, f2)
γ

holds true for all f1, f2 ∈ dom(F).

In many cases this assumption can be verified in the following way:
Remark 4.9. Note that if Assumption 2.22 is met the previous assumption can be
fulfilled by an interpolation approach if F is Lipschitz continuous into a space of
higher smoothness and p ∈ (1, 2]. That is assuming that for some q̃ ∈ [1, ∞] and some
t > d/2 there exists a constant L > 0 such that ‖F( f1)− F( f2) | Bt

p,q̃‖ ≤ L‖ f1− f2 | X ‖,
then by standard interpolation (see Proposition B.14) we get that∥∥∥F( f1)− F( f2)

∣∣∣ Bd/2
p,1

∥∥∥ ≤ cint

∥∥∥F( f1)− F( f2)
∣∣∣ B0

p,2

∥∥∥1− d
2t
∥∥∥F( f1)− F( f2)

∣∣∣ Bt
p,q̃

∥∥∥ d
2t .

Now as ‖· | B0
p,2‖ ≤ ‖· | L2‖ for p ∈ (1, 2] we obtain with the Lipschitz property

Assumption 4.8 where β = 1− d
2t , γ = d

2tr and Ccom = cint(LC−1/r
∆ )d/(2t).

This allows to generalize [WSH18, Prop. 4.8] in order to show that there exists a
minimizer of the Tikhonov functional almost surely.

Theorem 4.10. Let Assumption 4.8 be fulfilled. Then the Tikhonov functional (4.1b) has a
global minimizer f̂α almost surely.

Proof. As gobs = F( f †) + εZ we have NZ := ‖gobs | B−d/2
p′ ,∞ ‖ < ∞ almost surely. Then,

picking any f0 ∈ dom(F), we can estimate

〈gobs, F( f )〉 ≤ NZ

(∥∥∥F( f )− F( f0)
∣∣∣ Bd/2

p,1

∥∥∥+ ∥∥∥F( f0)
∣∣∣ Bd/2

p,1

∥∥∥)
≤ NZ

(
Ccom

∥∥∥F( f )− F( f0)
∣∣∣ L2
∥∥∥β

∆R( f , f0)
γ +

∥∥∥F( f0)
∣∣∣ Bd/2

p,1

∥∥∥)
≤ 1

4

∥∥∥F( f )− F( f0)
∣∣∣ L2
∥∥∥2

+ (CcomNZ∆R( f , f0)
γ)

2
2−β + NZ

∥∥∥F( f0)
∣∣∣ Bd/2

p,1

∥∥∥
by Assumption 4.8 and Young’s inequality. Thus the data fidelity functional can be
estimated from below by

S(F( f ), gobs) =
1
2

∥∥∥F( f )
∣∣∣ L2
∥∥∥2
− 〈gobs, F( f )〉

≥ 1
2

∥∥∥F( f )
∣∣∣ L2
∥∥∥2
−
(

1
4

∥∥∥F( f )− F( f0)
∣∣∣ L2
∥∥∥2

+(CcomNZ∆R( f , f0)
γ)

2
2−β + NZ

∥∥∥F( f0)
∣∣∣ Bd/2

p,1

∥∥∥) .
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By Cauchy Schwarz and Young’s inequality the estimate

2
∥∥∥F( f )

∣∣∣ L2
∥∥∥2
−
∥∥∥F( f )− F( f0)

∣∣∣ L2
∥∥∥2

=
∥∥∥F( f )

∣∣∣ L2
∥∥∥2

+ 2〈F( f ), F( f0)〉 −
∥∥∥F( f0)

∣∣∣ L2
∥∥∥2

≥ −2
∥∥∥F( f0)

∣∣∣ L2
∥∥∥2

holds true, thus we can estimate

S(F( f ), gobs) ≥ −1
2

∥∥∥F( f0)
∣∣∣ L2
∥∥∥2
− (CcomNZ∆R( f , f0)

γ)
2

2−β − NZ

∥∥∥F( f0)
∣∣∣ Bd/2

p,1

∥∥∥.

Hence there exists a constant D > −∞ depending on f0 and NZ such that the
Tikhonov functional can be almost surely bouned from below by

1
2

∥∥∥F( f )
∣∣∣ L2
∥∥∥2
− 〈gobs, F( f )〉+ α

r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r

≥D− (CcomNZ)
2

2−β ∆R( f , f0)
2γ

2−β +
α

r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r

≥D− (CcomNZ)
2

2−β

(
2
r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r
+

2
r′
∥∥∥ f0

∣∣∣ B0
p,q

∥∥∥r
) 2γ

2−β

+
α

r

∥∥∥ f
∣∣∣ B0

p,q

∥∥∥r
.

As 2γ < 2− β the last line tends to infinity as ‖ f | B0
p,q‖ → ∞.

This shows that any minimizing sequence ( fn)n∈N of the Tikhonov functional
must be bounded in B0

p,q and hence has a weakly convergent subsequence. Without
loss of generality assume fn ⇀ f∗ as n → ∞ for f∗ ∈ X . Since F is compact as
a mapping into Bd/2

p,1 by Assumption 4.8, we get that ‖F( fn)− F( f∗) | Bd/2
p,1 ‖ → 0 as

n→ ∞ and therefore

1
2

∥∥∥F( fn)
∣∣∣ L2
∥∥∥2
− 〈gobs, F( fn)〉 →

1
2

∥∥∥F( f∗)
∣∣∣ L2
∥∥∥2
− 〈gobs, F( f∗)〉, as n→ ∞.

Together with the weak lower semi-continuity of ‖· | B0
p,q‖r it follows that f∗ is a

minimizer of the Tikhonov functional.

Furthermore the following estimates of both noise level and rate are obtained.

Theorem 4.11 (see [WSH18, Thm. 2.6]1). Let a variational source condition (2.26) and
Assumption 4.8 be met, and let f̂α be a global minimizer of the Tikhonov functional in (4.1b).

(a) There exists a constant c > 0 such that the effective noise level at F( f̂α) is bounded by

err
(

F( f̂α)
)
≤ c
∥∥∥εZ

∣∣∣ B−d/2
p′ ,∞

∥∥∥ 2
2−β ∆R( f̂α, f †)

2γ
2−β + 2α(−ψ)∗

(
− 1

2α

)
.

1The idea and the proof of this theorem are due to of Benjamin Sprung; further results presented in this
and the following sections on the white noise error model have been obtained in cooperative research.
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(b) The error bound

1
2

∆R( f̂α, f †) ≤ cα
− 2−β

2−β−2γ

∥∥∥εZ
∣∣∣ B−d/2

p′ ,∞

∥∥∥ 2
2−β−2γ

+ 3(−ψ)∗
(
− 1

2α

)
holds true.

Proof. For (a) note that due to Assumption 4.8 we obtain with (4.4) that

err
(

F( f̂α)
)
≤ ε
∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥∥∥∥F( f̂α)− F( f †)
∣∣∣ Bd/2

p,1

∥∥∥
≤ Ccomε

∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥∥∥∥F( f̂α)− F( f †)
∣∣∣ L2
∥∥∥β

∆R( f̂α, f †)γ.

By the image space convergence rate (2.23b) of Theorem 2.20 we can hence estimate

err
(

F( f̂α)
)
≤ Ccom

∥∥∥εZ
∣∣∣ B−d/2

p′ ,∞

∥∥∥2β/2
[

err
(

F( f̂α)
)
+ α(−ψ)∗

(
− 1

2α

)]β/2
∆R( f̂α, f †)γ

≤ c
∥∥∥εZ

∣∣∣ B−d/2
p′ ,∞

∥∥∥ 2
2−β ∆R( f̂α, f †)

2γ
2−β +

1
2

[
err
(

F( f̂α)
)
+ α(−ψ)∗

(
− 1

2α

)]
by Young’s inequality. Rearranging terms yields the bound on the effective noise
level.

To prove (b), note that due to (2.23a) in Theorem 2.20 we have

∆R( f̂α, f †) ≤ err F( f̂α)

α
+ (−ψ)∗

(
− 1

α

)
≤ err(F( f̂α))

α
+ (−ψ)∗

(
− 1

2α

)
.

Together with the first part we get

∆R( f̂α, f †) ≤ cα−1∆R( f̂α, f †)
2γ

2−β

∥∥∥εZ
∣∣∣ B−d/2

p′ ,∞

∥∥∥ 2
2−β

+ 3(−ψ)∗
(
− 1

2α

)
≤ 1

2
∆R( f̂α, f †) + cα

− 2−β
2−β−2γ

∥∥∥εZ
∣∣∣ B−d/2

p′ ,∞

∥∥∥ 2
2−β−2γ

+ 3(−ψ)∗
(
− 1

2α

)
which proves the claim.

Note that the obtained error bounds are still random variables, but now the
deviation inequality can be used in order to find deviation estimates as well as
expectations for the error estimates again.

Lemma 4.12. Let the assumptions of Theorem 4.11 hold true. Then there exists a constant
c > 0 such that for all t > 0

P

[
∆R( f̂α, f †) > c

(
α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

))
(1 + MZ + t)

]
≤ exp(−CZt2)
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with MZ, CZ as in Lemma 4.7 holds true. If further Assumption 2.22 holds true, then for any
t ≥ 1 there exists a constant c > 0 such that(

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥t
])1/t

≤ c
(

α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

)) 1
r
.

Proof. As Theorem 4.11(b) holds true we get that

1
2

∆R( f̂α, f †) ≤cα
− 2−β

2−β−2γ

∥∥∥εZ
∣∣∣ B−d/2

p′ ,∞

∥∥∥ 2
2−β−2γ

+ 3(−ψ)∗
(
− 1

2α

)
≤c
(

α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

))(
1 +

∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥)
as 2

2−β−2γ ∈ (0, 1). Hence one obtains for all t > 0 that

P

[
∆R( f̂α, f †) > c

(
α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

))
(1 + MZ + t)

]
≤P

[∥∥∥Z
∣∣∣ B−d/2

p̃,∞

∥∥∥ > MZ + t
]
≤ exp(−CZt2).

For the second part note that due to Assumption 2.22 we get that∥∥∥ f̂α − f †
∣∣∣X ∥∥∥ ≤ c

(
α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

)) 1
r (

1 +
∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥)
as r > 1. By linearity and monotonicity of the expectation and t ≥ 1 we have that(

E
[(

1 +
∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥)t
])1/t

≤
(

E
[

2t
(

1 +
∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥t
)])1/t

≤ 2
(

1 + E
[∥∥∥Z

∣∣∣ B−d/2
p′ ,∞

∥∥∥t
])1/t

≤ 2

(
1 +

(
E
[∥∥∥Z

∣∣∣ B−d/2
p′ ,∞

∥∥∥t
])1/t

)
,

so we can infer(
E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥t
])1/t

≤ c
(

α
− 2−β

2−β−2γ ε
2

2−β−2γ + (−ψ)∗
(
− 1

2α

)) 1
r
(

1 +
(

E
[∥∥∥Z

∣∣∣ B−d/2
p′ ,∞

∥∥∥t
])1/t

)
.

The expectation on the right hand side can be estimated by the deviation inequality

E
[∥∥∥Z

∣∣∣ B−d/2
p′ ,∞

∥∥∥t
]
≤

∞

∑
k=1

(kMZ)
t
P
[
(k− 1)MZ ≤

∥∥∥Z
∣∣∣ B−d/2

p′ ,∞

∥∥∥ ≤ kMZ

]
≤ Mt

Z

(
1
2
+

∞

∑
k=2

kt exp
(
−CZ M2

Z(k− 2)2
))

< ∞.
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Remark 4.13. Note that the results of this sections are extendable to other probabilistic
error models as long as a deviation inequality like in Lemma 4.7 with a sufficiently
fast decay holds true.

4.4 Application to Finitely Smoothing Operators

In this section we assume that the forward operator F := Fa is a-times smoothing for
some a > d

p −
d
2 in the following sense:

Fa(B0
p,q) ⊂ Ba

p,q, (4.5a)∥∥∥ f1 − f2

∣∣∣ B−a
2,2

∥∥∥ ≤ L
∥∥∥Fa( f1)− Fa( f2)

∣∣∣ L2
∥∥∥, (4.5b)

and
∥∥∥Fa( f1)− Fa( f2)

∣∣∣ L2
∥∥∥ ≤ L

∥∥∥ f1 − f2

∣∣∣ B−a
2,2

∥∥∥ (4.5c)

for some L > 0 and all f1, f2 in the weakly sequentially closed set D = dom(Fa) ⊂
B0

p,q, which will be sufficient for rates in the deterministic error model. For the white
noise error model we will strengthen (4.5a) and require that∥∥∥Fa( f1)− Fa( f2)

∣∣∣ Ba
p,q

∥∥∥ ≤ L
∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥ (4.5d)

holds true. Due to the choice of parameters, (4.5a) and the continuous embedding of
Lemma B.18(d) Fa : B0

p,q → Ba
p,q ⊂ L2 is well-defined and continuous.

A simple example which meets (4.5) is Fa = (I − ∆)−a/2 in which case Fa : Bs
p,q →

Bs+a
p,q is bounded and boundedly invertible for all s ∈ R. More generally, it is fulfilled

for injective elliptic pseudodifferential operators of order −a. In the case of a Fréchet-
differential nonlinear operator it was shown in [HM18, Lem. 2.9] that (4.5b) and
(4.5c) follow from (4.5b) and (4.5c) with Fa replaced by F′a[ f †] and the nonlinearity
condition (2.15b). It is further shown that this allows to verify these conditions
for well-studied inverse problems like the identification of reaction and diffusion
coefficients or Hammerstein integral equations.

4.4.1 Verification of variational source conditions and convergence
rates

We now validate a VSC for an operator fulfilling (4.5) via Theorem 2.24. The family of
operators Pj will be chosen as in (4.3).

Theorem 4.14 (see [WSH18, Thm. 4.1]). Assume that Fa fulfills (4.5a) and (4.5b), further
suppose that f † ∈ Bs

p,∞ for some s ∈ (0, a
q−1 ) with ‖ f † | Bs

p,∞‖ ≤ $. Then f † fulfills the
VSC

〈 f ∗, f † − f 〉 ≤ 3
4

∆ 1
r ‖· | B0

p,q‖r
W
( f , f †) + ψ

(
1
2

∥∥∥F( f )− F( f †)
∣∣∣ L2
∥∥∥2
)
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with f ∗ ∈ ∂ 1
r ‖ f † | B0

p,q‖r
W where

ψ(τ) = c$µτν where µ =

{ qa
a+s q ≥ 2

2a
a+s(q−1) q ≤ 2

and ν =

{ q
2

s
a+s q ≥ 2
s(q−1)

a+s(q−1) q ≤ 2

for some constant c > 0.

Proof. With the choice Pj as in (4.3) we obtain by Lemma 4.6 and our assumptions
that we can choose κ(j) = c$r−12−js(q−1).

To verify (2.28c) denote by Sa the operator mapping f = ∑k∈N fk 7→ ∑k∈N 2ka fk.
Then using the Besov norm ‖· | B0

p,q‖F given by (B.3), the relation to Lebesgue spaces
(see Lemma B.18(c)) and (4.5b), we get the estimate〈

Pj f ∗, f † − f
〉
=
〈

SaPj f ∗, S−a( f † − f )
〉

≤ c
∥∥∥SaPj f ∗

∣∣∣ Lp′
∥∥∥∥∥∥S−a( f † − f )

∣∣∣ L2
∥∥∥∥∥∥∥1

∣∣∣∣ L
2p

2−p

∥∥∥∥
≤ c
∥∥∥SaPj f ∗

∣∣∣ B0
p′ ,2

∥∥∥∥∥∥ f † − f
∣∣∣ B−a

2,2

∥∥∥
≤ cL

∥∥∥Pj f ∗
∣∣∣ Ba

p′ ,2

∥∥∥∥∥∥Fa( f †)− Fa( f )
∣∣∣ L2
∥∥∥.

(4.6)

Setting φ(t) =
√

t and γ ≡ 0 in (2.28c) it hence remains to bound ‖Pj f ∗ | Ba
p′ ,2‖ by a

function of j in order to get σ(j).

Here we use again the subgradient smoothness f ∗ ∈ Bs(q−1)
p′ ,∞ with the norm bound

of Lemma 4.6 as well as the assumption s ∈ (0, a
q−1 ) to obtain

∥∥∥Pj f ∗
∣∣∣ Ba

p′ ,2

∥∥∥ =

[
j−1

∑
k=0

22ka
∥∥∥(Pk+1 − Pk) f ∗

∣∣∣ Lp′
∥∥∥2
]1/2

≤
[

j−1

∑
k=0

22k(a−s(q−1))

]1/2∥∥∥ f ∗
∣∣∣ Bs(q−1)

p′ ,∞

∥∥∥
≤ c
[

1
22(a−s(q−1)) − 1

]1/2
2j(a−s(q−1))$r−1.

This implies that we can choose

σ(j) = c$r−12j(a−s(q−1))

in (2.28c) for some c > 0 independent of f †.
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Now Theorem 2.24 implies that a variational source condition holds true with

ψvsc(t) = inf
j∈N0

c
[
$r−12j(a−s(q−1))

√
t + $r2−js(q−1)r′

]
.

Choosing j such that 2j ∼ ($/
√

t)τ with τ = 1
s(q−1)(r′−1)+a we can estimate

ψvsc(t) ≤ c$
r− s(q−1)r′

a+s(q−1)(r′−1) t
1
2

s(q−1)r′
s(q−1)(r′−1)+a .

Now use that for q ≤ 2 we have r = r′ = 2 while for q ≥ 2 we have r = q and
r′ = q′.

Remark 4.15. In Remark 2.27(a) we focused on applying our strategy to the skewed
Bregman distance: If one had chosen β 6= 0, then we needed information on f∗ ∈
∂R( f̂α). For the problem under consideration they can again be obtained from the
first order optimality condition if F = T is linear, as then

f̂α = (αjB0
p,q ,r + T∗T)−1T∗gobs.

If (4.5c) holds true, then T∗(L2) ⊂ Ba
2,2 and we can use Corollary 4.4 to obtain that

f∗ ∈ B
a−d( 1

p−
1
2 )

p′ ,2 .

The difficult part is to find bounds on the norm of f∗ in this space.

Remark 4.16. For small changes of the penalty functional the following can be ob-
tained:
• Let the requirements of Theorem 4.14 hold true, but use X = Bs̃

p,q andR(·) =
1
r ‖· | Bs̃

p,q‖r
W for s̃ ∈ R. Assuming that a∗ := a + s̃ > d

p −
d
2 , then for f † ∈ Bs

p,∞

with s ∈ R such that s∗ := s− s̃ ∈ (0, a∗
q−1 ) a variational source condition as in

Theorem 4.14 holds true with ψ given as in the Theorem but s, a replaced by
s∗, a∗ respectively.

• Suppose the constraint f † ∈ D is incorporated in the penalty term R by re-
placing it by R̃ := R+ χD . Then ∂R̃( f †) = ∂R( f †) + ∂χ( f †) by the sum rule.
∂χ( f †) coincides with the normal cone to D at f † and while {0} ⊂ ∂χ( f †) for
all f † ∈ D it contains more elements if f † is not in the interior of D. In this
case ∂R̃( f †) may contain elements of higher smoothness than ∂R( f †) leading
to faster rates of convergence (see [FH11] and [EHN96, §5.4]).
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Convergence rates for deterministic error model The variational source condition
will now be used to derive convergence rates for deterministic errors.

Corollary 4.17. Let the assumptions of Theorem 4.14 hold true together with (4.5c). Then a
minimizer of the Tikhonov functional (4.1a) exists. Furthermore, if for some cα > 0 we choose
α by ᾱ = cα$−νδ2−2µ with µ, ν as in Theorem 4.14, then every minimizer f̂ᾱ satisfies the
error bounds

∆R( f̂ᾱ, f †) ≤

c$
qa

a+s δ
qs

a+s q ≥ 2

c$
2a

a+s(q−1) δ
2s(q−1)

a+s(q−1) q ≤ 2
(4.7a)

and
∥∥∥ f̂ᾱ − f †

∣∣∣ B0
p,q

∥∥∥ ≤
c$

a
a+s δ

s
a+s q ≥ 2

c$
a

a+s(q−1) δ
s(q−1)

a+s(q−1) q ≤ 2
(4.7b)

with a constant c independent of f †, f̂α, $, and δ.

Proof. Minimizers of the functional exist according to Theorem 1.6 if Assumption 1.4
is met. Using weak topologies we see that only sequetial continuity of the forward op-
erator is an issue. But this follows from (4.5c) and the compactness of the embedding
B0

p,q ↪→ B−a
2,2 .

The convergence rate in Bregman distance is an immediate consequence of Theo-
rem 2.20 as the parameter choice rule is just (2.24a) up to a constant. For the rate in
norm note that Assumption 2.22 is fulfilled.

Of course the parameters s and $ describing the smoothness of f † are typically
unknown in practice. As shown in Section 2.4.4.2, however, the convergence rate
(4.7) can also be obtained without prior knowledge of s and $ by using either the
discrepancy or the Lepskiı̆ principle as an a posteriori parameter choice rule.

Convergence rates for white noise error model We now assume that the data is
given by the white noise error model. To apply our results on existence of minimizers
and convergence rates we need to prove Assumption 4.8 which will be done as
outlined in Remark 4.9.

Lemma 4.18. Suppose that a > d/2 and (4.5d) hold true. Then the operator Fa fulfills
Assumption 4.8 with β = 1− d

2a , γ = d
2ar and some Ccom > 0.

Proof. By (4.5d) we get that F( f ) ⊂ Ba
p,q for all f ∈ D. Since a > d/2 the embedding

Ba
p,q ↪→ Bd/2

p,1 is compact, hence F : D → Bd/2
p,1 is compact.

By interpolation (see Proposition B.14) we have∥∥∥g
∣∣∣ Bd/2

p,1

∥∥∥ ≤ c
∥∥∥g
∣∣∣ B0

p,2

∥∥∥1− d
2a
∥∥∥g
∣∣∣ Ba

p,q

∥∥∥ d
2a ≤ c

∥∥∥g
∣∣∣ L2
∥∥∥1− d

2a
∥∥∥g
∣∣∣ Ba

p,q

∥∥∥ d
2a
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for all g ∈ Ba
p,q, since ‖· | B0

p,2(T
d)‖ ≤ ‖· | L2(Td)‖ for p ≤ 2. Using (4.5d) and

Assumption 2.22 one obtains that

∥∥∥Fa( f1)− Fa( f2)
∣∣∣ Ba

p,q

∥∥∥ ≤ L
∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥ ≤ L
(

C−1
∆ ∆R( f1, f2)

) 1
r .

Combining both inequalities for g = Fa( f1)− Fa( f2) gives the claim.

Therefore the following rate results is achieved for the white noise data model; a
deviation inequality would follow as outlined in Lemma 4.12 for the same parameter
choice rule.

Corollary 4.19 (see [WSH18, Thm. 4.9]). Let the assumptions of Theorem 4.14 hold true
as well as a > d/2 and (4.5d). Then f̂α in (4.1b) is well-defined almost surely and for the
parameter choice rule

ᾱ =

$−
aq+d/2(q−2)

a+s+d/2 ε
2(a+s)−qs
a+s+d/2 q ≥ 2

$
− 2a

a+s(q−1)+d/2 ε
2a

a+s(q−1)+d/2 q ≤ 2

one can infer for all t ≥ 1 that there exists a constant c > 0 such that the following
convergence rate in expectation

E
[∥∥∥ f̂ᾱ − f †

∣∣∣ B0
p,q

∥∥∥t
] 1

t
≤

c$
a+d/2

a+s+d/2 ε
s

a+s+d/2 q ≥ 2

c$
a+d/2

a+s(q−1)+d/2 ε
s(q−1)

a+s(q−1)+d/2 q ≤ 2

holds true.

Proof. Existence of f̂α follows from Theorem 4.10 and Lemma 4.18.
Concerning the rate: Inserting the form of the variational source condition into

Lemma 4.12 one sees that with the notation of Theorem 4.14 that

E
[∥∥∥ f̂α − f †

∣∣∣ B0
p,q

∥∥∥t
] 1

t
≤ c
(

α
− a+d/2

a+d/2(1− 2
r ) ε

2a
a+d/2(1− 2

r ) + $µ− ν
1−ν α

ν
1−ν

) 1
r

holds true by (2.25a) and rules for Fenchel conjugates. Hence for α = ᾱ we see that
both summands are of the same order in $ and ε and the claim follows.
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4.4.2 Lower bounds
We next show optimality of the rates in Corollary 4.17.

Theorem 4.20 (see [WSH18, Thm. 4.10]). Suppose that Fa satisfies (4.5c) and Fa(0) = 0.
Then for K = { f ∈ Bs

p,∞ : ‖ f | Bs
p,∞‖ ≤ $} their exists a constant c > 0 such that the

modulus of continuity is bounded from below by

ω(δ,K) ≥ c$
a

s+a δ
s

s+a

as δ → 0. Hence for q ≥ 2 the rates in Corollary 4.17 are optimal up to the value of the
constant.

Proof. The assumptions of Theorem 4.2 are met with b(z) = c(1 + |z|2)−a for some
c > 0 by (4.5c). Hence we obtain

ω(δ,K) ≥ c max
k∈N0

{
min

{
2−ks$, 2kaδ

}}
≥ c$

a
s+a δ

s
s+a

where we have chosen k ∈ N0 such that the terms are balanced, i.e. 2k ∼ ( $
δ )

1/(s+a).
Now the claim follows by Lemmata 4.1 and 2.11 for optimality of rate in Bregman
distance and norm respectively.

On optimality in Corollary 4.19 for q ≥ 2 see [WSH18, Cor. 4.12].

Remark 4.21. Let q ≥ 2. Then comparing the optimal convergence rates obtained
in Corollary 4.17 with the optimal convergence rates of Theorem 3.17 it is evident
that convergence rates of O(δ

s
a+s ) are obtained on Bs

p,∞ and Bs
2,∞ respectively. As for

p1 ≤ p2 one gets that Bs
p2,∞ ⊂ Bs

p1,∞ on Td. At first glance it looks like only the set for
which optimal convergence rates are attained increases when p→ 1. But for a specific
solution f † the maximal smoothness index smax with f † ∈ Bs

p,∞ if and only if s ≤ smax

(or s < smax) depends on p. Consider a function f † which is smooth up to jumps,
then smax = 1/p and hence in the Hilbert space case one obtains for such function the

convergence rate O(δ
1

2a+1 ) while with the Besov space regularization approach one

gets the rate O(δ
1

pa+1 ), i.e. for p < 2 one achieves a faster convergence rate.

Knowing that f † ∈ Bs
p,∞ implies optimal convergence rates for B0

p,q regularization
with q ≥ 2 by a variational source condition one could ask whether a variational
source condition also implies smoothness of the solution similar to Theorem 3.1 (recall
that for linear operators of the form T = Fa the space X T

ϕ could be interpreted as a
Besov space, see Example 3.17).

Lemma 4.22. Let q ≥ 2 and Fa meet (4.5c). Let f † ∈ B0
p,q fulfill a VSC (2.26) for the

Tikhonov functional (4.1) with ψ(t) = ctqs/(2(s+a)), then f † ∈ Bu
p,∞ with u = s + d( 1

2 −
1
p )

s
a .
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Proof. Let f †(x) = ∑j,m,l λl
j,mφl

j,m(x) be the wavelet decomposition of f †. Define f †
j,l

as f †
j,l(x) = ∑m λl

j,mφl
j,m(x). By assumption f † fulfills a variational source condition,

hence for f = f † − f †
j,l we obtain that

〈 f ∗, f †
j,l〉 ≤

3
4

∆ 1
q ‖· | B0

p,q‖q( f † − f †
j,l , f †) + ψ

(∥∥∥Fa( f † − f †
j,l)− Fa( f †)

∣∣∣ L2
∥∥∥2
)

.

Note that in this case the dual pairing can be explicitly calculated as 〈 f ∗, f †
j,l〉 =

‖ f †
j,l | B

0
p,q‖q and thus the Bregman distance is given by

∆ 1
q ‖· | B0

p,q‖q( f † − f †
j,l , f †) =

1
q

∥∥∥ f † − f †
j,l

∣∣∣ B0
p,q

∥∥∥q
− 1

q

∥∥∥ f †
∣∣∣ B0

p,q

∥∥∥q
+
∥∥∥ f †

j,l

∣∣∣ B0
p,q

∥∥∥q

=

(
1− 1

q

)∥∥∥ f †
j,l

∣∣∣ B0
p,q

∥∥∥q
.

Rearranging terms and using the smoothing properties of the operator (4.5c), we
therefore infer that there exists a constant c such that(

1− 3
4

(
1− 1

q

))∥∥∥ f †
j,l

∣∣∣ B0
p,q

∥∥∥q
≤ ψ

(∥∥∥Fa( f † − f †
j,l)− Fa( f †)

∣∣∣ L2
∥∥∥2
)
≤ c
∥∥∥ f †

j,l

∣∣∣ B−a
2,2

∥∥∥ qs
s+a.

As for any p, q and s we have that ‖ f †
j,l | B

s
p,q‖ = ‖ f †

j,l | B
s
p,∞‖ this implies

∥∥∥ f †
j,l

∣∣∣ B0
p,∞

∥∥∥ ≤ c
∥∥∥ f †

j,l

∣∣∣ B−a
2,∞

∥∥∥ s
s+a .

Via norm estimates on `p spaces we can conclude that

∥∥∥ f †
j,l

∣∣∣ B−a
2,∞

∥∥∥ = 2−ja

[
∑
m

∣∣∣λl
j,m

∣∣∣2] 1
2

≤ c2−ja

[
∑
m

∣∣∣λl
j,m

∣∣∣p] 1
p

.

Inserting into the equation above and rearranging yields

2j as
s+a 2jd( 1

2−
1
p )

[
∑
m

∣∣∣λl
j,m

∣∣∣p] 1
p

a
s+a

≤ c

which is equivalent to ‖ f †
j,l | B

u
p,∞‖ ≤ c with u = s + d( 1

2 −
1
p )

s
a . As c does not

dependent on j and l this implies f † ∈ Bu
p,∞ since ‖ f † | Bu

p,∞‖ = supj,l‖ f †
j,l | B

u
p,∞‖.

In summary we cannot show a similar equivalence as in Theorem 3.1; but at least
for p = 2 extend it to nonlinear operators fulfilling (4.5)
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FIGURE 4.1: Convergence rates in B0
p,2 for different values of p. The blue crosses

indicate measured reconstruction errors in the example while the red lines represent
convergence rates predicted by Corollary 4.17.

4.4.3 Numerical validation

Let us consider a problem of the type (4.5) where Fa : B0
p,q(T) → L2(T) is given by

Fa := (I − ∂2
x)
−1, that is we have a = 2, with a deterministic error model. The true

solution f † is given by a continuous, piecewise linear function, therefore f † ∈ Bs
p,∞

for s ≤ 1 + 1/p. As for q = 2 the obtained convergence rates are of optimal order, we
test for different values of p if they are also achieved numerically using the a priori
choice (2.24a), that is α ∼ δ

2a
s+a .

Numerical computations were carried out in MATLAB. In order to make the
implementation of the operator Fa efficient we used the FFT on a grid with 210

nodes. For the Besov norm we used the wavelet decomposition of the Wavelet
toolbox with periodic db7-wavelets. Data was first generated on a finer grid and
then undersampled. To obtain the minimizer of the Tikhonov functional we used
the extension of the Chambolle-Pock algorithm to Banach spaces with a constant
parameter choice rule, see Section 1.2.3, where the iterations were stopped when the
current step gets small compared to the first. Note that the steps of this algorithm
become especially simple since the considered spaces are 2-convex, see Example 1.10.
The duality mappings were evaluated with the help of (4.2).

We tested which convergence rate we observe if we chooseR( f ) = 1
2‖ f | B0

p,2‖2

for different values of p. The results of this test are shown in Figure 4.1. Note that
the observed rates coincide quite well with the predicted optimal rates for the tested
values of p.
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4.5 Application to Backward Heat Equation

Consider again the problem of the backward heat equation as given in (3.13) and
denote the forward operator by T.

Theorem 4.23 (see [WSH18, Thm. 5.1]). Let s > 0 and suppose that f † ∈ Bs
p,∞ with

‖ f † | Bs
p,∞‖ ≤ $. Then f † satisfies the VSC

〈 f ∗, f † − f 〉 ≤ 3
4

∆ 1
r ‖· | B0

p,q‖r
W
( f , f †) + ψ

(
1
2

∥∥∥F( f )− F( f †)
∣∣∣ L2
∥∥∥2
)

with f ∗ ∈ ∂ 1
r ‖ f † | B0

p,q‖r
W where

ψ(t) = c$r

√t
$

(
3 +

$√
t

)1/2
+

(
ln

((
3 +

$√
t

)1/2
))−s(q−1)r′/2


for some c > 0.

Proof. Analogous to the proof of Theorem 4.14 we apply Theorem 2.24 with the
choice Pj as in (4.3). Again we obtain by Lemma 4.6 and our assumptions that we can
choose κ(j) = c$r−12−js(q−1).

In order to verify (2.28c) note that for z ∈ Γk we have |z| ≤
√

d2k, hence

∥∥∥P∗j ( f † − f )
∣∣∣ L2
∥∥∥2

=
j

∑
k=0

∑
z∈Γk

∣∣∣ ̂( f † − f )(z)
∣∣∣2 ≤ (edτ22j

)2 j

∑
k=0

∑
z∈Γk

∣∣∣e−|z|2τ ̂( f † − f )(z)
∣∣∣2

≤
(

edτ22j
)2∥∥∥T( f † − f )

∣∣∣ L2
∥∥∥2

.

Therefore, we can estimate〈
Pj f ∗, f † − f

〉
≤
∥∥∥ f ∗

∣∣∣ Lp′
∥∥∥∥∥∥∥1

∣∣∣∣ L
2p

2−p

∥∥∥∥∥∥∥P∗j ( f † − f )
∣∣∣ L2
∥∥∥

≤ c
∥∥∥ f ∗

∣∣∣ Bs(q−1)
p′ ,∞

∥∥∥edτ22j
∥∥∥T( f † − f )

∣∣∣ L2
∥∥∥

≤ c$r−1edτ22j
∥∥∥T( f † − f )

∣∣∣ L2
∥∥∥

and hence can choose σ(j) = c$r−1edτ22j
, φ(t) =

√
t and γ ≡ 0.

This implies by Theorem 2.24 that a variational source condition with

ψvsc(t) = inf
j∈N0

c
[
$r−1edτ22j√

t + $r2−js(q−1)r′
]
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holds true. Now choosing j such that

22j ≈ 1
dτ

ln
√

3 +
$√

t

we can infer that

ψvsc(t) ≤ c$r

√t
$

(
3 +

$√
t

)1/2
+

(
ln

((
3 +

$√
t

)1/2
))−s(q−1)r′/2

.

Note that the VSC behaves like

ψ(t) = c$r
(

ln
($

δ

))−s(q−1)r′/2
[1 + o(1)] as δ→ 0,

so one immediately obtains the following:

Corollary 4.24. There exists a unique minimizer of the Tikhonov functional (4.1a) for the
backward heat equation for any α > 0. Furthermore, the parameter choice rule α = ᾱ given
by (2.24a) implies the error bounds

∆R( f̂ᾱ, f †) ≤
{

c$q(ln( $
δ

))−sq/2 q ≥ 2

c$2(ln( $
δ

))−s(q−1) q ≤ 2
as δ→ 0

and
∥∥∥ f̂ᾱ − f †

∣∣∣ B0
p,q

∥∥∥ ≤ {c$
(
ln
( $

δ

))−s/2 q ≥ 2

c$
(
ln
( $

δ

))−s(q−1)/2 q ≤ 2
as δ→ 0

with a constant c > 0 independent of f †, δ and $.

Proof. This follows along the lines of the proof of Corollary 4.17, see also Lemma
4.26 below.

Concerning optimality one obtains the following:

Theorem 4.25 (see [WSH18, Thm. 5.2]). Let 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞, s, ρ > 0. Then for
K = { f ∈ Bs

p,∞ : ‖ f | Bs
p,∞‖ ≤ $} there exists a constant c > 0 such that the modulus of

continuity for the backward heat equation is bounded from below by

ω(δ,K) ≥ c$
(

ln
$

δ

)− s
2

as δ→ 0. Thus the convergence rates of Corollary 4.24 are optimal for q ≥ 2 as δ→ 0 up to
the value of the constant.
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Proof. Choosing bz = exp(−2τ|z|2) the assumptions of Theorem 4.2 are met. Hence
we obtain

ω(δ,K) ≥ max
k∈N0

{
min

{
2−ks$, edτ22k

δ
}}
≥ min

{
$

(
1
τ

ln
$

δ

)− s
2
, $

}
where we have chosen k ∈ N0 such that 22k ∼ 1

dτ ln $
δ . The optimality then follows

from the Lemmata 4.1 and 2.11.

Turning to the white noise error model a rather coarse interpolation bound is
sufficient:

Lemma 4.26 (see [WSH18, Lem. 5.3]). The operator of the backward heat equation fulfills
Assumption 4.8 with β = 1

2 , γ = 1
2r and some Ccom > 0.

Proof. By interpolation we obtain∥∥∥T( f1 − f2)
∣∣∣ Bd/2

p,1

∥∥∥ ≤ c
∥∥∥T( f1 − f2)

∣∣∣ B0
p,2

∥∥∥ 1
2
∥∥∥T( f1 − f2)

∣∣∣ Bd
p,q

∥∥∥ 1
2 .

As p ≤ 2, the first factor can be bounded by
∥∥T( f1 − f2)

∣∣ L2
∥∥ 1

2 . To control the second
factor we again use p ≤ 2 to get∥∥∥T( f1 − f2)

∣∣∣ Bd
p,q

∥∥∥q
≤ ∑

j∈N0

2jdq
[
∑z∈Γj

exp(−2τ|z|2)
∣∣∣ ̂( f1 − f2)(z)

∣∣∣2] q
2

≤ ∑
j∈N0

2jdq exp
(
− τq

16π2 22j
)[

∑z∈Γj

∣∣∣ ̂( f1 − f2)(z)
∣∣∣2] q

2
.

As there exists a constant c > 0 such that

2jdq2−jd( 1
2−

1
p ) exp

(
− τq

16π2 22j
)
≤ c for all j ∈ N

one can infer that∥∥∥T( f1 − f2)
∣∣∣ Bd

p,q

∥∥∥ ≤ c
∥∥ f1 − f2

∣∣ B
d
2−

d
p

2,q

∥∥ ≤ c
∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥ ≤ c
(

C−1
∆ ∆R( f1, f2)

) 1
r

by the embedding properties of Besov spaces (Lemma B.18(d)) and Assumption 2.22.
As the embedding Bd

p,q ↪→ Bd/2
p,1 is compact this completes the proof.

Corollary 4.27. Suppose that f † ∈ Bs
p,∞ for some s > 0 with ‖ f † | Bs

p,∞‖ ≤ $. Then f̂α in
(4.1b) is well-defined almost surely, and for the parameter choice rule ᾱ = ε/2 it satisfies for
all t ≥ 1 the following error bounds in expectation(

E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥t
]) 1

t
≤
{

c$
(
ln
( $

ε

))−s/2 q ≥ 2

c$
(
ln
( $

ε

))−s(q−1)/2 q ≤ 2
as ε→ 0

with a constant c > 0 independent of f †, $ and ε.
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Proof. Existence of f̂α derives from Theorem 4.10 and Lemma 4.26.
By Theorem 4.23 a logarithmic variational source condition of the form (2.3b)

holds true. Hence from (2.25b) one obtain that

(−ψ)∗
(

1
t

)
= c$r

(
ln
($

t

))− s(q−1)r′
2

(1 + o(1)) as t→ 0.

Thus Lemma 4.12 gives(
E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥t
]) 1

t
≤
[

cα−
3r

3r−2 ε
4r

3r−2 + c(−ψ)∗
(

1
2α

)] 1
r
.

Choosing α = ε
2 we get

(
E
[∥∥∥ f̂α − f †

∣∣∣X ∥∥∥t
]) 1

t
≤ cε

1
3r−2 + c(−ψ)∗

(
1
ε

) 1
r
,

see (2.25b) for the asymptotic behavior of (−ψ)∗( 1
ε ). Since r ≥ 2 – and therefore

3r− 2 ≥ 0 – we get the claim.

The other two infinitly smoothing operators in Section 3.6 will not be treated here
for different reasons. For the sideway heat equation (3.14) and p 6= 2 the problem

is that ‖1 | L
2p

2−p (Rd)‖ = ∞, hence in order to proceed similarly as above a support
constraint with finite measure on f † would have to be known a priori. For the satellite
gradiometry (3.15) problem one can in principle use the approach above; however,
we would need to introduce Besov spaces on the sphere S2 which we would like to
avoid here. One would then obtain that f † ∈ Bs

p,∞ for p ∈ (1, 2] fulfills a VSC for the
choice ofR(·) = 1

r ‖· | B0
p,q‖r with

ψ(t) = c
(

ln
($

δ

))−2s(q−1)r′
(1 + o(1)) as t→ 0

as might be expected from Theorem 3.22.





CHAPTER V
CONVERGENCE RATES FOR THE
REGULARIZED SCHRÖDINGER
EQUATION

People think they don’t understand math, but it’s all about
how you explain it to them. If you ask a drunkard what

number is larger, 2/3 or 3/5, he won’t be able to tell you. But if
you rephrase the question: what is better, 2 bottles of vodka for
3 people or 3 bottles of vodka for 5 people, he will tell you right

away: 2 bottles for 3 people, of course.

attributed to ISRAEL GELFAND in “Love and Math” by
Edward Frenkel

We consider the following scattering problem: given an energy E and some compactly
supported potential f we want to find solutions u to the Schrödinger equation(

−∆ + f (x)
)

u(x) = E u(x) in R3. (5.1)

Corresponding inverse problems are to recover the potential f from measurements of
u at known energy E. The inverse problems studied here will be made more precise
below.
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Stability estimates for these problems were first studied in [Ale88, Ste90]. It is
known that corresponding stability estimates have to be of logarithmic type (see
[Man01, Isa13b]), that is the function Ψ in (2.20) has to be of the form (2.3b). Never-
theless in recent years stability estimates for these problems have been significantly
improved by deriving an explicit dependence of the stability estimate on the energy E.
While in first results the estimate increased exponentially with the energy [NUW13]
more recent results show that is possible to have only a polynomial behavior of the en-
ergy [Isa10, IN12, Isa13a, INUW14, IN14]. This leads to so called Hölder-logarithmic
stability estimates were the stability estimate consists of two parts: the first with a
logarithmic dependence on the data that decays with increasing energy and a second
with Hölder-dependence on the data that gets amplified with increasing energy.

In this chapter we want to improve our finding of [HW15]in two ways: we
want to derive VSCs for the inverse problems under lower smoothness assumptions
and make the dependence on the energy E of ψ explicit in a way that allows us to
prove Hölder-logarithmic convergence rates. A similar result has been announced in
[WH17].

While Section 5.1 offers a more explicit description of the first inverse problem with
near field data, we discuss the choice of an appropriate penalty functional as well as
the regularizing properties of the resulting Tikhonov functional in Section 5.2. In order
to verify a VSC we will use the strategy presented in Theorem 2.24, and the main tool
for the proof of the ill-posedness estimate (2.28c) will be the construction of complex
geometric optics solutions which will be introduced in Section 5.3. Results based on
these solutions to (5.1) will then be used in Section 5.3.2 together with trace estimates
in Sobolev spaces and regularity estimates of boundary value problems to derive
energy dependent bounds on the difference of two potentials for low frequencies
in Fourier domain. The statement and verification of the VSC will then be given in
Section 5.4; furthermore we extend our results to a second inverse problem with far
field data and end with a discussion of the results.

5.1 Problem Description

It is well known that the equation (5.1) together with the Sommerfeld radiation
condition,

lim
|x|→∞

|x|
(

∂

∂|x| − i
√

E
)

u(x) = 0, (5.2)

which ensures that the solution models outgoing waves, has a unique solution in
H1

loc for f ∈ L∞ compactly supported; i.e. for supp( f ) ⊂ Br for some r > 0, where
BR := {x ∈ R3 : |x| < R} for all R > 0. Furthermore, physically meaningful
potentials have to satisfy =( f ) ≥ 0. The solution can be calculated by finding a
solution to the Lippmann-Schwinger equation below. Splitting the solution into an
incident field uin, which is known a priori and satisfies (5.1) for f = 0, the total field
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u is the solution to

uin(x) = u(x)−
∫
R3

f (y)u(y)Φ(x, y)dy

where

Φ(x, y) =
e−i
√

E|x−y|

|x− y|
is the free space fundamental solution. Efficient numerical implementations of this
equation have been discussed first in [Vai00]; see also [Hoh01].

For the inverse problem choose R > r. Assume now that we can put a point
source generating the incident field

uin
y (x) := Φ(x, y) (5.3)

at each point y ∈ ∂BR and measure the corresponding total field solving (5.1) and
(5.2) on ∂BR, i.e. we are able to measure the Green’s function g(x, y) of the problem
on ∂BR × ∂BR. The forward operator is hence defined as

F : X ∩ dom F → L2(∂BR × ∂BR), f 7→ g,

dom F := { f ∈ L∞ : supp( f ) ⊂ Br,=( f ) ≥ 0}
(5.4)

with X as introduced later on. For this inverse problem it has been shown in [Nac88,
Thm. 1.2] that the solution is unique. As a difference to most results on stability
estimates we point out that in our case Y = L2 and that for g = F( f ) the norm
‖g | L2‖ can be interpreted as the Hilbert-Schmidt norm of the operator mapping
incident field generated by sources on ∂BR to the total field on ∂BR; see [LKK13,
Sec. 4] for more details. For the stability estimates it is most often assumed that for
all solutions u to (5.1) and (5.2) the normal derivative ∂ru on ∂BR is known and the
mapping u|∂BR 7→ ∂nu|∂BR is considered as a measurement. It is, however, usually
considered as a mapping from H1/2 → H−1/2, see e.g. [Isa10, NUW13], or as a
mapping from L∞ → L∞, see e.g. [IN12, IN14]. Yet boundedness of a measurement
errors of u|∂BR , ∂nu|∂BR can usually only obtained in L2-norms which do not directly
translate into boundedness of errors in the norms above.

5.2 Regularization Approach

The problem to reconstruct the potential from measurements is ill-posed hence one
should apply regularization techniques to get a reasonable reconstruction from mea-
surements. We will use again Tikhonov regularization, this time of the form

f̂α ∈ arg min
f∈dom(F)∩X

[
1

2α

∥∥∥F( f )− gobs
∣∣∣Y∥∥∥2

+R( f )
]

(5.5a)
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with the operator introduced in (5.4) and the data gobs given due to the classical error
model. We will choose the penalty functional

R( f ) =
1
2

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥2

W
+ ι( f ) (5.5b)

where p ∈ (1, 2], the norm is defined as in (B.5) and

ι( f ) := ιC∞( f ) :=

{
0 ‖ f ‖L∞ ≤ C∞

∞ ‖ f ‖L∞ > C∞
(5.5c)

is the indicator function of a L∞ ball with radius C∞ > 0.
As we have already seen in Chapter 4 that a regularization approach with a B0

p,2
penalty term leads to order optimal convergence rates for certain problems. We
choose q = 2 since our strategy leads to suboptimal rates for q < 2, and if we choose
q > 2 a smoother wavelet system is required, because then f ∗ will be smoother then
f † (see Corollary 4.4). Furthermore, if p ≈ 1 we can take advantage of Remark 4.21,
i.e. obtain faster rates for the same solution without further assumptions.

The added indicator function has a twofold purpose: On the one hand the con-
struction of complex geometric optic solutions presented in Section 5.3 requires uniform
L∞ bounds on f . While these bounds could be achieved by usingR( f ) = 1

2‖ f | Bs
p,2‖2

for s large enough this would exclude the interesting case of potentials f with jumps.
On the other hand (as we will see in the following) it guarantees that the Tikhonov
functional is regularizing in the sense that it meets Assumption 1.4.

To see this we choose X = B0
p,2 for p ∈ (1, 2] and Y = L2(∂BR × ∂BR) together

with their weak topologies. As we are in the deterministic error model and the inverse
problem has a unique solution, it remains to check the sequential closedness of D
given by

D := { f ∈ B0
p,2 ∩ L∞ : supp f ⊂ Br,=( f ) ≥ 0, ‖ f | L∞‖ ≤ C∞}. (5.5d)

as well as the sequential continuity properties of the operator F on this set.
A regularization strategy similar to our choice has already been considered in

[LKK13]. It has been shown that for p > 3/2 and

R( f ) =
1
p
‖ f | Lp‖p, p ∈ (1, ∞)

as a penalty term Assumption 1.4 is fulfilled. However due to the lack of a unique
continuation principle for f ∈ Lp with p ∈ (1, 3/2] the result could not be extended
to all p ∈ (1, ∞).

Lemma 5.1. Let ( fn)n∈N ⊂ D and fn ⇀ f ∈ B0
p,2, then f ∈ D and fn ⇀ f in Lt for all

t ∈ (1, ∞) and fn
∗
⇀ f in L∞.
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Proof. Since ( fn)n∈N ⊂ D we get that ‖ fn‖L∞ ≤ C∞ for all n ∈ N. Hence there exists
some subsequence ( fnk )k∈N and f0 ∈ L∞ with ‖ f0 | L∞‖ ≤ C∞, supp( f0) ⊂ Br and
=( f0) ≥ 0 such that fnk

∗
⇀ f0 in L∞. As the domain is bounded we can infer f0 ∈ Lt

for all t ∈ (1, ∞). Using again boundedness of the domain the weak-∗-convergence
implies that fnk ⇀ f0 in Lt for all t ∈ (1, ∞).

Due to the continuous embeddings Lp ⊂ B0
p,2 and B0

p′ ,2 ⊂ Lp′ we obtain that

fnk ⇀ f0 in B0
p,2 and hence f0 = f by uniqueness of the limit.

By repeating the above arguments every subsequence of ( fn)n∈N has a subse-
quence that weak-∗-converges to f in L∞. Thus fn

∗
⇀ f in L∞ which then implies that

fn ⇀ f in Lt for all t ∈ (1, ∞).

This illustrates that D is weakly sequentially closed and the weakly convergent
sequences in B0

p,2 for p ∈ (1, 2] also converge weakly in Lt for t ∈ (1, ∞). In other
words: as F has been shown to be sequentially continuous with respect to the weak L2

topology in [LKK13] our regularization strategy fulfills Assumption 1.4 and is hence
regularizing by Section 1.2.2.

As usual we will measure convergence and the rate of convergence with respect to
the Bregman distance ∆R associated to the penalty termR. Due to the added indicator
function the subgradient of a potential f withR( f ) < ∞ is not unique. However,R
is regular enough to apply the sum rule for the calculation of the subdifferential, see
Proposition A.8(a), thus we get that

∂R( f ) = ∂

(
1
2

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥2
)
+ ∂ι( f ).

If ι( f ) < ∞, we always have 0 ∈ ∂ι( f ), therefore we will always consider in the
following the Bregman distance to be associated with the uniquely determined sub-
gradient f ∗ ∈ ∂

(
1
2‖ f † | B0

p,2‖2
)

which is of the form (4.2) for λ =W f †. Note that due

to ι( f †) = 0 we get that

CB0
p,2

2

∥∥∥ f − f †
∣∣∣ B0

p,2

∥∥∥2
≤ ∆ 1

2 ‖· | B0
p,2‖2( f , f †) ≤ ∆ f ∗

R ( f , f †)

for CB0
p,2

as in Lemma B.21; this makes evident that our choice of the regularization

functional fulfills Assumption 2.22.
A VSC fulfilled by this problem will be stated and proven in Section 5.4, but

beforehand we will discuss the basics required for the ill-posedness estimate (2.28c).
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5.3 Ill-posedness Estimate

The general idea for proving that a VSC is fulfilled is to choose the operator family
similar to Pj as defined in (4.3), i.e. the Fourier transform of Pj f is zero for high
frequencies and coincide with the Fourier transform of f for low frequencies (for the
concrete choice of Pj see the proof of Theorem 5.13 below; nevertheless (4.3) is the
main part). Before going into the details, we would like to describe the idea behind
the ill-posedness estimate. For simplicity assuming a L2-setting we can estimate

〈Pj f ∗, f † − f 〉 ≤
∥∥∥Pj f †

∣∣∣Hν
∥∥∥∥∥∥Pj( f † − f )

∣∣∣H−ν
∥∥∥

≤ c(j, ν)
∥∥∥Pj f †

∣∣∣Hν
∥∥∥∥∥∥FPj( f † − f )

∣∣∣ L∞
∥∥∥

where F denotes the Fourier transform as defined in (B.2), by norm equivalence for
Sobolev spaces. While the first term can be estimated with the help of smoothness of
f † the challenge is to find a good control of ‖FPj( f † − f ) | L∞‖. However, this this
term also appears when proving stability estimates for this problem as we explain
next.

For stability estimates one usually proceeds as follows: One chooses Pj as above
and splits

‖ f1 − f2 |Hν‖2 =
∥∥(I − Pj)( f1 − f2)

∣∣Hν
∥∥2

+
∥∥Pj( f1 − f2)

∣∣Hν
∥∥2.

As one typically assumes that f1 − f2 ∈ Hs with s > ν we get that the Fourier
coefficients will decay with a certain speed and hence one immediately obtains an
estimate for the first summand. For the second summand one uses as above that∥∥Pj( f1 − f2)

∣∣Hν
∥∥ ≤ c(j, ν)

∥∥FPj( f1 − f2)
∣∣ L∞∥∥

holds true. A stability estimate then follows after estimating ‖FPj( f1 − f2) | L∞‖ by
properly balancing the terms.

Therefore to verify the VSC we can rely on techniques to prove stability estimates.
But how does one control

∥∥FPj( f1 − f2)
∣∣ L∞

∥∥? There are two key factors involved in
estimating this term: Alessandrini type identities and complex geometric optics solutions.

Alessandrini type identities are relations of the form∫
( f1 − f2)u1u2 = G

(
F( f1)− F( f2), u1, u2

)
where uk is a solution to the Schrödinger equation (5.1) for the potential fk and G
is some linear functional. The name originates from [Ale88], where the first such
identity was proven in order to derive the first stability estimate for the Schrödinger
equation as explained above. We will see two such identities later on (see the Lemmas
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5.9 and 6.2). Suppose now that we can find solutions uk such that u1u2 = e−iξ·(1 + p)
where p is a – hopefully small – perturbation. By rearranging terms, an Alessandrini
type identity thus allows the estimate∣∣∣( f̂1 − f̂2

)
(ξ)
∣∣∣ ≤ ∫ |p( f1 − f2)|+

∣∣G(F( f1)− F( f2), u1, u2
)∣∣.

where the right hand side can typically be controlled by a function depending on
‖ f1 − f2‖, ‖F( f1) − F( f2)‖, ‖p‖, ‖u1‖ and ‖u2‖, and the first two of these are the
ones we need for the stability or ill-posedness estimate, while the others are at least
bounded.

Note that the assumption to find solutions such that u1u2 = e−iξ·(1 + p) is not
unrealistic; if f = 0 a solution to (5.1) is given by eiζ·x for all ζ ∈ C3 satisfying ζ · ζ =
E.1 These solutions are plane wave solutions but with a complex valued direction of
propagation ζ, leading to an exponential growth in the direction −=(ζ), hence for
=(ζ) 6= 0 they are unphysical. If we have two such solutions with ζ1 + ζ2 = −ξ, then
we found the solutions we wanted to plug into the estimate.

If f 6= 0, then of course u(x) = eiζ·x for ζ with ζ · ζ = E does not longer solve (5.1).
Therefore we will use the ansatz

uζ(x) = eiζ·x(1 + vζ(x)) (5.6)

and solutions of this form are called complex geometric optic solutions. Inserting into
(5.1) and using the relation ζ · ζ = E we get the following differential equation for the
perturbation vζ :

Dζvζ :=
(

∆ + 2iζ · ∇
)

vζ = f (1 + vζ). (5.7)

Note that we still have some freedom in our choice of ζ, so we are in particular
interested in cases where ‖vζ‖ gets small in some norm.

Properties of Dζ and its solution operator Gζ defined by Dζ(Gζ f ) = f have been
studied by many different authors via Fourier methods. They already appear in
[Fad65], and have been applied in [SU87] to prove uniqueness of the inverse problem.
Starting with [Ale88] they have been used in order to derive stability estimates. The
construction has been greatly simplified for a periodic setting in [Häh96]. Here we
will employ estimates of [Wed91] in combination with ideas from [BT03] in order to
show that ‖vζ‖ → 0 as |ζ| → ∞.

5.3.1 Complex geometric optics solutions
Before we are able to study the mapping properties of Gζ we have to introduce some
Sobolev based function spaces.

1Here for vectors ζ = <(ζ)+ i=(ζ) ∈ C3 we denote by ζ · ζ := <(ζ) · <(ζ)−=(ζ) · =(ζ)+ 2i<(ζ) · =(ζ)
and |ζ| := (|<(ζ)|2 + |=(ζ)|2)1/2
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5.3.1.1 Some function spaces

We start with weighted Sobolev spaces and define for µ, t ∈ R:

Hµ,t(Rd) :=
{

f ∈ S′(Rd) :
∥∥ f
∣∣Hµ,t∥∥ < ∞

}
where

∥∥ f
∣∣Hµ,t∥∥ :=

[∫
Rd

∣∣∣∣(1 + |x|2
)t/2

(Λµ f )(x)
∣∣∣∣2dx

] 1
2

with Λµ f :=
(
F ∗(1 + |·|2)

µ
2F
)

f .

Note that Hµ,0 = Hµ = Bµ
2,2; these spaces have the following properties:

Proposition 5.2. Let µ, µ1, µ2, t, t1, t2 ∈ R with µ1 6= µ2 and θ ∈ (0, 1), then:
(a) Hµ,t1(Rd) ⊂ Hµ,t2(Rd) if and only if t1 ≥ t2;

(b) (Hµ,t(Rd))′ = H−µ,−t(Rd);

(c) [Hµ1,t1(Rd), Hµ2,t2(Rd)]θ,2 = Hµ̃,t̃(Rd) for µ̃ = (1− θ)µ1 + θµ2 and t̃ = (1−
θ)t1 + θt2;

(d) if µ ∈ N0, then an equivalent norm on Hµ,t is given by

∥∥ f
∣∣Hµ,t∥∥ :=

∫
Rd

(
1 + |x|2

)t
∑
|α|≤µ

|∂α f |2dx

1/2

;

(e) an equivalent norm on Hµ,t is given by

∥∥ f
∣∣Hµ,t∥∥ :=

[∫
Rd

∣∣∣∣(Λµ

((
1 + |·|2

)t/2
f
))

(x)
∣∣∣∣2dx

] 1
2

.

Proof. See [Löf82].

Usually the mapping properties of Gζ are formulated with respect to these spaces
(see Proposition 5.5 below). However, we would like to exploit more explicitly that the
right hand side of (5.7) has compact support. Inspired by [BT03], we thus introduce
two further classes of Sobolev spaces. The first will be for functions with compact
support and is given by

Hµ
ρ (R

d) := { f ∈ Hµ : supp( f ) ⊂ Bρ}. (5.8a)

Note that for each f ∈ Hµ
ρ (R

d) we have that f |Bρ
⊂ Hµ

0 (Bρ).2

2The space Hµ
0 (Bρ) is defined as the closure of { f ∈ C∞(Bρ) : f |∂Bρ = 0} with respect to the norm

‖ f |Hµ
0 (Bρ)‖ := inf{‖ f̃ |Hµ(Rd)‖ : f̃ ∈ Hµ(Rd) and f̃ |Bρ

= f }.
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For our purposes the following lemma is important which allows to estimate the
Hµ,t-norm from above for compactly supported functions:

Lemma 5.3. Let µ ∈ R and t ≥ 0. Then for f ∈ Hµ
ρ (R

d) the estimate∥∥∥ f
∣∣∣Hµ,t(Rd)

∥∥∥ ≤ (1 + ρ)t
∥∥∥ f
∣∣∣Hµ

ρ (R
d)
∥∥∥

holds true.

Proof. Let f be inHµ
ρ (R

d), then f ∈ ⋂t∈R Hµ,t. Indeed for µ ∈ N0 this is obvious by
Proposition 5.2(d); interpolation then extend this to all µ ≥ 0 and duality to all µ ∈ R.

Hence we can look at the embedding of f as an element of Hµ,t2 into Hµ,t1 for
t1 > t2. Starting again with µ ∈ N0 we can estimate by Proposition 5.2(d) that∥∥ f

∣∣Hµ,t1
∥∥2

=
∫

B(ρ)

(
1 + |x|2

)t1
∑
|α|≤µ

|∂α f |2dx

≤
(

1 + ρ2
)t1−t2

∫
B(ρ)

(
1 + |x|2

)t2
∑
|α|≤µ

|∂α f |2dx

=
(

1 + ρ2
)t1−t2∥∥ f

∣∣Hµ,t2
∥∥2.

Due to Proposition 5.2(c) and Proposition B.14 this extends to∥∥ f
∣∣Hµ,t1

∥∥2 ≤
(

1 + ρ2
)t1−t2∥∥ f

∣∣Hµ,t2
∥∥2 ∀µ ≥ 0.

Setting t1 = t and t2 = 0 then yields the claim for µ ≥ 0, since
√

1 + ρ2 ≤ 1 + ρ. By
duality (see Proposition 5.2(b)) we have∥∥ f

∣∣H−µ,−t2
∥∥2 ≤

(
1 + ρ2

)t1−t2∥∥ f
∣∣H−µ,−t1

∥∥2 ∀µ ∈ R.

The claim follows by setting t1 = 0 and t2 = −t.

For the second class we compare the norm of different localizations of a function;
to be more precise we set

Hµ(Rd) := { f ∈ Hµ
loc(R

d) : ‖ f | Hµ‖ < ∞},

with ‖ f | Hµ‖ := sup
ρ≥1

ρ−1
∥∥∥Λµ

(
ηρ f
) ∣∣∣ L2

∥∥∥ = sup
ρ≥1

ρ−1∥∥ηρ f
∣∣Hµ

∥∥ (5.8b)

where ηρ := η(x/ρ) and η ∈ C∞(R3,R) is a smooth cut-off function such that
|η(x)| ≤ 1, η(x) = 0 if |x| > 1 and η(x) = 1 if |x| ≤ 1/2 (in [BT03] a different power
of ρ has been used to define Hµ). The choice of the power of ρ is such that we can
guarantee that Hµ,−1 ⊂ Hµ:
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Lemma 5.4. There exists constants Cµ > 0 depending on |µ| and the choice of η in (5.8b)
only such that for all f ∈ Hµ,−1(Rd) the estimate

‖ f | Hµ‖ ≤ Cµ

∥∥∥ f
∣∣∣Hµ,−1

∥∥∥
holds true.

Proof. Let η be the function in the definition of theHs-norm in (5.8b) and let ρ > 1.
Consider the operator Tρ : Hµ,t → Hµ,t+1 defined by Tρ f = ηρ f . We will first show
that this operator is bounded.

Assume that µ ∈ N0 and f ∈ Hµ,t for some t ∈ R. Then we get that for all
multi-indices α with 0 ≤ |α| ≤ µ hat there exists constant cα > 0 depending on η such
that ∣∣∂α(ηρ f )

∣∣ ≤ cα ∑
0≤β≤α

|∂β f |

by the product rule. Indeed for all multi-indices β we have |∂βηρ|≤ ρ−|β|‖∂βη | L∞‖ ≤
‖∂βη | L∞‖. As |∂β f | ∈ H0,t for all 0 ≤ β ≤ α we therefore get that there exist constants
C̃µ depending on µ and η only such that∥∥ηρ f

∣∣Hµ,t∥∥ ≤ C̃µ

∥∥ f
∣∣Hµ,t∥∥.

Using again Proposition 5.2(d) we see that∥∥ηρ f
∣∣Hµ,t∥∥2

=
∫
Rd

(
1 + |x|2

)t
∑
|α|≤µ

∣∣∂α(ηρ f )
∣∣2dx

≥ 1
2ρ2

∫
Rd

(
1 + |x|2

)t+1
∑
|α|≤µ

∣∣∂α(ηρ f )
∣∣2dx =

1
2ρ2

∥∥∥ηρ f
∣∣∣Hµ,t+1

∥∥∥2
,

i.e. Tρ f = ηρ f is a bounded linear operator from Hµ,t → Hµ,t+1 with norm bound
Cµρ for Cµ :=

√
2C̃µ. Therefore interpolation implies∥∥∥Tρ

∣∣∣Hµ,t → Hµ,t+1
∥∥∥ ≤ Cµρ ∀µ ≥ 0, t ∈ R

for an appropriate constant Cµ.

By definition of the norm on Hµ
ρ for µ ≥ 0 we therefore choose t = −1

‖ f | Hµ‖ = sup
ρ≥1

ρ−1
∥∥∥Tρ f

∣∣∣Hµ,0
∥∥∥ ≤ Cµ

∥∥∥ f
∣∣∣Hµ,−1

∥∥∥.

Using duality and t = 0 yields that∥∥ f
∣∣H−µ

∥∥ = sup
ρ≥1

ρ−1
∥∥∥T∗ρ f

∣∣∣H−µ,0
∥∥∥ ≤ Cµ

∥∥∥ f
∣∣∣H−µ,−1

∥∥∥
for the same constant Cµ.



5.3. Ill-posedness Estimate 135

Note that by the embedding Hµ(Rd) ⊂ Hµ,−1(Rd) the previous lemma shows
that

Hµ(Rd) ⊂ Hµ(Rd) ⊂ Hµ
loc(R

d).

We will need the introduced spaces for the construction of complex geometric
optics solutions only. As their construction will merely be carried out for d = 3 we
will from now on only write Hµ,t, Hµ

ρ andHµ for the respective space with domain
R3.

5.3.1.2 Complex geometric optics solutions for bounded potentials

We now return to study the solution operator Gζ . Note that this operator can actually
be represented as a convolution operator of the form

(Gζ f )(x) = (gζ ∗ f )(x) =
∫
R3

gζ(x− y) f (y)dy,

where gζ(x) =
∫
R3

eiξ·x

ξ · ξ + 2ξ · ζ dξ.
(5.9)

This form was used to prove the following:

Proposition 5.5 ([Wed91, Theorem 1.1]). Let t > 1/2, µ ∈ R, ν ∈ [0, 2] and ζ ∈ C3

with ζ · ζ = E and |ζ| ≥ 1/10, then there exist constants C(ν, t) > 0 such that∥∥Gζ

∣∣Hµ,t → Hµ+ν,−t∥∥ ≤ C(ν, t)|ζ|ν−1.

Proof. The finding of Weder is only valid for µ = 0. The extension to µ ∈ R follows
by observing that Gζ and F ∗(1 + |·|2)µ/2F commute.

The result in [Wed91] gives a more explicit value for C(ν, t) but for our purpose
the estimate in the previous proposition is sufficient. Furthermore the equivalent
norm definition of Proposition 5.2(e) was used.

The spaces introduced in (5.8) now allow an estimate similar to [BT03, Thm. 2]:

Lemma 5.6. Let ζ ∈ C3 with ζ · ζ = E and |ζ| ≥ 1/10. Then for µ ∈ R and ν ∈ [0, 2]∥∥∥Gζ

∣∣∣Hµ
ρ → Hµ+ν

∥∥∥ ≤ Cµ+νC(ν, 1)(1 + ρ)|ζ|ν−1

with C(ν, 1) the constant of Proposition 5.5 and Cµ+ν the constant of Lemma 5.4.

Proof. Setting t = 1 we get by Proposition 5.5 and Lemma 5.3 that for f ∈ Hµ
ρ the

estimate∥∥∥Gζ f
∣∣∣Hµ+ν,−1

∥∥∥ ≤ C(ν, 1)|ζ|ν−1
∥∥∥ f
∣∣∣Hµ,1

∥∥∥ ≤ C(ν, 1)|ζ|ν−1(1 + ρ)
∥∥∥ f
∣∣∣Hµ

ρ

∥∥∥
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holds true. Since Lemma 5.4 implies∥∥Gζ f
∣∣Hµ+ν

∥∥ ≤ Cµ+ν

∥∥∥Gζ f
∣∣∣Hµ+ν,−1

∥∥∥
the claim follows.

We now rewrite (5.7) as (
Dζ −M f

)
vζ = f (5.10)

where M f is the operator defined by (M f v)(x) = f (x)v(x) and define Gζ, f := (Dζ −
M f )

−1. This operator has the following norm bound:

Lemma 5.7. Let f ∈ dom(F) and ζ ∈ C3 with ζ · ζ = E such that

|ζ| ≥ max{1/10, Cr‖ f | L∞‖} with Cr := 4C0C(0, 1)(1 + r)2 (5.11)

where C(0, 1) and C0 are the constant of Proposition 5.5 and Lemma 5.4 respectively. Then
there exists a c > 0 depending only on r such that the estimate∥∥∥Gζ, f

∣∣∣H0
r → H0

∥∥∥ ≤ c|ζ|−1

holds true.

Proof. We have Gζ, f f = vζ if and only if (I −Gζ M f )vζ = Gζ f . Assume that Gζ M f is
a contraction onH0 with norm bound 1/2, then Banach’s fixed-point theorem yields
that

vζ = Gζ, f f =
(

I − Gζ M f

)−1
Gζ f =

∞

∑
j=0

(
Gζ M f

)j
Gζ f

and thus
∥∥∥vζ

∣∣∣H0
∥∥∥ ≤ 2

∥∥∥Gζ f
∣∣∣H0

∥∥∥;

the norm estimate is then implied by Lemma 5.6.
In order to see that Gζ M f is indeed a contraction note that by Lemma 5.6 we can

infer that ∥∥∥Gζ M f h
∣∣∣H0

∥∥∥ ≤ C0C(0, 1)(1 + r)
|ζ|

∥∥∥M f h
∣∣∣H0

r

∥∥∥
≤ C0C(0, 1)(1 + r)‖ f | L∞‖

|ζ|

∥∥∥η2(1+r)h
∣∣∣ L2
∥∥∥

≤ 2(1 + r)
C0C(0, 1)(1 + r)‖ f | L∞‖

|ζ|

∥∥∥h
∣∣∣H0

∥∥∥
for all h ∈ H0, since (5.11) guarantees |ζ| ≥ 1/10. The second lower bound on |ζ|
hence gives the desired contraction result and the claim follows.
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In summary, we obtain the following estimates for vζ solving (5.7):

Theorem 5.8. Let the assumptions of Lemma 5.7 be met, ν ∈ [0, 2] and choose ζ ∈ C3 \R3

according to (5.11). Then there exists a constant c > 0 depending on r only such that for vζ

solving (5.7) the following estimates are fulfilled:

(a)
∥∥∥vζ

∣∣∣H0
∥∥∥ ≤ c;

(b)
∥∥vζ

∣∣ L∞∥∥ ≤ c‖ f | L∞‖;

(c)
∥∥vζ

∣∣Hν
∥∥ ≤ c‖ f | L∞‖|ζ|ν−1.

Proof. We use the findings on complex geometric optics solutions:
Proof of (a): Since supp( f ) ⊂ Br we get by Lemma 5.7 that there exists a c̃ > 0

depending on r only such that∥∥∥vζ

∣∣∣H0
∥∥∥ =

∥∥∥Gζ, f f
∣∣∣H0

∥∥∥ ≤ c̃
ζ

∥∥∥ f
∣∣∣ L2
∥∥∥ ≤ c̃

∥∥ f
∣∣ L2
∥∥

Cr‖ f | L∞‖ ≤ c

and c depends only on r.
Proof of (b): By (5.7) and the first part we obtain that

|vζ(x)| ≤
∫

Br
|gζ(x− y) f (y)(1 + η2r(y) vζ(y))|dy

≤
(∫

Br
|gζ(x− y)|2 dy

)1/2(∥∥∥1
∣∣∣ L2(Br)

∥∥∥2
+ 4r2

∥∥∥vζ

∣∣∣H0
∥∥∥2
)1/2
‖ f | L∞‖

≤ c
(∫

Br
|gζ(x− y)|2 dy

)1/2
‖ f | L∞‖ ∀x ∈ R3 if ζ fulfills (5.11).

Combining this with the fact that |gζ(x)| = O(1/|x|) uniformly in ζ ∈ C3 \R3 (see
[NK87]) we see that there exists a constant c > 0 depending only on r such that

‖vζ | L∞‖ ≤ c‖ f | L∞‖

if ζ is chosen according to (5.11).
Proof of (c): Note that supp((1+ η2r vζ) f ) ⊂ Br and by (a) this is even inH0

r . Hence
by (5.7) and Lemma 5.6 we get that∥∥vζ

∣∣Hν
∥∥ =

∥∥Gζ

(
(χBr + η2rvζ) f

) ∣∣Hν
∥∥

≤ CνC(ν, 1)(1 + r)|ζ|ν−1
∥∥∥(χBr + η2rvζ) f

∣∣∣H0
r

∥∥∥
≤ CνC(ν, 1)(1 + r)|ζ|ν−1‖ f | L∞‖

(∥∥∥χBr + η2rvζ

∣∣∣H0
r

∥∥∥)
Taking the supremum over CνC(ν, 1) for ν ∈ [0, 2] (which is finite) yields the claim.
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5.3.2 Energy dependent estimates of low Fourier frequencies for
the difference of two potentials

The next aim is to derive the key estimate which will be used to obtain an estimate
of the form (2.28c). This will be done in three steps: First we need to establish a
Alessandrini type identity as a connection between potentials and corresponding
data; this will lead to a transmission problem. A solution to the transmission problem
is given by a complex geometric optics solution in the inner domain which is then
continued as a radiating solution meeting (5.2) in the outer domain. Secondly, as the
desired connection between potentials and data involves the jump of the Neumann
traces across the boundary, we have to find estimates on these as well. Lastly, a
combination of these estimates yields an estimate of |F ( f1 − f2)(ξ)| for ξ small
enough.

5.3.2.1 Connecting measurements with potentials

In the following we consider a transmission problem that will help us to connect
measurements and potentials in a different way. For f ∈ dom(F) and given a function
h on the sphere Γ := ∂BR with R > r we seek for a solution w of(

− ∆ + f
)

w = E w in R3 \ Γ,

w− = w+ on Γ,
∂w

∂n−
− ∂w

∂n+
= h on Γ,

lim
|x|→∞

|x|
(

∂

∂|x| − i
√

E
)

w = 0,

(5.12)

where the traces are defined by

w±(x) := lim
λ→0+

(w(x)± λn(x)),

∂w
∂n±

(x) := lim
λ→0+

n(x) · ∇(w(x)± λn(x)),

with n being the outer normal vector of Γ. The solution to (5.12) is unique and can be
calculated by

w(x) =
∫

Γ
g f (x, y)h(y)ds(y) for x ∈ R3

where g f = F( f ); see [HH01, Lem. 2.2]. Now define the operator S f : L2(Γ)→ L2(Γ)
by

(S f h)(x) :=
∫

Γ
g f (x, y)h(y)ds(y) for x ∈ Γ.
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Then we obtain the following characterization for the difference of two potentials in
dom(F) by the solutions of (5.12):

Lemma 5.9 ([HH01, Lem. 3.2]). Let R > r and f j be potentials with f j ∈ dom(F) for
j = 1, 2. Let wj be solutions to the boundary value problem (5.12) given by f j for j = 1, 2.
Then the identity∫

Br
( f1 − f2)w1w2 dx =

∫
Γ

(
∂w1

∂n−
− ∂w1

∂n+

)[
S f1 − S f2

]( ∂w2

∂n−
− ∂w2

∂n+

)
ds (5.13)

holds true.

Note that if w1 and w2 have the form of complex geometric optics solutions (5.6)
in Br with ζ1 + ζ2 = −ξ, then the left hand side is of the form F ( f1 − f2)(ξ) +
O(‖vζ1 | H

0‖, ‖vζ2 | H0‖) and the perturbation of the Fourier coefficient will get small
if |ζ1|, |ζ2| → ∞ due to Theorem 5.8. It therefore remains to find a good control of the
right hand side.

5.3.2.2 Trace estimates for complex geometric optics solutions

We now want to find estimates for ∂±n w where w is a solution to (5.12) and the
restriction of w to BR has the form of a complex geometric optics solution. Note that
such a solution exists, since we can define

wζ(x) =

{
uζ(x) x ∈ BR

ũζ(x) x ∈ R3 \ BR
(5.14)

where ũζ is the unique scattering solution to the Helmholtz equation in R3 \ BR with
prescribed Dirichlet data ũζ |Γ = uζ |Γ (see [CK13, Sec. 3.2] for uniqueness, existence
and regularity properties of this solution) with Γ = ∂BR. Then obviously wζ is a
solution to (5.12) and uniquely defined for ζ ∈ C3.

To estimate ∂+n wζ we need an estimate for the Neumann trace of a radiating
solution to the Helmholtz equation. Several estimates of such kind exist that also
make the dependence on the energy explicit, see [CGLS12] for an overview. Here we
will use the following estimate which is known to be sharp with respect to the energy
E.

Lemma 5.10 ([BSW16, Theorem 1.4]). Let Ω− ⊂ R3 be star-shaped with Lipschitz bound-
ary and set Γ := ∂Ω− and Ω+ := R3 \Ω−. Let u ∈ H1

loc(Ω
+) solve(

∆ + E
)

u = 0 in Ω+,

lim
|x|→∞

|x|
(

∂

∂|x| − i
√

E
)

u = 0,
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such that u|Γ ∈ H1(Γ). Then for every E0 > 0 there exists a constant c independent of u and
E such that ∥∥∥∥ ∂u

∂n+

∣∣∣∣ L2(Γ)
∥∥∥∥ ≤ cE1/2

∥∥∥u|Γ
∣∣∣H1(Γ)

∥∥∥
holds true for all E ≥ E0.

Note that wζ and BR fulfill the regularity assumptions on u and Ω− respectively
and hence Lemma 5.10 can be applied to estimate ∂+n wζ . We now use simple trace
estimates and Lemma 5.7 to find a bound on the jump of the Neumann derivative of
wζ across ∂BR.

Lemma 5.11. Let E ≥ 1, R > r, f ∈ dom(F) and wζ be the solution to (5.12) defined by
(5.14). Choose ζ ∈ C3 \R3 according to Lemma 5.7. Then the estimate∥∥∥∥ ∂wζ

∂n−
−

∂wζ

∂n+

∣∣∣∣ L2(∂BR)

∥∥∥∥ ≤ ceR|=(ζ)|(E1/2|ζ|2 + |ζ|3)

holds true for all ζ fulfilling (5.11) with c depending only on R and r.

Proof. By Theorem 5.8(c) with ν = 2 the complex geometric optic solution uζ is in
H2

loc, so we can estimate∥∥∥uζ

∣∣∣H2(BR)
∥∥∥= ∥∥∥eiζ·(1 + η2Rvζ)

∣∣∣H2(BR)
∥∥∥≤ c

∥∥∥eiζ·
∣∣∣C2(BR)

∥∥∥∥∥∥1 + η2Rvζ

∣∣∣H2(BR)
∥∥∥

≤ c|ζ|2eR|=(ζ)|
(
‖1 |H2(BR)‖+

∥∥∥η2Rvζ

∣∣∣H2
∥∥∥)

≤ c|ζ|2eR|=(ζ)|
(
‖1 |H2(BR)‖+ 2Rc|ζ|

)
≤ c|ζ|3eR|=(ζ)|, for ζ meeting (5.11);

and the constant c depends on R and r only. Likewise we obtain the norm estimate∥∥∥uζ

∣∣∣H1(BR)
∥∥∥ ≤ c|ζ|eR|=(ζ)|,

with Theorem 5.8(c) with ν = 1 and c depending again on R and r. Therefore via
interpolation we get ∥∥∥uζ

∣∣∣H3/2(BR)
∥∥∥ ≤ c|ζ|2eR|=(ζ)|,

with a R and r dependent constant if ζ fulfills (5.11).
By the trace theorem there exists a constant c depending on R such that together

with Lemma 5.10 we can estimate∥∥∥∥ ∂wζ

∂n−

∣∣∣∣ L2(∂BR)

∥∥∥∥ ≤ c
∥∥∥uζ

∣∣∣H2(BR)
∥∥∥

and
∥∥∥∥ ∂wζ

∂n+

∣∣∣∣ L2(∂BR)

∥∥∥∥ ≤ cE1/2
∥∥∥uζ

∣∣∣H3/2(BR)
∥∥∥.
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Inserting the estimates above results in∥∥∥∥ ∂wζ

∂n−
−

∂wζ

∂n+

∣∣∣∣ L2(∂BR)

∥∥∥∥ ≤ cer|=(ζ)|
(

E1/2|ζ|2 + |ζ|3
)

for ζ according to (5.11) with c depending on R and r only.

5.3.2.3 Bounds of the Fourier transform at fixed frequency

We now want to apply the above results to obtain a bound on the low Fourier
frequencies of the difference of two potentials, while making the dependence on the
energy E explicit.

Theorem 5.12. Let ν ∈ [0, 1), E ≥ 1, R > r, C∞ > 0 and f1 and f2 be potentials with
f j ∈ dom(F) and ‖ f j | L∞‖ ≤ C∞ for j = 1, 2. Denote by gj = F( f j) the error free data of
f j for j = 1, 2. Choose t, b > 0 such that

t2 > max
{

1
2
(t2

0 − E), 0
}

and E + t2 ≥ b2

4
where t0 := CrC∞ and Cr as in (5.11).

(5.15)

Then there exists a constant c depending only on R and r such that for all ξ ∈ R3 satisfying
|ξ| ≤ b we have∣∣∣( f̂1 − f̂2

)
(ξ)
∣∣∣ ≤ c

(
E3e(2R+1)t‖g1 − g2 | Y‖+

1 + C2
∞√

E + 2t21−ν

∥∥ f1 − f2
∣∣H−ν

∥∥).

(5.16)

Proof. For fixed ξ ∈ R3 choose two unit vectors d1 and d2 in R3 such that ξ · d1 =
ξ · d2 = d1 · d2 = 0. For t as in (5.15) define

ζt
1 := −1

2
ξ + itd1 +

√
E + t2 − |ξ|

2

4
d2,

ζt
2 := −1

2
ξ − itd1 −

√
E + t2 − |ξ|

2

4
d2.

Then ζt
1, ζt

2 ∈ C3 \R3 and they satisfy

ζt
1 + ζt

2 = −ξ, |ζt
1| = |ζt

2| =
√

E + 2t2 ≥ t0 and ζt
1 · ζt

1 = ζt
1 · ζt

2 = E

since E + t2 − |ξ|
2

4 ≥ 0. As |ζt
j | ≥ t0 and |ζt

j | ≥ E ≥ 1 imply that ζt
j fulfills (5.11) for

j = 1, 2 there exists by Section 5.3.1.2 complex geometric optics solutions of the form

u1(x, ζt
1) = eiζt

1·x(1 + v1(x, ζt
1)),

u2(x, ζt
2) = eiζt

2·x(1 + v2(x, ζt
2)),
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where uj solves the equation −∆uj + f juj = Euj in BR for j = 1, 2. By extending uj to
radiating solutions outside of BR solving (5.12) for f j we obtain that

(2π)3/2
∣∣∣( f̂1 − f̂2

)
(ξ)
∣∣∣ =∣∣∣∣ ∫Br

( f1 − f2)(x) u1(x, ζt
1) u2(x, ζt

2)dx−
∫

Br

[
( f1 − f2)(x)

(v1(x, ζt
1) + v2(x, ζt

2) + v1(x, ζt
1) v2(x, ζt

2))e
−iξ·x

]
dx
∣∣∣∣.
(5.17)

Using the results of Lemma 5.9 and 5.11 we can bound∣∣∣∣∫Br
( f1 − f2)(x) u1(x, ζt

1) u2(x, ζt
2)dx

∣∣∣∣
≤ ce2R|=(ζt

1)|
(

E1/2|ζt
1|2 + |ζt

1|3
)2
‖g1 − g2 | Y‖

since ‖Sq1 − Sq2 | L2(∂BR)→ L2(∂BR)‖ = ‖g1 − g2 | Y‖ and |ζt
1| = |ζt

2|. Inserting |ζt
1|

we get that

e2rt
(

E1/2
√

E + 2t2
2
+
√

E + 2t2
3
)2
≤ 2e2Rt

(
E(E + 2t2)2 + (E + 2t2)3

)
≤ 4e2Rt

(
E3 + 4t4 + 2E3 + 16t6

)
.

Note that there exists a constant c depending only on R such that

t4e2Rt ≤ ce(2R+1)t and t6e2Rt ≤ ce(2R+1)t for all t > 0.

Therefore we obtain that∣∣∣∣∫Br
( f1 − f2)(x) u1(x, ζt

1) u2(x, ζt
2)dx

∣∣∣∣ ≤ cE3e(2R+1)t‖g1 − g2 | Y‖.

The second integral in (5.17) can be bounded by∣∣∣∣∫Br
e−iξ·x( f1 − f2)(x) (v1(x, ζt

1) + v2(x, ζt
2) + v1(x, ζt

1) v2(x, ζt
2))dx

∣∣∣∣
≤
∥∥∥Λ−ν( f1 − f2)

∣∣∣ L2
∥∥∥(∥∥∥Λν η2(1+r) v1(·, ζt

1)
∣∣∣ L2)

∥∥∥+ ∥∥∥Λν η2(1+r) v2(·, ζt
2)
∣∣∣ L2
∥∥∥

+
∥∥∥Λν η2(1+r) v1(·, ζt

1)
∣∣∣ L2
∥∥∥∥∥v2(·, ζt

2)
∣∣ L∞∥∥)

≤ c
1 + C2

∞√
E + 2t21−ν

∥∥ f1 − f2
∣∣H−ν

∥∥,

using the estimates Theorem 5.8(b) and (c) for ν ∈ [0, 1) with c depending on r only.
Combining the two last estimates gives the desired estimate.
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5.4 Convergence Rates

Recall that we proposed the Tikhonov functional

f̂α ∈ arg min
f∈D

[
1

2α

∥∥∥F( f )− gobs
∣∣∣Y∥∥∥2

+
1
2

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥2

W
+ ιC∞( f )

]
with D = { f ∈ B0

p,2 ∩ L∞ : supp f ⊂ Br,=( f ) ≥ 0, ‖ f | L∞‖ ≤ C∞}

in (5.5) to recover the potential from the Green’s function. We now have the necessary
tools at hand to show that for this functional the following VSC is fulfilled.

Theorem 5.13. Let R > r > 0 and E ≥ 1. Let C∞ > 0, p ∈ (1, 2], s > 0, $ > 0
and choose ε ∈ (0, 1). Suppose that the true potential f † satisfies f † ∈ dom(F) such that
‖ f † | L∞‖ ≤ C∞ and ‖ f † | Bs

p,∞‖ ≤ $. Then there exists a constant c depending on r, R, p,
s and ε only such that for the Tikhonov functional (5.5) the variational source condition

〈 f ∗, f † − f 〉 ≤ 3
4

∆
1
2

∥∥∥· ∣∣∣ B0
p,2

∥∥∥2

W

( f , f †) + c$(1+ $)

[(
E +

1
4R + 2

ln(3 + τ−
1
2 )2
)ν

E3τ
1
4

+ (1 + C2
∞)3
(

E +
1

4R + 2
ln(3 + τ−

1
2 )2
)−µ

]

with τ =
1
2

∥∥∥F( f )− F( f †)
∣∣∣ L2(∂BR × ∂BR)

∥∥∥2

holds true for all f ∈ D with ν = min{1/2− s/8, 0} and µ = 2
4−p+ε min{s/4, 1}. If

p = 2 we can even choose ε = 0.

We will now introduce a related inverse problem, afterwards we verify VSCs for
both problems. We finish with a discussion of the the result.

5.4.1 Extension to far field data

The data of the operator F described in (5.4) is sometimes called near field data, as we
measure the data on ∂BR which is in this denomination assumed to be not too far
away from Br which contains the support of the potential f . An interesting case for
applications is the limit of R → ∞. Recall that every solution u of the Schrödinger
equation (5.1) fulfilling the Sommerfeld radiation condition (5.2) has the asymptotic
behavior

u(x) = uin(x) +
ei
√

E|x|

|x|

(
u∞(x̂) +O

(
1
|x|2

))
, as |x| → ∞
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uniformly for all directions x̂ = x/|x| ∈ ∂B1, and u∞ is called the far field pattern
(see e.g. [CK13]). Roughly speaking the previous equation states that far away from
the potential the scattered field usc(x) := u(x)− uin(x) has the form of an incident
point source as in (5.3) for y = 0 with an amplitude modulation that just depends on
the direction of travel. As incident fields of the form (5.3) decay with their distance
to their origin y we cannot probe a potential located around the origin with such
incident fields generated at ∂BR with R = ∞. Instead we will consider incident plane
fields of the form

uin
d,∞(x) = ei

√
Ex·d

which propagate into the direction d ∈ ∂B1. Define now u∞(x̂, d) as the far field
pattern in the direction x̂ generated by an incident plane field propagating into the
direction d for all directions x̂, d ∈ ∂B1. Recovering the potential from such data
coincides with solving Ff( f ) = g with the far field operator

Ff : D ∩X → L2(∂B1 × ∂B1) =: Y , f 7→ u∞. (5.18a)

Using the similar regularization approach

f̂α ∈ arg min
f∈D

[
1

2α

∥∥∥Ff( f )− gobs
∣∣∣Y∥∥∥2

+
1
2

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥2

W
+ ιC∞( f )

]
with D = { f ∈ B0

p,2 ∩ L∞ : supp f ⊂ Br,=( f ) ≥ 0, ‖ f | L∞‖ ≤ C∞}
(5.18b)

one can verify the following VSC for this problem:

Theorem 5.14. Let r > 0 and E ≥ 1. Let C∞ > 0, p ∈ (1, 2], s > 0, $ > 0 and choose
ε, θ ∈ (0, 1). Suppose that the true potential f † satisfies f † ∈ D such that ‖ f † | L∞‖ ≤ C∞
and ‖ f † | Bs

p,∞‖ ≤ $. Then there exists a constant c > 0 such that for the Tikhonov functional
(5.18) the variational source condition

〈 f ∗, f † − f 〉 ≤ 3
4

∆
1
2

∥∥∥· ∣∣∣ B0
p,2

∥∥∥2

W

( f , f †) + c
(

ln(3 + τ−1/2)
)−2µθ

with τ =
1
2

∥∥∥Ff( f )− Ff( f †)
∣∣∣Y∥∥∥2

holds true for all f ∈ D with µ = 2
4−p+ε min{s/4, 1}.

5.4.2 Proof of the theorems

We now prove the two Theorems 5.13 and 5.14 stating that a VSC is fulfilled by each
of the two inverse problems.
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5.4.2.1 Verification of the variational source condition for near field data

To prove our claim the following lemma is necessary which helps us bringing Theorem
5.12 into the desired form of Theorem 2.24.

Lemma 5.15. Let f ∈ B0
p,2 ∩ L∞ with supp( f ) ⊂ Br for some r > 0 and p ∈ (1, 2], then

for all ε ∈ (0, 1) there exists a constant c depending on ε, p and r such that the estimate∥∥∥ f
∣∣∣ L2
∥∥∥ ≤ c

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥ pε
2 −‖ f | L∞‖

2−p+ε
2 .

holds true. If p = 2 we can even choose ε = 0.

Proof. For p = 2 the claim is obviously true, since ‖ f | L2‖ ≤ ‖ f | L∞‖‖χBr | L2‖.
For p < 2 and ε ∈ (0, 1), define θε by the equation p−ε

2 = 1− θε. Lastly define
pε := θε p

ε . Then the Lemmas B.19 and B.14 yield that

L2 = (B0
p,2, B0

pε ,2)θε ,2 hence
∥∥∥ f
∣∣∣ L2
∥∥∥ ≤ c

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥ p−ε
2
∥∥∥ f
∣∣∣ B0

pε ,2

∥∥∥ 2−p+ε
2 .

Using the wavelet norm ‖· | B0
pε ,2‖W , we note that for each wavelet coefficient we can

estimate ∣∣∣λl
j,m

∣∣∣ = ∣∣∣〈 f , φl
j,m〉
∣∣∣ ≤ ‖ f | L∞‖

∣∣∣〈χBr , φl
j,m〉
∣∣∣.

As we know that χBr ∈ B1/pε
pε ,∞ , there exists a constant c depending on ε, p and r such

that ∥∥∥ f
∣∣∣ B0

pε ,2

∥∥∥ ≤ ‖ f | L∞‖
∥∥∥χBr

∣∣∣ B0
pε ,2

∥∥∥ ≤ c‖ f | L∞‖
∥∥∥χBr

∣∣∣ B1/pε
pε ,∞

∥∥∥ ≤ c‖ f | L∞‖

and the claim follows.

Note that for p 6= 2 in the limit of ε→ 0 the constant of the lemma satisfies c→ ∞
as χBr 6∈ B0

∞,∞.

Proof of Theorem 5.13. For convenience the proof will be split into several parts.
Support results: Since f † and the wavelets φl

j,m are compactly supported it is clear
that at a fixed level of resolution j ∈ N0 only a finite number of the wavelet coefficients
λl

j,m can be nonzero. As for the wavelet coefficients µl
j,m of the subdifferential f ∗ we

have µl
j,m = 0 if and only if λl

j,m = 0 the function f ∗ will also have a compact support.

To be more precise, we know that supp(φ0) ∪ (
⋃

1≤l≤7 supp(φl)) ⊂ B 1
2

with φ0 and

φl the functions from (B.4), then

supp(φl
j,m) ⊂

{
B 1

2
(m) j = 0

B2−j(21−jm) j > 0
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with Br(z) := {x ∈ R3 : |x − z| ≤ r}. Due to supp( f †) ⊂ Br, we obtain λl
j,m = 0 if

2min{1−j,0}m 6∈ Br+ 1
2
=: Ω. This in addition implies that f ∗(x) = 0 for x 6∈ Ω.

Choice of operator family: To apply our strategy Theorem 2.24 we need to define
the family of operators Pj. To do this we mix the ideas of Chapter 4 and the support
results above. Denote by P̃j as the projection defined in (4.3) and by PΩ the projection

PΩ f = ∑
k∈N0

Lj

∑
l=1

∑
2min{1−j,0}m∈Ω

〈 f , φl
j,m〉φl

j,m.

We will set Pj := P̃jPΩ P̃jPΩ for j ∈ N. Note that the action of PΩ is described by the
same equation and that ‖PΩ | Bs

p,q → Bs
p,q‖ ≤ 1 as well as ‖P̃j | Bs

p,q → Bs
p,q‖ ≤ 1 for

all s ∈ R and p, q ∈ [1, ∞].
Smoothness: We can decompose I − Pj = (I − P̃j) + P̃j[PΩ(I − P̃j)PΩ + (I − PΩ)].

By the support result we have supp( f ∗) ⊂ Ω and hence PΩ f ∗ = f ∗. With the norm
bounds of the operators we get by Lemma 4.6 that∥∥∥(I − Pj) f ∗

∣∣∣ B0
p′ ,q′

∥∥∥ ≤ ∥∥∥(I − P̃j) f ∗
∣∣∣ B0

p′ ,q′

∥∥∥+ ∥∥∥P̃jPΩ(I − P̃j) f ∗
∣∣∣ B0

p′ ,q′

∥∥∥
≤ 2

∥∥∥(I − P̃j) f ∗
∣∣∣ B0

p′ ,q′

∥∥∥ ≤ c$2−js,

that is κ(j) = c$2−js.
Ill-posedness: For the ill-posedness result use the findings of Section 5.3. We get

that

〈Pj f ∗, f † − f 〉 ≤ 〈P̃jPΩ f ∗, PΩ P̃j( f † − f )〉

≤
∥∥∥P̃jPΩ f ∗

∣∣∣ B4
p′ ,∞

∥∥∥∥∥∥PΩ P̃j

(
f † − f

) ∣∣∣ B−4
p,1

∥∥∥.

For the first factor note that∥∥∥P̃jPΩ f ∗
∣∣∣ B4

p′ ,∞

∥∥∥ =
∥∥∥P̃j f ∗

∣∣∣ B4
p′ ,∞

∥∥∥ ≤ {c 2j(4−s)$ s ∈ (0, 4)
c $ s ≥ 4

as f ∗ ∈ Bs
p′ ,∞. For the second factor we want to apply Theorem 5.12. Note that

∥∥∥PΩ P̃j

(
f † − f

) ∣∣∣ B−4
p,1

∥∥∥ = ∑
k∈N0

Lk

∑
l=1

2−4k23k( 1
2−

1
p )

 ∑
m∈Z3

2min{1−k,0}m∈Ω

∣∣∣〈P̃j( f † − f ), φl
k,m〉

∣∣∣p


1
p

and therefore we need to estimate |〈P̃j( f †− f ), φl
k,m〉|. As by assumptions the wavelets

are continuous and compactly supported we know that their Fourier transform is in
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L1. Hence we can estimate

|〈P̃j( f † − f ), φl
k,m〉| ≤

∥∥∥χ{|·|≤
√

32j}F ( f † − f )
∣∣∣ L∞

∥∥∥∥∥∥Fφl
k,m

∣∣∣ L1
∥∥∥

and by definition of the wavelets and calculus rules for the Fourier transform we
obtain that ‖Fφl

k,m | L
1‖ ≤ 23k/2‖Fφl | L1‖. As for fixed k ∈ N0 their are O(23k)

points m ∈ Z3 with 2min{1−k,0}m ∈ Ω we therefore receive the upper bound∥∥∥PΩ P̃j

(
f † − f

) ∣∣∣ B−4
p,1

∥∥∥
≤ ∑

k∈N0

Lk

∑
l=1

2−4k23k( 1
2−

1
p )

 ∑
m∈Z3

2min{1−k,0}m∈Ω

c 2
3
2 kp
∥∥∥χ{|·|≤

√
32j}F ( f † − f )

∣∣∣ L∞
∥∥∥p


1
p

≤ c
∥∥∥χ{|·|≤

√
32j}F ( f † − f )

∣∣∣ L∞
∥∥∥ ∑

k∈N0

2−4k23k( 1
2−

1
p )2

3
2 k2

3
p k

and the sum is finite.
For τ = Tg†(F( f )) = 1

2‖F( f )− F( f †) | L2(∂BR × ∂BR)‖2 we now apply Theorem
5.12 with

t(τ) =
1

2(2R + 1)
ln(3 + τ−1/2).

Then t > 0 and t2 > 1
2 (t

2
0 − E) at least if τ is small enough. To be more precise the

last inequality holds for τ < τmax := max{τ′max, 1} with

τ′max :=

∞ if exp
(
2(2R + 1)(t2

0 − E)
)
< 3(

exp
(
2(2R + 1)(t2

0 − E)
)
− 3
)−2

else

so (5.15) is satisfied for b2 ≤ 4(E + t(τ)2). Inserting into the first summand of the
right hand side of (5.16) yields

E3e(2R+1)t(τ)τ1/2 = E3(3 + τ−1/2)1/2τ1/2 = E3τ1/4(3τ1/2 + 1)1/2

≤ E3τ1/4(3τ1/2
max + 1)1/2 = cE3τ1/4.

For the second summand choose ν = 0 and use Lemma 5.15 with ε ∈ (0, 1) to estimate

1 + C2
∞√

E + 2t2

∥∥∥ f1 − f2

∣∣∣ L2
∥∥∥ ≤ 1 + C2

∞√
E + 2t(τ)2

C
2−p+ε

2
∞

∥∥∥ f1 − f2

∣∣∣ B0
p,2

∥∥∥ p−ε
2

≤ c
1 + C3

∞√
E + 2t(τ)2

∥∥∥ f1 − f2

∣∣∣ B0
p,2

∥∥∥ p
2−ε

since 2−p+ε
2 ∈ (0, 1).
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Combined we see that

〈Pj f ∗, f † − f 〉 ≤ c$j max{0,4−s}
[

E3τ1/4 +
1 + C3

∞√
E + 2t(τ)2

∥∥∥ f1 − f2

∣∣∣ B0
p,2

∥∥∥ p−ε
2

]
;

thus we get an ill-posedness estimate (2.28c) with

σ(j) = γ(j) = c2max{0,4−s}j$, φ(τ) = E3τ
1
4 , φ̃(τ) =

1 + C3
∞√

E + 2t(τ)2
and ϑ =

p− ε

2

for all j satisfying 3 22j ≤ b2 = 4(E + t(τ)2).
Choice of j for small τ: The previous parts make evident that by Theorem 2.24 we

get a variational source condition with

ψvsc(τ) = c$ inf
j∈N0

3 22j≤4(E+t(τ)2)

E32j max{0,4−s}τ
1
4 + $2−2js+ (1 + C3

∞)2$
2j 4

4−p+ε min{0,4−s}

(E + 2t(τ)2)
2

4−p+ε


for τ < τmax, since 2

2−θ = 4
4−p+ε ∈ (1, 2). As E ≥ 1 we can choose j such that

1
256

(
E + 2t(τ)2

)
< 28j ≤

(
E + 2t(τ)2

)
.

This choice is admissible as 3 22j ≤ 24j ≤ (E + 2t(τ)2)1/2 ≤ E + 2t(τ)2 ≤ 4(E +
t(τ)2). Further we get that

2−2js ≤ c
(

E + 2t(τ)2
)−s/4

, 2j max{0,4−s} ≤ c
(

E + 2t(τ)2
)max{1/2−s/8,0}

and
2j 4

4−p+ε max{0,4−s}√
E + 2t(τ)2

4
4−p+ε

≤
(

E + 2t(τ)2
)− 2

4−p+ε min{s/4,1}
.

Inserting the estimates into ψ above we thus see that f † satisfies a VSC with

ψ(τ) = c$(1 + $)

[(
E +

1
4R + 2

ln(3 + τ−1/2)2
)ν

E3τ
1
4

+ (1 + C2
∞)3
(

E +
1

4R + 2
ln(3 + τ−1/2)2

)−µ
]

for τ < τmax

(5.19a)

with ν = max{1/2− s/8, 0} and µ = 2
4−p+ε min{s/4, 1}.
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Extension to all τ: We now prove that a variational source condition of a similar
form also holds true for τ ≥ τmax. Independent of τ the following inequality

〈 f ∗, f † − f 〉 ≤
∥∥∥ f ∗

∣∣∣ B0
p′ ,2

∥∥∥∥∥∥ f − f †
∣∣∣ B0

p,2

∥∥∥ ≤ 3
4

∆∥∥∥· ∣∣∣ 1
2 B0

p,2

∥∥∥2

W

( f , f †) + c$2

holds true.
If τ ≥ τ′max, then we have 1 ≤

√
E + 2t(τ)2 ≤ t0 with t chosen as above. Thus we

get that

1 ≤ t2
0

(
E + 2t(τ)2

)−µ

as µ ∈ (0, 1]. Therefore we obtain for these τ ≥ τ′max the VSC

〈 f ∗, f † − f 〉 ≤ 3
4

∆∥∥∥· ∣∣∣ 1
2 B0

p,2

∥∥∥2

W

( f , f †) + c$2C2
∞

(
E +

1
4R + 2

ln(3 + τ−1/2)2
)−µ

.

(5.19b)
If on the other hand τ ≥ 1, then we have ln2(3 + τ−1/2) < 2. Hence there exists a

constant c such that

1 ≤ E−µ + Eµ ≤ c
(

E + ln2(3 + τ−1/2)
)−µ

+ E3τ
1
4

since again E ≥ 1 and 0 < µ ≤ 1. Therefore we obtain for τ ≥ 1 that

〈 f ∗, f † − f 〉 ≤ 3
4

∆∥∥∥· ∣∣∣ 1
2 B0

p,2

∥∥∥2

W

( f , f †) + c$2
[(

E + ln2(3 + τ−1/2)
)−µ

+ E3τ
1
4

]
. (5.19c)

Final result: Combining now (5.19a) with (5.19c) we see that we have the VSC

〈 f ∗, f † − f 〉 ≤ 3
4

∆∥∥∥· ∣∣∣ 1
2 B0

p,2

∥∥∥2

W

( f , f †) + c$(1+ $)

[(
E +

1
4R + 2

ln(3 + τ−
1
2 )2
)ν

E3τ
1
4

+ (1 + C2
∞)3
(

E +
1

4R + 2
ln(3 + τ−

1
2 )2
)−µ

]
.

as stated in Theorem 5.13.

5.4.2.2 Verification of the variational source condition for far field data

The proof uses the VSC of Theorem 5.13 together with a spectral source condition
which connect near field data with the far field pattern:
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Lemma 5.16 ([HH01, Section 4]). Let R > r, $ > 0 and 0 < θ < 1. Then there
exist constants ω, ρ, τmax > 0 such that for any two potentials f1, f2 ∈ D satisfying
‖ f j | B0

p,2‖ ≤ CB we have

∥∥∥g2 − g1

∣∣∣ L2(∂B2R × ∂B2R)
∥∥∥2
≤ ρ2 exp

−(− ln

∥∥u∞
2 − u∞

1

∣∣ L2(∂B1 × ∂B1)
∥∥

ωρ

)θ


if ‖u∞
2 − u∞

1 | L2(∂B1 × ∂B1)‖ ≤ τmax where gj = F( f j) and u∞
j = Ff( f j) denote near (for

R = 2R) and far field scattering data for f j for j = 1, 2 respectively.

Note that the dependency of the constants of the lemma on E and $ is unknown.
Thus – if we use this Lemma in the proof – we cannot hope to make the dependence
on these constants explicit in Theorem 5.14.

Remark 5.17. The statement in [HH01] requires stronger regularity assumptions on
f j than stated here. It is required that f j ∈ Hs for some s ≥ 3/2. This regularity is
used to show that the mapping f j 7→ gj = F( f j) is compact. However, this continues
to hold under the weaker regularity assumptions, see Lemma 5.1 and [LKK13, Sec. 4].

Proof of Theorem 5.14. Recall that the VSC holds for f ∈ B0
p,2 with ‖ f − f † | B0

p,2‖ ≥
8
3‖ f † | B0

p,2‖ ≥
4

3C∆
‖ f † | B0

p,2‖ as seen in the proof of Theorem 2.24 (for the estimate of
the constant C∆ see Example 2.23(b) and Lemma B.21). Hence we may assume that
‖ f | B0

p,2‖ ≤
11
3 ‖ f † | B0

p,2‖ ≤
11
3 $, therefore Lemma 5.16 is applicable with CB = 11

3 $.

Set τ := 1
2‖Ff( f )− Ff( f †) | L2(∂B1 × ∂B1)‖2, ψn(t) as the function ψ of the VSC

of Theorem 5.13 and ϕ(t) := ρ2 exp(−(− ln(
√

2t) + ln(ωρ))θ). Theorem 5.13 and
Lemma 5.16 then yield that a VSC is fulfilled with ψ(τ) = ψn(ϕ(τ)) if τ ≤ 1

2 τ2
max.

Bounding ψn(t) ≤ A(ln t−1)−2µ for t < 1/2 for some constant A we obtain

ψn(ϕ(τ)) ≤ A
[
−
(
− ln(

√
2τ) + ln(ρω)

)θ
− ln ρ2

]−2µ

for τ ≤ 1
2

min
{

τ2
max, 1

}
.

Thus we can find constant B > 0 and τ′max ∈ (0, 1
2 min

{
τ2

max, 1
}
] such that

ψn(ϕ(τ)) ≤ B(ln(3 + τ−1/2))−2µθ for τ ≤ τ′max.

In order to extend this to all τ recall from the proof of Theorem 5.13 that

〈 f ∗, f † − f 〉 ≤ 3
4

∆∥∥∥· ∣∣∣ 1
2 B0

p,2

∥∥∥2

W

( f , f †) + c$2

As for τ ≥ τ′max we see that (ln(3 + τ−1/2))−2µθ is bounded from below we obtain
the result by enlarging the constant if necessary.
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5.4.3 Discussion of the result

Before discussing the result let us state the following corollaries of Theorems 5.13 and
5.14:

Corollary 5.18. Let R > r > 0, E ≥ 1, C∞ > 0, p ∈ (1, 2], s > 0, $ > 0 and ε ∈ (0, 1) and
suppose that the potentials f †, f1, f2 ∈ dom(F) satisfy ‖ f † | L∞‖, ‖ f1 | L∞‖, ‖ f2 | L∞‖ ≤
C∞ and ‖ f † | Bs

p,∞‖, ‖ f1 | Bs
p,∞‖, ‖ f2 | Bs

p,∞‖ ≤ $. Denote by ψ the the index function of the
VSC in Theorem 5.13.

(a) Let gobs ∈ Y be observed data with ‖gobs − F( f †) | Y‖ ≤ δ and let f̂α minimize
(5.5a). Then, if we choose α = ᾱ according to (2.24a), the convergence rates

∆ f ∗

R ( f̂ᾱ, f †) ≤ ψ(δ2) = O
(

ln(δ−1)−2µ
)

as δ→ 0

and
∥∥∥ f̂ᾱ − f †

∣∣∣ B0
p,2

∥∥∥ = O
(

ln(δ−1)−µ
)

as δ→ 0

with µ = 2
4−p+ε min{s/4, 1} hold true.

(b) The stability estimate

∥∥∥ f1 − f2

∣∣∣ B0
p,2

∥∥∥ ≤ √ψ

(
1
2
‖F( f1)− F( f2) | Y‖2

)
holds true.

Proof. First note that by Section 5.2 minimizers f̂α of (5.5a) exist. The convergence
rate then follows from (2.24b), while the estimate for ψ when δ→ 0 is due to the fact
that the logarithmic term will dominate the mixed term.

For the conditional stability estimate simply apply (2.33).

Corollary 5.19. Let r > 0, E ≥ 1, C∞ > 0, p ∈ (1, 2], s > 0, $ > 0 and ε, θ ∈ (0, 1) and
suppose that the potentials f †, f1, f2 ∈ dom(Ff) satisfy ‖ f † | L∞‖, ‖ f1 | L∞‖, ‖ f2 | L∞‖ ≤
C∞ and ‖ f † | Bs

p,∞‖, ‖ f1 | Bs
p,∞‖, ‖ f2 | Bs

p,∞‖ ≤ $.

(a) Let gobs ∈ Y be observed data with ‖gobs − Ff( f †) | Y‖ ≤ δ and let f̂α minimize
(5.18). Then, if we choose α = ᾱ according to (2.24a), the convergence rates

∆ f ∗

R ( f̂ᾱ, f †) ≤ ψ(δ2) = O
(

ln(δ−1)−2µθ
)

as δ→ 0

and
∥∥∥ f̂ᾱ − f †

∣∣∣ B0
p,2

∥∥∥ = O
(

ln(δ−1)−µθ
)

as δ→ 0

with µ = 2
4−p+ε min{s/4, 1} hold true.
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(b) The stability estimate∥∥∥ f1 − f2

∣∣∣ B0
p,2

∥∥∥ ≤ c
(

ln
(

3 + ‖F( f1)− F( f2) | Y‖−1
))−2µθ

with µ = 2
4−p+ε min{s/4, 1} holds true.

Proof. As the proof of Corollary 5.18.

If we compare our results Theorems 5.13 and 5.14 for p = 2 with [HW15, Thm. 2.1,
Thm. 3.2] it is obvious that several improvements could be made. For once the
assumption of having a smoothness larger then 3/2 on the true solution as well as
on the elements allowed in the Tikhonov functional could be dropped at the cost
of assuming L∞-bounds – which is a realistic assumption for practical applications.
Hence convergence rates are now obtained for less smooth functions. Further on,
while the maximal convergence speed is still bounded, the corresponding maximal
rate is now achieved at a lower smoothness s and we do not have to exclude specific
smoothness values because of divergence of the involved constants.

Comparing the stability estimate of Corollary 5.18 for near field data with the
best known stability estimates [INUW14, IN14] we see that the main disadvantage
of our result is that the exponent of the logarithmic part µ is bounded in s. We will
discuss why this is the case after Theorem 6.10. Further in both cases the function of
the stability estimate Ψ dependence of E is better, i.e. the exponent of E in the Hölder
part is lower. At the same time we would like to point out (as already discussed in
Section 5.1) that the data term is more meaningful in our setup.

A stability estimate for far field data similar to Corollary 5.19 has been derived in
[IN13]. The advantage of their result is that the exponent µ of the stability estimate
is again unbounded with respect to the smoothness of the solution; however, a
minimal smoothness of f ∈W3,1 := { f ∈ S′ : ∂α f ∈ L1 for all α ∈ N3 with |α| ≤ 3} is
required. Likewise the stability estimate for far field data in [HH01, HW15] require a
minimal smoothness of H3/2, thus the main improvement of our new result is that it
is applicable for potentials with low smoothness.

Lastly we would like to discuss the advantage of making the dependency on the
energy explicit. Assume we can perform a sequence of measurements where E→ ∞
as δ→ 0, where we suppose that f is independent of E. In this case Hölder rates can
be achieved. To be more precise assume that we choose

E ≈ δ
− 1

ν+µ+3

then the convergence rate∥∥∥ f̂ᾱ − f †
∣∣∣ B0

p,2

∥∥∥ ≤ cδ
µ

2(ν+µ+3) as δ→ 0
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is attained which is much better than any logarithmic rate of convergence (even when
the exponent is small).

Note that it is known that the problem is even Lipschitz stable if one assumes
that f (x) = ∑J

j=1 f jχΩj(x) for some a priori known Lipschitz sets Ωj ⊂ Br but
unknown coefficients f j for j = 1, . . . , J, see for example [BdHFS16]. Yet besides the
disadvantage of allowing only piecewise constant functions with known jump sets
the Lipschitz constant is exponentially increasing with respect to the energy E and the
number of partitions J. This makes the advantage of Hölder-logarithmic estimates in
the high energy limit obvious.





CHAPTER VI
ELECTRICAL IMPEDANCE
TOMOGRAPHY

There were, however, hurdles on the road to becoming a
professional mathematician, “a mathematician’s

mathematician”, as Alberto Calderón was sometimes called,
because other mathematicians would come to him for help

when they got stuck on a difficult problem.
[...] When I marveled at how he could remain so unsassuming
despite all the acclaim, he would simply answer “I know how

little I know”. It was the answer of a mathematician’s
mathematician.

ALEXANDRA B. CALDERÓN about ALBERTO P.
CALDERÓN, in “Selected papers of Alberto P. Calderón
with commentary”

Electric impedance tomography is a noninvasive imaging technique with many
applications in medical imaging, geoscience and nondestructive testing; see [MS12,
Chap. 12] for a list of references. The idea is to place electrodes on the surface of
a body and apply a current with these electrodes. Due to the spatial variations
of the conductivity inside the body one will measure a spatially varying potential
distribution on the boundary. By repeating the measurement for different input
currents one hopes to retrieve information about the interior conductivity distribution.
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The advantage of using electrical impedance tomography as an imaging technique is
that it is noninvasive and radiation free. Further anomalies one wants to detect often
have a high contrast compared to the background. The main disadvantage, however,
is the very low spatial resolution one achieves. While the required equipment for
measurements is rather cheap, the problem is very sensitive to noise and modeling
errors, thus making the application challenging.

From a mathematical point of view the starting point for the investigation of this
problem is usually attributed to [Cal80]. In this pioneering work the questions were
brought up whether such measurements uniquely determine the conductivity and
how to retrieve it. It was shown that the linearized problem has a unique solution
for small perturbations of constant conductivities and a reconstruction procedure
was suggested. Since then a lot of progress on this topic has been made; yet the
theory is (at least in the three dimensional case) not complete. The challenges of
the problem are its strong nonlinearity and ill-posedness. Several reconstruction
methods specifically taylored to this problem have been proposed and succesfully
implemented. For example the D-bar method starting with [Nac96, SMI00] aims to
reconstruct the conductivity everywhere whereas factorization based methods (see
e.g. [HB03, Har13]) try to find deviations from a reference conductivity.

In this chapter we will study Tikhonov regularization to solve for the conductivity.
We will give a precise statement of the problem in Section 6.1 and review known
results. While proving the regularization property turns out to be straightforward
under typical assumptions on the conductivity the difficult part will be to also prove
convergence rate for this method.

Here we will deviate from the previous chapters and not proof a VSC directly.
Instead we will first prove a stability estimate for the problem in Section 6.2. This
will be done by using a close relation between electrical impedance tomography on
the one hand and the Schrödinger equation studied in the previous chapter on the
other. Most importantly stability estimates for the latter imply stability estimates for
the former. As in the process of going from conductivities to potentials one looses
smoothness we have to study complex geometric optic solution again but this time
for potentials which are less smooth.

In Section 6.3 we will then prove the convergence rate result. In order to do so we
will show how general stability estimates can be used to show that VSCs are fulfilled.
The results then follows from the stability estimate we showed earlier.

6.1 The Electrical Impedance Tomography Problem

We will now give a more rigerous introduction into the electrical impedance tomogra-
phy problem by describing the direct and inverse problem respectively; including a
literature review. Afterwards, we introduce a Tikhonov functional for this problem
and prove its regularizing properties.
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6.1.1 Problem setup
Let γ denote the spatiallly varying conductivity of the body Ω where for simplicity
we will assume that Ω = B1. Then the potential distribution u inside the body for an
apllied current h is given by the solution to the Neumann problem

∇ · (γ∇u) = 0 in B1,
∂

∂n
u = h on ∂B1

(6.1)

where n is the outer normal vector of B1; see [Bor02] for a derivation from Maxwells’
equations.

Direct problem For the direct problem one assumes that γ is given and the goal is
to calculate u|∂B1 . Note that the applied current has to satisfy∫

∂B1

h(x)dx = 0.

and a solution u can only be unique up to an additive constant. Therefore we introduce
the spaces

H1/2
� (∂B1) :=

{
f ∈ H1/2(∂B1) :

∫
∂B1

f (x)dx = 0
}

, H−1/2
� (∂B1) :=

(
H1/2
� (∂B1)

)′
,

H1
�((B1) :=

{
f ∈ H1(B1) :

∫
∂B1

f (x)dx = 0
}

, H−1
� (B1) :=

(
H1
�(B1)

)′
where we set ‖ f |H1

�(B1)‖ := (
∫

B1
|∇ f |2 dx)1/2 which by Poincaré’s inequality is

indeed a norm. The weak formulation of (6.1) is then given by∫
B1

γ(∇u) · (∇v)dx =
∫

∂B1

h Tr v dx ∀v ∈ H1
�(B1).

where Tr : H1
�(B1) → H1/2

� (∂B1) denotes the trace operator. Assuming that γ ∈ L∞

with γ(x) ∈ [γ, γ] for all x ∈ B1 and for some γ > 0, we see that this problem is
elliptic. Hence one can apply the Lax-Milgramm Lemma to see that there exists a
bijective linear operator Lγ : H1

�(B1)→ H−1
� (B1) such that

〈Lγu, v〉 =
∫

B1

γ (∇u) · (∇v)dx ∀v ∈ H1
�(B1),

fulfilling the estimates∥∥∥Lγ

∣∣∣H1
�(B1)→ H−1

� (B1)
∥∥∥ ≤ ‖γ | L∞‖ ≤ γ

and
∥∥∥L−1

γ

∣∣∣H−1
� (B1)→ H1

�(B1)
∥∥∥ ≤ ∥∥∥γ−1

∣∣∣ L∞
∥∥∥ ≤ 1

γ
.

(6.2)
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Thus for all h ∈ H−1/2
� (∂B1) there exists a unique solution u ∈ H1

�(B1) to (6.1) given
by u = L−1

γ Tr∗ h where Tr∗ is the adjoint of Tr. This allows to define the Neumann-to-
Dirichlet map (sometimes also called current-to-voltage map in this context):

Λγ : H−1/2
� ((∂B1)→ H1/2

� (∂B1),

Λγ = Tr L−1
γ Tr∗, which is h 7→ u|∂B1 , where u solves (6.1)

which for given Neumann data (or current) assigns the corresponding Dirichlet data
(or voltage) of the problem. Note that by (6.2) u will depend continuously on γ with
respect to the L∞ norm if γ fulfills the ellipticity condition γ ∈ [γ, γ] thus the mapping
γ 7→ Λγ is also continuous.

Inverse problem The inverse problem we are considering is to determine the con-
ductivity from the knowledge of the Neumann-to-Dirichlet map Λγ. The review
[Uhl09] summerizes known results focussing on complex geometric optics solutions;
the connection between these solutions and the problem will be made clear in the
following. Concerning the questions posed by Calderon the state of the art knowledge
is fundamentally different depending on whether d = 2 or d ≥ 3.

For the two dimensional case the questions has been fully answered. It has
been shown in [AP06] that the problem has a unique solution for all γ ∈ L∞ with
γ ≥ γ(x) ≥ γ > 0 and in [BFR07, RFC10] that small regularity of γ allows to prove
stability estimates. Furthermore, an explicit reconstruction scheme based on [Nac96]
has been developed in [SMI00] called the D-bar method which for γ ∈ C2 converges
with the rate (− ln(δ))−1/14, see [KLMS09, Thm. 3.1].

For the three dimensional case (the case d > 3 usually follows similarly) the
situation is different and the picture is less complete. In [KV85] uniqueness has been
shown for piecewise analytic conductivities and in [SU87] and [Nac88] uniqueness
has been demonstrated for conductivities γ ∈ C∞ and γ ∈ C1,1 respectively via a
connection to the Schrödinger problem (which we will discuss below). The result of
Sylvester and Uhlman has then been improved in [BT03] to γ ∈ H3/2

p for p > 6 and
to γ slightly more regular than Lipschitz in [HT13]. Finally uniqueness for Lipschitz
conductivities has been proven in [CR16], and for conductivities with γ ∈ H1

3 ∩ L∞ in
[Hab15]. Stability estimates requiring a bit more smoothness then the current state of
the art uniqueness results have been obtained in [Ale88, Hec09, CGR13]. The stability
estimates are of the form

‖γ1 − γ2 | X ‖ ≤ Ψ
(
‖Λγ1 −Λγ2 |H−1/2

� (∂B1)→ H1/2
� (∂B1)‖

)
,

for all γk ∈ Z with ‖γk | Z‖ ≤ $ for k = 1, 2 where Ψ(t) = c(− ln(t))−µ.
(6.3)

We summarize the achieved results in the Table 6.1. As the finding of [Man01]
generalizes to electrical impedance tomography we know that the function Ψ in the
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Author X Z µ

Alessandrini L∞ Hs, s > 7/2 ∈ (0, 1) unknown

Heck L∞ C3/2+s,
s ∈ (0, 1/2)

s2

(1 + 2s)(24− 4s)

Caro et al C0,δ,
δ ∈ (0, 1)

C1,s, s ∈ (0, 1)
s2(1− δ)

27

TABLE 6.1: Choice of spaces and exponent for the stability estimates (6.3) in the
literature.

stability estimate has again to be of logarithmic type and therefore the results are
optimal up to the value of the exponent.

We should mention that for both cases, i.e. the two- and the three-dimensional case,
the formulation of the inverse problem is usually slightly different than presented
here. It is usually assumed that the data is given by the Dirichlet-to-Neumann map
ΛDtN

γ (that is the mapping u|∂B1 7→ ∂nu|∂B1 ) instead of the Neumann-to-Dirichlet map
Λγ. However, with the given functional setting we have that

ΛDtN
γ = (Λγ)

−1

see e.g. [MS12, Sec. 12.3.2]. Therefore the questions of uniqueness for one problem
directly transfer to the other problem. For stability note that

ΛDtN
γ1
−ΛDtN

γ2
= ΛDtN

γ1
(Λγ2 −Λγ1)Λ

DtN
γ2

and Λγ1 −Λγ2 = Λγ1

(
ΛDtN

γ2
−ΛDtN

γ1

)
Λγ2

which shows that – as long as the conditions of the stability estimates imply that
the involved mappings are uniformly bounded – a stability estimate for one gives a
stability estimate for the other and one loses at most a constant.

6.1.2 Regularization of electrical impedance tomography
The goal of this section is to setup a Tikhonov functional for the electrical impedance
tomography problem.

We have seen earlier that in order to derive well definedness of the Neumann-
to-Dirichlet operator Λγ we needed that γ(x) ∈ [γ, γ] and that the support of γ− 1
is contained in B1. The first condition is usually called ellipticity condition, as it
guarantees ellipticity of the pde. In practice the conductivities of involved materials
are usually quite well known, see e.g. the tables in [Bor02], and therefore upper and
lower bounds are readily available. Hence an assumption of this form is not very
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restrictive, and we will include it into the definition of the domain of the operator.
The second condition motivates to set

f := γ− 1, (6.4a)

that is the unknown in the inverse problem is the deviation of the conductivity from
the homogeneous conductivity. Thus the domain of the forward operator is given by

dom F :=
{

f ∈ L∞(R3) : f (x) ∈ [γ− 1, γ− 1] ∀x ∈ B1, supp( f ) ⊂ B1

}
. (6.4b)

For the exact definition and the image space of the operator see below. Note that
this way f will be a function on the whole of R3. As we assume that the support
of f is contained in the open ball B1 an extension of f to the whole space will not
introduce any type of singularities and hence the smoothness of γ defined on B1 and
of f defined on R3 will coincide.

As already discussed in Section 6.1 it is unknown whether the inverse problem
has a unique solution for all f ∈ dom(F). As the problem is in addition nonlinear we
will also not be able to guarantee uniqueness of theR-minimizing solution if more
than one solution might exist. Hence the choice of the penalty functional will enforce
enough regularity on f such that the inverse problem is uniquely solvable. As a a
starting point we will use the uniqueness result of [BT03] that yields uniqueness for
γ ∈ H3/2

p̃ for all p̃ > 6. By Lemma B.18 we know that f ∈ B3/p+1+τ
p,2 for p ≤ 2 and

τ > 0 implies the necessary smoothness on γ for some p̃ > 6 by embeddings. The
motivation for choosing a Besov space as a primary regularizer as well as the choice
of the fine index q = 2 are the same as in Section 5.2. Moreover, we will impose a
stronger restriction on the support which will be needed in order to get a closed set
on which the Tikhonov functional is finite. The pre-image space and the penalty term
will then finally be given by

X := B
3
p +1+τ

p,2

and R( f ) :=
1
2
‖ f | X ‖2 + ι{supp(·)⊂Br}( f ).

(6.4c)

for p ∈ (1, 2], τ ∈ (0, 1) and r ∈ (0, 1). The restriction on τ will become clear when
constructing complex geometric optics solutions later. However, in order to not
require to much regularity one should think of τ as close to zero anyway.

Note that if we would start with the uniqueness result of [Hab15], then we could
set X = Bt

p,2 for t = 3/p, i.e. we would require roughly one derivative less on the
solution of the problem. Yet in this case the construction of complex geometric optic
solutions and corresponding estimates gets much more involved. Therefore we stick
to the result of [BT03] as then the analysis can be carried out similarly to Section 5.3
in combination with a simple approximation procedure.
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We will now take a closer look at what we consider to be the data of our inverse
problem. It will turn out that it is advantageous to define

g := F( f ) := j(Λ1+ f −Λ1)j∗ (6.4d)

where Λ1 is the Neumann-to-Dirichlet map for the conductivity γ ≡ 1 or equivalently
f ≡ 0 and j : H1/2

� (∂B1) → L2
�(∂B1) is the canonical embedding and j∗ its adjoint.

Thus the data is a mapping

g : L2
�(∂B1)→ L2

�(∂B1)

and as it has a continuous extension to a mapping H−1/2
� (∂B1)→ H1/2

� (∂B1) we get
that it is also compact. It will turn out that it is even a Hilbert-Schmidt operator. This
would be immediate from the decay of the singular values of j for d = 2 but for d = 3
this decay is too slow. The advantage of regarding g as a Hilbert-Schmidt operator
and not as a mapping between the canonical trace spaces has already been discussed
in Section 5.1.

In order to see that the data is indeed a Hilbert-Schmidt operator we will split
Λ1+ f −Λ1 = S(T1+ f − T1) and use that S is infinetely smoothing. Denote by r̃ := 1+r

2
and define for any conductivity γ with γ− 1 ∈ dom(F) and supp(γ− 1) ∈ Br the
operator Tγ : H−1/2

� (∂B1) → H1/2(∂Br̃) by h 7→ uγ|∂Br̃ where uγ is the solution to
(6.1), i.e. uγ solves

∇ · (γ∇uγ) = 0 in B1,
∂

∂n
uγ = h on ∂B1.

Furthermore, define S : H1/2(∂Br̃)→ H1/2(∂B1) as the operator that maps h̃ 7→ w|∂B1
where w is the unique solution to the Cauchy problem

∆w = 0 in B1 \ Br̃,

w = h̃ on ∂Br̃,
∂

∂n
w = 0 on ∂B1.

If h ∈ H−1/2
� (∂B1) and h̃ = uγ1 |∂Br̃ − uγ2 |∂Br̃ where uγ1 and uγ2 solve (6.1) for γ1 and

γ2 respectively, then the solution of the Cauchy problem is given by w = uγ1 − uγ2

since uγj solve ∆uγj = 0 in B1 \ Br̃ for j = 1, 2. Furthermore w|∂B1 ∈ H1/2
� (∂B1) since

uγj |∂B1 ∈ H1/2
� (∂B1) for j = 1, 2. Thus the identity Λ1+ f −Λ1 = S(T1+ f − Tf ) holds

true. To see that w|∂B1 ∈ C∞ consult [DL90, Thm. 1 in Chap. II, §6.1].
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This yields that Λ1+ f − Λ1 : L2
�(∂B1) → L2

�(∂B1) is indeed a Hilbert-Schmidt
operator. Thus we choose as image space of F and data fidelity terms

Y := HS
(

L2
�(∂B1), L2

�(∂B1)
)

,

and S(g1, g2) = Tg1(g2) :=
1
2
‖g1 − g2 | Y‖2

(6.4e)

as usual when dealing with the deterministic error model.
It remains to choose the topologies on X and Y such that the Tikhonov functional

defined by (6.4) is regularizing. We will equip X with its weak and Y with its norm
topology. As our penalty term guarantees unique solvability of the inverse problem it
remains to check the continuity properties of F on D given by

D :=
{

f ∈ B
3
p +1+τ

p,2 : f (x) ∈ [γ− 1, γ− 1] ∀x ∈ B1, supp( f ) ⊂ Br

}
,

as D is obviously weakly sequentially closed. But note that γ 7→ Λγ is norm-to-norm
continuous on the closed set

D̃ :=
{

f ∈ L∞ : f (x) ∈ [γ− 1, γ− 1] ∀x ∈ B1, supp( f ) ⊂ Br

}
for the L∞-norm, as we have seen in (6.2). Denote by J the embedding

J : { f ∈ B
3
p +1+τ

p,2 : supp( f ) ⊂ Br} ↪→ { f ∈ L∞ : supp( f ) ⊂ Br}

which is compact. Then we get that J(D) ⊂ D̃ and

F( f ) = j Tr L−1
J( f )+1 Tr∗ j∗;

this shows that F : D → Y is sequentially weak-to-norm continuous.

6.2 Stability Estimates for Electrical Impedance
Tomography

Our next aim is to prove stability estimates for the electrical impedance tomography
problem. Later on these stability estiamtes will be used to verify VSCs, the reason for
the detour will be discussed at the end of Section 6.2.1.

The basic idea to investigate stability (but also uniqueness) for the inverse problem
to (6.1) remains unchanged since [SU87]: One exploit that via a simple transformation
we can transform (6.1) into a Schrödinger equation. For this equation we already
know how to prove stability by complex geometric optic solutions (see the introduc-
tion of Section 5.3). The new challenge here is that the obtained potentials might not
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be in L∞ and hence we have to rework the results of Section 5.3.1.2 while requiring
less regularity on the potential. As the back transformation from potentials to conduc-
tivities involves an elliptic pde one can then use regularity results to get a stability
estimate for conductivities. In order to estimate the smoothness of involved functions
we will rely on the the generalization of product and chain rule presented in Section
B.3.1.2.

6.2.1 Connection to Schrödinger equation
We now construct a Schrödinger equation from (6.1). Considering that define the
potential V by

V =
∆
(

γ1/2
)

γ1/2 (6.5)

(the change in notation in comparison to Chapter 5 is due to the fact that the potential
is no longer the sought for quantity of the inverse problem). Further define

w :=
√

γu,

then w is a solution to the differential equation
√

γ(∆−V)w = 0 in B1;

indeed we have that
√

γ(∆−V)w =
√

γ[∆(
√

γu)− u∆
√

γ] =
√

γ[
√

γ∆u + 2∇u · ∇√γ]

= γ∆u +∇u · ∇γ = ∇ · (γ∇u) = 0.

Note that for γ not smooth enough (6.5) has to be understood in a distributional sense.
We will make regularity properties of V given regularity properties of γ more precise
later.

Let now h ∈ H−1/2
� (∂B1), then similarly to (6.1) we define the Neumann problem

(∆−V)w = 0 in B1,
∂

∂n
w = h on ∂B1.

(6.6)

for V as in (6.5). If we assume that supp(γ− 1) ⊂ B1 and γ ∈ C1(B1), then we see
that this problem has a unique solution. Indeed there exists u solving (6.1) for the
same Neumann data and if w is defined by w =

√
γu then w ∈ H1(B1) and w solves

(6.6) since

∂

∂n
w
∣∣
∂B1

=
∂

∂n
(
√

γu)
∣∣
∂B1

=
∂

∂n
u
∣∣
∂B1

as γ ≡ 1 for |x| > r.
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A similar calculation makes evident that under the given assumptions also the Dirich-
let data of the solutions coincide and hence the problems (6.1) and (6.6) have the same
Neumann-to-Dirichlet map. We can now show that this operator is self adjoint:

Lemma 6.1. Let γ ∈ C1(B1), supp(γ− 1) ⊂ Br and γk(x) ∈ [γ, γ] for all x ∈ B1 for
some γ > 0. Then the Neumann-to-Dirichlet map Λγ is self adjoint.

Proof. Let hk ∈ H−1/2
� (∂B1) and denote by wk the solutions to (6.6) with Neumann

boundary data hk for k = 1, 2. Then using wl for l 6= k as a test function, we obtain

0 =
∫

B1

w2(∆−V)w1 − w1(∆−V)w2 dx

=
∫

B1

w2∆w1 − w1∆w2 dx

=
∫

∂B1

w2
∂

∂n
w1 − w1

∂

∂n
w2 dx

=
∫

∂B1

(Λγh2)h1 − (Λγh1)h2 dx

with the help of Green’s theorem.

Now we immediately obtain the following version of Alessandrini’s identity
(compare [Ale88, Lem. 1] and Lemma 5.9).

Lemma 6.2. Let γk ∈ C1(B1), supp(γk − 1) ⊂ Br and γk(x) ∈ [γ, γ] for all x ∈ B1 for
some γ > 0. Denote by Vk the potentials given by (6.5) for γk, and let wk be the solution to
(6.6) for Neumann data hk ∈ H−1/2

� (∂B1) for k = 1, 2. Then∫
B1

(V1 −V2)w1w2 dx =
∫

∂B1

h2(Λγ2 −Λγ1)h1 dx.

Proof. Proceeding as in the proof of Lemma 6.1 we get

0 =
∫

B1

w2(∆−V1)w1 − w1(∆−V2)w2 dx

=
∫

B1

w2∆w1 − w1∆w2 + (V2 −V1)w1w2 dx

=
∫

B1

(V2 −V1)w1w2 dx +
∫

∂B1

w2h1 − w1h2 dx.

As wk = Λγk hk on ∂B1 the claim follows by rearranging terms and using Lemma
6.1.

The left hand side of the result of the previous lemma is already familiar to us; it
is the same as in Lemma 5.9. As wk is a solution to a Schrödinger equation we can
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insert complex geometric optics solutions as a special case. This allows – again – to
estimate the low Fourier coefficients of V1−V2 by a combination of the free parameter
ζ of the complex geometric optic solution and the data Λγ2 −Λγ1 . Together with a
smoothness assumption which estimates the high Fourier coefficients this will imply
a stability estimate for the potentials.

But our goal is to derive a stability estimate for conductivities. Hence we need
a relation that transfers stability from potentials to conductivities. In order to do
this we note that there is another useful relation between these two quantities which
again was already used in [SU87]. Assume that for k = 1, 2 we have γk ∈ L∞ with
γk(x) ∈ [γ, γ] for all x ∈ B1 for some γ > 0, then we can define

a := log
(

γ1

γ2

)
. (6.7a)

By a simple calculation one verifies that formally a is a solution to the elliptic pde

∇ ·
(
(γ1γ2)

1
2∇a

)
= 2(γ1γ2)

1
2
(
V1 −V2

)
in B1,

a = 0 on ∂B1.
(6.7b)

If we assume that the right hand side of this equation is in H−1
0 (B1), then we get by

the Lemma of Lax-Milgram that a ∈ H1
0(B1) and the estimate∥∥∥a

∣∣∣H1(B1)
∥∥∥ ≤ 2

γ

∥∥∥(γ1γ2)
1
2
(
V1 −V2

) ∣∣∣H−1(B1)
∥∥∥ (6.8)

holds true. It remains to estimate the norm of the left hand side from below by
the norm of γ1 − γ2 and the norm of the right hand side from above by the norm
of V1 − V2. The next two lemmas show that this is possible and one only looses a
constant depending on the C1-norm of γk.

Lemma 6.3. Let γk ∈ C1(B1), supp(γk − 1) ⊂ B1 and γk(x) ∈ [γ, γ] for all x ∈ B1 for
some γ > 0. Then there exists a constant c > 0 depending on γ and γ such that∥∥∥γ1 − γ2

∣∣∣H1(B1)
∥∥∥ ≤ c

∥∥∥γ2

∣∣∣C1(B1)
∥∥∥∥∥∥a

∣∣∣H1(B1)
∥∥∥

with a as defined in (6.7a).

Proof. We have

a = ln
(

γ1

γ2

)
= ln

(
1

γ2
(γ1 − γ2) + 1

)
⇔ γ1 − γ2 = γ2

(
exp(a)− 1

)
.

This immediately yields the estimate∥∥∥γ1 − γ2

∣∣∣H1(B1)
∥∥∥ ≤ 2

∥∥∥γ2

∣∣∣C1(B1)
∥∥∥∥∥∥exp(a)− 1

∣∣∣H1(B1)
∥∥∥.
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Since a(x) ∈ [ln
γ

γ , ln γ
γ ] introduce the function λ(t) such that λ(t) := exp(t)− 1 for

all t ∈ [ln
γ

γ , ln γ
γ ] and note that λ′(t) is bounded. By Proposition B.24 we therefore

get that ∥∥∥exp(a)− 1
∣∣∣H1(B1)

∥∥∥ =
∥∥∥λ ◦ a

∣∣∣H1(B1)
∥∥∥ ≤ c

∥∥∥a
∣∣∣H1(B1)

∥∥∥
with c depending on γ and γ only.

Lemma 6.4. Let γk ∈ C1(B1), supp(γk − 1) ⊂ B1 and γk(x) ∈ [γ, γ] for all x ∈ B1 for
some γ > 0. Then there exists a constant c > 0 depending on γ, γ and the support of γk − 1
such that∥∥∥(γ1γ2)

1
2
(
V1 −V2

) ∣∣∣H−1(B1)
∥∥∥ ≤ c

∥∥∥V1 −V2

∣∣∣H−1(B1)
∥∥∥∥∥∥γ1

∣∣∣C1(B1)
∥∥∥∥∥∥γ2

∣∣∣C1(B1)
∥∥∥.

Proof. As supp(γk − 1) ⊂ B1 there exists r̃ ∈ (0, 1) such that even supp(γk − 1) ⊂ Br̃
and therefore Vk(x) = 0 for x 6∈ Br̃. For this r̃, let η ∈ C∞(R3,R) be such that η(x) = 1
for all x ∈ Br̃ and η(x) = 0 for all x 6∈ B1. Further we can find a function λ such that
λ(t) = t1/2 for t ∈ [γ, γ] with λ(0) = 0 and bounded derivative. Then, in the setting
of Proposition B.23 we get for p0 = 4, p1 = 2 and s0 = 1 that q0 = 1 and q1 = 2,
which shows there exists a constant c > 0 such that we can estimate∥∥∥(γ1γ2)

1
2
(
V1 −V2

) ∣∣∣H−1(B1)
∥∥∥ =

∥∥∥λ
(
ηγ1γ2

)(
V1 −V2

) ∣∣∣H−1(B1)
∥∥∥

≤ c
∥∥∥V1 −V2

∣∣∣H−1(B1)
∥∥∥∥∥∥λ

(
ηγ1γ2

) ∣∣∣H1
4(B1)

∥∥∥.

as s0 > 3
p0

and (γ1γ2)
1
2 ⊂ [γ, γ]. By Proposition B.24 there is a c > 0 depending on

the choice of λ (and hence on γ, γ and r̃) such that∥∥∥λ
(
ηγ1γ2

) ∣∣∣H1
4(B1)

∥∥∥ ≤ c
∥∥∥ηγ1γ2

∣∣∣H1
4(B1)

∥∥∥.

Likewise, there is a constant c > 0 depending only on the choice of η (and therefore
on r̃) with ∥∥∥ηγ1γ2

∣∣∣H1
4(B1)

∥∥∥ ≤ c
∥∥∥γ1

∣∣∣C1(B1)
∥∥∥∥∥∥γ2

∣∣∣C1(B1)
∥∥∥.

In order to summarize the last findings, every stability estimate for potentials
of the form (6.5) in H−1 gives a stability estimate for conductivities in H1. Indeed
for conductivities γk with γk ∈ C1(B1), ‖γk |C1‖ ≤ M, supp(γk − 1) ⊂ B1 and
γk(x) ∈ [γ, γ] for all x ∈ B1 for some γ > 0 we have∥∥∥γ1 − γ2

∣∣∣H1(B1)
∥∥∥ ≤ cM3

∥∥∥V1 −V2

∣∣∣H−1(B1)
∥∥∥ (6.9)

with a constant depending on γ, γ and the support of γk by combining the Lemmas
6.3 and 6.4 with the elliptic regularity estimate (6.8).
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One might wonder why we do not prove a VSC directly by Theorem 2.24. The
problem here is that we do not know how to prove the ill-posedness estimate (2.28c).
Consider again our typical choice Pj by (4.3), then we would have to estimate ‖P∗j ( f1−
f2)‖. But inserting complex geometric optics solution into the Alessandrini identity
given by Lemma 6.2 the complex geometric optics solution only gives estimates for
‖P∗j (V1 − V2)‖, where Vk is the potential given by (6.5) for γk = fk + 1 for k = 1, 2.
As the mapping f 7→ V is nonlinear we do not know how to relate the two norms
‖P∗j ( f1 − f2)‖ and ‖P∗j (V1 −V2)‖ directly.

6.2.2 Complex geometric optics solutions for less regular potentials

Our next goal will be to derive a stability estimate for the Schrödinger equation for
potentials V of the form (6.5). To do this we will study again complex geometric optics
solutions. Remember from Section 5.3 that these were solutions to the Schrödinger
equation (6.6) having the form

wζ(x) = eiζ·x(1 + vζ(x))

where vζ was given by the solution to

Dζvζ :=
(

∆ + 2iζ · ∇
)

vζ = V(1 + vζ), (6.10)

as any potential V of the form (6.5) can be smoothly extended by 0 to R3 if supp(γ−
1) ⊂ B1. Hence any such solution for E = 0 will also solve (6.6) in B1 with corre-
sponding Neumann data.

We derived existence and norm estimates for these solutions assuming that the
given potential V satisfy V ∈ L∞. But we can only guarantee that V ∈ L∞ if γ ∈ C2

which is more regularity then guaranteed by the choice of our penalty termR. Before
going deeper into the construction of complex geometric optic solutions we will hence
figure out how much regularity on V will be available if γ ∈ B3/p+1+τ

p,2 .

Lemma 6.5. Let V be given by (6.5) where γ− 1 ∈ B3/p+1+τ
p,2 for some τ > 0, supp(γ−

1) ⊂ B1 and γ(x) ∈ [γ, γ] for all x ∈ B1 for some γ > 0. Extend V and γ− 1 smoothly by
zero on R3 \ B1, then there exists a constant c > 0 independent of γ such that

∥∥∥V
∣∣∣H1/2+τ

∥∥∥ ≤ c
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥(1 +
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥2+τ
)

holds true.
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Proof. Expanding (6.5) we see that V can be written as

V =
∆γ

2γ
− ∇γ · ∇γ

4γ2 =
1
2

[(
1
γ
− 1
)

∆γ + ∆γ

]
− 1

4

[(
1

γ2 − 1
)
∇γ · ∇γ +∇γ · ∇γ

]
.

(6.11)

Define the function λ̃1(x) := 1
1+x − 1 for x ∈ [γ− 1, γ− 1] and let λ1 : R→ R be

a function such that λ1 ∈ C∞(R) with compact support and λ1|[γ−1,γ−1] ≡ λ̃1. Note

that this is possible as λ̃1 is smooth on its domain of definition. As λ1(0) = 0 and
Hs = Bs

2,2, Proposition B.25 shows that there is a constant c > 0 independent of γ
such that∥∥∥∥ 1

γ
− 1

∣∣∣∣H3/2+τ

∥∥∥∥ =
∥∥∥λ(γ− 1)

∣∣∣H3/2+τ
∥∥∥

≤ c
∥∥∥γ− 1

∣∣∣H3/2+τ
∥∥∥(1 + ‖∇γ | L∞‖)τ

≤ c
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥(1 +
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥)τ

via embeddings.
Likewise defining a function λ2 : R → R that is C∞ with compact support and

λ2(x) = 1
(1+x)2 − 1 for x ∈ [γ− 1, γ− 1]. With this function one obtains∥∥∥∥ 1
γ2 − 1

∣∣∣∣H3/2+τ

∥∥∥∥ ≤ c
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥(1 +
∥∥∥γ− 1

∣∣∣ B3/p+1+τ
p,2

∥∥∥)τ

for some constant c > 0.
By using Proposition B.22 with

p0 = p1 = 2, s0 = 3/2 + τ, s1 = 1/2 + τ =⇒ q0 = 1, q1 = 2,
and p0 = p1 = 2, s0 = s1 = 3/2 + τ =⇒ q0 = 1, q1 = 2

and H3/2+τ ⊂ L∞ we see that there is a constant c > 0 such that∥∥∥∥( 1
γ
− 1
)

∆γ

∣∣∣∣H1/2+τ

∥∥∥∥ ≤ c
∥∥∥∥ 1

γ
− 1

∣∣∣∣H3/2+τ

∥∥∥∥∥∥∥∆γ
∣∣∣H1/2+τ

∥∥∥,∥∥∥∥( 1
γ2 − 1

)
∇γ · ∇γ

∣∣∣∣H1/2+τ

∥∥∥∥ ≤ c
∥∥∥∥ 1

γ2 − 1
∣∣∣∣H3/2+τ

∥∥∥∥∥∥∥∇γ · ∇γ
∣∣∣H3/2+τ

∥∥∥,∥∥∥∇γ · ∇γ
∣∣∣H1/2+τ

∥∥∥ ≤ c
∥∥∥∇γ

∣∣∣H3/2+τ
∥∥∥∥∥∥∇γ

∣∣∣H1/2+τ
∥∥∥,

and
∥∥∥∇γ · ∇γ

∣∣∣H3/2+τ
∥∥∥ ≤ c

∥∥∥∇γ
∣∣∣H3/2+τ

∥∥∥∥∥∥∇γ
∣∣∣H3/2+τ

∥∥∥.
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Let M := ‖γ− 1 | B3/p+1+τ
p,2 ‖, then using (6.11) and combining the previous estimates

with Lemma B.18(d) we get that∥∥∥V
∣∣∣H1/2+τ

∥∥∥ ≤ c
[

M2(1 + M)τ + M + M3(1 + M)τ + M2
]
.

As τ > 0 this yields the estimate.

Note that this estimate is sharp in the sense that we cannot hope to get more
regularity on V. Indeed by setting p = 2 we see that V has exactly two derivatives
less than γ, as has to be expected by the definition of V due to (6.5) since it involves
the Laplace operator.

Therefore we want to establish existence and norm estimates of vζ for potentials
V with V ∈ H1/2+τ where from now on we will always assume that V is smoothly
extended by zero on R3 \ B1. In order to do this we follow again the approach
of [BT03] where this time we exploit more of its capability. The main idea of this
approach (which allows to drop the regularity requirement approximately by one) is
to approximate a potential V with a sufficiently smooth function and then treat the
reminder as a small perturbation.

Recall that we defined the Sobolev spacesHµ
ρ andHµ in (5.8); in the following η

will denote the function from the definition ofHs. In these spaces we obtained for the
solution operator Gζ of the differential operator Dζ = (∆ + 2iζ · ∇) the estimate∥∥∥Gζ

∣∣∣Hµ
ρ → Hµ+ν

∥∥∥ ≤ Cµ+νC(ν, 1)(1 + ρ)|ζ|ν−1

for µ ∈ R, ν ∈ [0, 2] in Lemma 5.6.
As before we denote by Gζ,V the inverse of the operator Dζ −MV where MV is

again the multiplication operator defined by (MVv)(x) = V(x)v(x). We will now
prove a result similar to [BT03, Lem. 1] which makes the dependency of the constant
on the chosen parameters more explicit. The idea of the proof is similar to Lemma
5.7. Note that in the proofs of the rest of this section f and g will not have the usual
meaning of being the data and solution of the inverse problem.

Lemma 6.6. Let V ∈ H1/2+τ
6 for some τ ∈ (0, 1) with supp(V) ⊂ Bρ for some ρ > 0.

Choose ζ ∈ C3 \R3 with ζ · ζ = 0 and

|ζ| ≥ max
{

C(ρ)
∥∥∥V
∣∣∣H1/2+τ

6

∥∥∥,
1
10

}
with C(ρ) := 8cmC1/2C(0, 1)(1 + ρ)2, (6.12)

where cm is defined in the proof. Then for ν ∈ [0, 2] the estimate∥∥∥Gζ,V

∣∣∣H1/2−ν
ρ → H1/2

∥∥∥ ≤ 2C1/2C(ν, 1)(1 + ρ)|ζ|ν−1 (6.13)

holds true.
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Proof. Note that Gζ,V f = g if and only if (I − Gζ ◦MV)g = Gζ f . Therefore, if we
assume that Gζ ◦MV is a contraction on H1/2 with norm bound 1/2, we obtain by
the Banach fixpoint theorem that

g = Gζ,V f =
(

I − Gζ ◦MV
)−1Gζ f =

∞

∑
j=0

(
Gζ ◦MV

)jGζ f

and thus
∥∥∥g
∣∣∣H1/2

∥∥∥ ≤ 2
∥∥∥Gζ f

∣∣∣H1/2
∥∥∥.

In order to see that Gζ MV is indeed a contraction note that by Lemma 5.6 we can
infer for all h ∈ H1/2 that∥∥∥Gζ MVh

∣∣∣H1/2
∥∥∥ ≤ 2C1/2C(0, 1)(1 + ρ)

|ζ|

∥∥∥MVh
∣∣∣H1/2

ρ

∥∥∥
since (6.12) guarantees |ζ| ≥ 1/10. Hence we need to show that MV : H1/2

ρ → H1/2

and estimate the operator norm.
We set p0 = 6, s0 = 1/2+ τ, p1 = 2 and s1 = 1/2 in the context of Proposition B.22;

then we get that q0 = 3/2 and q1 = 2. Since H1/2+τ
6 ⊂ L∞ and s0 − 3/p0 > s1 − 3/p1

we can conclude that there exists a constant cm > 0 such that∥∥∥MVh
∣∣∣H1/2

∥∥∥ =
∥∥∥MV(ηmax{2,2ρ}h)

∣∣∣H1/2
∥∥∥ ≤ cm

∥∥∥V
∣∣∣H1/2+τ

6

∥∥∥∥∥∥ηmax{2,2ρ}h
∣∣∣H1/2

∥∥∥
≤ 2(1 + ρ)cm

∥∥∥V
∣∣∣H1/2+τ

6

∥∥∥∥∥∥h
∣∣∣H1/2

∥∥∥.

Therefore the choice of ζ according to (6.12) implies that∥∥∥Gζ MVh
∣∣∣H1/2

∥∥∥ ≤ 2C1/2C(0, 1)(1 + ρ)

|ζ| ‖MVh | ‖

≤ 4cmC1/2C(0, 1)(1 + ρ)2

|ζ|

∥∥∥V
∣∣∣H1/2+τ

6

∥∥∥∥∥∥h
∣∣∣H1/2

∥∥∥ ≤ 1
2

∥∥∥h
∣∣∣H1/2

∥∥∥
The norm estimate of the lemma is thus a consequence of Lemma 5.6.

We showed for γ ∈ B3/p+1+τ
p,2 that V ∈ H1/2+τ ⊂ H−1/2+τ

6 , so the lemma above
still requires one more derivative than we have at disposal; this regularity will now
be dealt with by an approximation similar to [BT03, Thm. 3].

Lemma 6.7. Let V ∈ H−1/2+τ
6 for some τ ∈ (0, 1) with supp(V) ⊂ Br for some r ∈ (0, 1).

Choose ζ ∈ C3 \R3 with ζ · ζ = 0 and

|ζ| ≥ max
{

Cr

(
1 + C′r

∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥)1/τ∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥,
1

10

}
with Cr = C(2)c] and C′r = 72cmc[C1/2C(1, 1)

(6.14)
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where the constants c], c[ and cm are defined in the proof and C(2) is the constant of Lemma
6.6 for ρ = 2. Then there exists a constant c > 0 independent of ζ, V and r such that the
estimate ∥∥∥Gζ,V

∣∣∣H1/2
r → H1/2

∥∥∥ ≤ c|ζ|−1

holds true.

Proof. Let φ ∈ C∞(R3,R) be a mollifier, that is supp(φ) ⊂ B1(0),
∫

φ = 1 and set
φε(x) = ε−3φ(x/ε) for ε > 0. Define V] = φε ∗V and V[ = V −V]. As V] is smooth
we have V] ∈ H1/2+τ

6 while V[ ∈ H−1/2+τ
6 since we only know that V ∈ H−1/2+τ

6 .
Further by standard approximation results (see e.g. [Bur98, Sec. 2, Lem. 10]) we get
the estimates ∥∥∥V[

∣∣∣H−1/2
6

∥∥∥ ≤ c[ετ
∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥,∥∥∥V]
∣∣∣H1/2+τ

6

∥∥∥ ≤ c]ε−1
∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥ (6.15)

where the constants depend on φ only; furthermore the supports of V] and V[ are
subsets ofBr+ε.

As always we want to solve Gζ,V f = g for f ∈ H1/2
r by a fixpoint approach. Note

that this equation is fulfilled if and only if

(I − Gζ,V] ◦MV[)g = Gζ,V] f ⇐⇒ g =
∞

∑
j=0

(
Gζ,V] ◦MV[

)j
Gζ,V] f .

Therefore we want to show that ‖Gζ,V] ◦MV[ | H1/2 → H1/2‖ ≤ 1/2 for some
choice of the parameter ε. By Lemma 6.6 with ν = 1 we obtain that for

|ζ| ≥ max
{

C(r + ε)
∥∥∥V]

∣∣∣H1/2+τ
6

∥∥∥,
1
10

}
(6.16)

with C(ρ) as in (6.12) the estimate

‖Gζ,V]

(
MV[h

)
| H1/2‖ ≤ 2C1/2C(1, 1)(1 + r + ε)

∥∥∥MV[h
∣∣∣H−1/2

r+ε

∥∥∥
holds true for all h ∈ H1/2. By applying Proposition B.22 with p0 = 2, s0 = 1

2 , p1 = 6
and s1 = − 1

2 we get q0 = 3
2 and q1 = 2. As s0 < 3

p0
and s1 < 3

p1
there exists a constant

cm which allows to estimate∥∥∥MV[h
∣∣∣H−1/2

r+ε

∥∥∥ =
∥∥∥MV[(η2(1+ε)h)

∣∣∣H−1/2
∥∥∥ ≤ cm

∥∥∥V[
∣∣∣H−1/2

6

∥∥∥∥∥∥η2(1+ε)h
∣∣∣H1/2

∥∥∥
≤ 2cm(1 + ε)

∥∥∥V[
∣∣∣H−1/2

6

∥∥∥∥∥∥h
∣∣∣H1/2

∥∥∥
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This shows that

‖Gζ,V]

(
MV[h

)
| H1/2‖ ≤ 4cmC1/2C(1, 1)(1 + r + ε)(1 + ε)

∥∥∥V[
∣∣∣H−1/2

6

∥∥∥∥∥∥h
∣∣∣H1/2

∥∥∥
≤ 4cmc[C1/2C(1, 1)(2 + ε)2ετ

∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥∥∥∥h
∣∣∣H1/2

∥∥∥
with the help of (6.15), since r < 1.

We now set

ε :=
(

1 + 72cmc[C1/2C(1, 1)
∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥)− 1
τ .

This choice satisfies ε ∈ (0, 1) and moreover

4cmc[C1/2C(1, 1)(2 + ε)2ετ
∥∥∥V
∣∣∣Hτ−1/2

6

∥∥∥ ≤ 36cmc[C1/2C(1, 1)ετ
∥∥∥V
∣∣∣Hτ−1/2

6

∥∥∥
1 + 72cmc[C1/2C(1, 1)

∥∥∥V
∣∣∣Hτ−1/2

6

∥∥∥ ≤ 1
2

i.e. the estimate ‖Gζ,V] ◦MV[ | H1/2 → H1/2‖ ≤ 1/2 is fulfilled.
Inserting the choice of ε into (6.15) shows that∥∥∥V]

∣∣∣H1/2+τ
6

∥∥∥ ≤ c]
(

1 + 72cmc[C1/2C(1, 1)
∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥) 1
τ
∥∥∥V
∣∣∣H−1/2+τ

6

∥∥∥.

Hence (6.14) implies (6.16). Applying Lemma 6.6 for ν = 0 results in

‖g | H1/2‖ ≤ 2
∥∥∥Gζ,V] f

∣∣∣H1/2
∥∥∥ ≤ 12C1/2C(0, 1)|ζ|−1

∥∥∥ f
∣∣∣H1/2

r

∥∥∥
since ε, r < 1 and we assumed f ∈ H1/2

r ⊂ H1/2
r+ε .

Now we can prove a regularity theorem for the solution vζ to (6.10) similar to
Theorem 5.8:

Theorem 6.8. Let V ∈ H1/2+τ for some τ ∈ (0, 1) with supp(V) ⊂ Br for some r ∈ (0, 1).
Let cem be such that ‖· |H−1/2+τ

6 ‖ ≤ cem‖· |H1/2+τ‖ and choose ζ ∈ C3 \ R3 with
ζ · ζ = 0 according to

|ζ| ≥ max
{

cemCr

(
1 + C′rcem

∥∥∥V
∣∣∣H1/2+τ

∥∥∥)1/τ∥∥∥V
∣∣∣H1/2+τ

∥∥∥,
1

10

}
(6.17)

with the constants as in (6.14). Then there exists a constant c > 0 independent of V and ζ
such that for vζ solving (6.10) the following estimates are fulfilled:

(a)
∥∥∥vζ

∣∣∣H1/2
∥∥∥ ≤ c|ζ|−1‖V |H1/2‖;

(b)
∥∥∥vζ

∣∣∣H1/2
∥∥∥ ≤ c;

(c)
∥∥vζ

∣∣ L∞∥∥ ≤ c
∥∥∥V
∣∣∣H1/2+τ

∥∥∥;

(d)
∥∥∥vζ

∣∣∣H2
∥∥∥ ≤ c|ζ|

(
1 +

∥∥∥V
∣∣∣H1/2+τ

∥∥∥)∥∥∥V
∣∣∣H1/2+τ

∥∥∥;
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Proof. We now use the results on complex geometric optics solutions of this section:
Proof of (a): Note that vζ solves (6.14) if and only if vζ = Gζ,VV. Thus the estimate

is a direct consequence of Lemma 6.7, as (6.17) implies (6.14).
Proof of (b): The first part and the choice of ζ imply that∥∥∥vζ

∣∣∣H1/2
∥∥∥ ≤ c|ζ|−1‖V |H1/2‖ ≤ c

‖V |H1/2‖
cemCr

∥∥V
∣∣H1/2+τ

∥∥
and the right hand side is bounded by a constant independent of V and ζ.

Proof of (c): Recall that vζ fulfills the integral equation (5.9) given by

vζ(x) =
∫

gζ(x− y)V(y)(1 + vζ(y))dy

with |gζ(x)| = O(1/|x|) uniformly in ζ ∈ C3 \R3 (see proof of Theorem 5.8). There-
fore ‖χΩgζ | Lp‖ < ∞ for 1 ≤ p < 3 and for all bounded subsets Ω ⊂ R3.

This implies that

|vζ(x)| ≤
∫
|gζ(x− y)V(y)(1 + vζ(y))|dy

≤
∥∥∥χsupp(V)gζ(x− ·)

∣∣∣ L3/(1+τ)
∥∥∥∥∥∥V

∣∣∣ L3/(1−τ)
∥∥∥∥∥∥χsupp(V)(1 + vζ)

∣∣∣ L3
∥∥∥

≤ c
∥∥∥V
∣∣∣ L3/(1−τ)

∥∥∥(∥∥∥χsupp(V)

∣∣∣ L3
∥∥∥+ ∥∥∥η2vζ

∣∣∣ L3
∥∥∥).

As the embeddings H1/2+τ ⊂ L3/(1−τ) and H1/2 ⊂ L3 are continuous, we can see
that ∥∥vζ

∣∣ L∞∥∥ ≤ c
(

1 + 2
∥∥∥vζ

∣∣∣H1/2
∥∥∥)∥∥∥V

∣∣∣H1/2+τ
∥∥∥

holds true. Therefore the second part implies the claim.
Proof of (d): If vζ solves (6.10), then vζ = Gζ(V(1 + vζ)) and we can use Lemma

5.6 to gain higher regularity of vζ . As V(1 + vζ) = V(η2 + η2vζ) and by the last
part vζ ∈ L∞ we get that η2vζ ∈ Lp for all p ≥ 1. We use V ∈ H1/2 and vζ ∈ L7 in
Proposition B.22 (i.e. p0 = 2, s0 = 1/2, p1 = 7 and s1 = 0) to get q0 = 14

9 and q1 = 21
10 .

As q0 < 2 < q1 this shows that∥∥∥V(η2 + η2vζ)
∣∣∣ L2
∥∥∥ ≤ c

∥∥∥V
∣∣∣H1/2

∥∥∥(1 +
∥∥∥η2vζ

∣∣∣ L7
∥∥∥)

≤ c
(

1 +
∥∥∥V
∣∣∣H1/2+τ

∥∥∥)∥∥∥V
∣∣∣H1/2+τ

∥∥∥.

The claim then follows by Lemma 5.6 with µ = 0 and ν = 2.

Note that the motivation to restrict to τ ∈ (0, 1) is due to the proof of (c).
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6.2.3 Stability estimates

We will now derive a stability estimate in the H−1/2-norm – we will justify why this a
good choice later – for the Schrödinger equation for potentials V ∈ Hs for s ≥ 1/2+ τ
for some τ > 0. This will yield a stability estimate for conductivities in the H1-norm
by (6.9). For the stability proof we will follow the ideas outlined in Section 5.3 where
the operator related estimate uses the results of the previous section.

In order to do this, we will need an adaption of Theorem 5.12 that controls the
difference of the Fourier transform of two potentials for low order Fourier coefficients.
This adaption has to take into account that we start from another Alessandrini type
identity (we will use Lemma 6.2) and have lower smoothness assumptions on the
potential for which we will need the theory developed above. It is given by the
following result:

Theorem 6.9. For k = 1, 2 let γk − 1 ∈ B3/p+1+τ
p,2 with supp(γk − 1) ⊂ Br and assume

that γk(x) ∈ [γ, γ] for all x ∈ B1 for some γ > 0. Denote by Vk the potentials given by (6.5)
for γk with ‖Vk |H1/2+τ‖ ≤ M for some τ ∈ (0, 1), M > 0 and k = 1, 2. Define

gk := j(Λγk −Λ1)j∗ ∈ Y , where Y = HS(L2
�(∂B1), L2

�(∂B1))

and choose t, b > 0 such that

t ≥ t0 and t ≥ b
2

where t0 is the lower bound on |ζ| in (6.17). (6.18)

Then there exists a constant c independent of Vk and t such that for all ξ ∈ R3 satisfying
|ξ| ≤ b we have∣∣∣(V̂1 − V̂2

)
(ξ)
∣∣∣ ≤ c(1 + M)2

(
M2e4t‖g1 − g2 | Y‖+

∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥t−1

)
.

Proof. For fixed ξ ∈ R3 choose two unit vectors d1 and d2 in R3 such that ξ · d1 =
ξ · d2 = d1 · d2 = 0. For t as in (6.18) define

ζt
1 := −1

2
ξ + itd1 +

√
t2 − |ξ|

2

4
d2,

ζt
2 := −1

2
ξ − itd1 −

√
t2 − |ξ|

2

4
d2.

Then ζt
1, ζt

2 ∈ C3 \R3 and they satisfy

ζt
1 + ζt

2 = −ξ, |ζt
1| = |ζt

2| = t ≥ t0 and ζt
1 · ζt

1 = ζt
1 · ζt

2 = 0.
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As |ζt
j | ≥ t0 implies that ζt

j meets (6.14) for j = 1, 2 there exists by Theorem 6.8
complex geometrical optical solutions of the form

w1(x, ζt
1) = eiζt

1·x(1 + v1(x, ζt
1)),

w2(x, ζt
2) = eiζt

2·x(1 + v2(x, ζt
2)),

where wk solves the equation ∆wk + Vkwk = 0 in any bounded subset of R3 with
vk ∈ H2 ∩ L∞ for k = 1, 2. Hence by Lemma 6.2 we get that

(2π)3/2
∣∣∣(V̂1 − V̂2

)
(ξ)
∣∣∣

≤
∫

B1

∣∣(V2 −V1)(x)
(
v1(x, ζt

1) + v2(x, ζt
2) + v1(x, ζt

1) v2(x, ζt
2)
)∣∣dx

+
∫

∂B1

∣∣(∂nw2(x, ζt
2)
)[

Λγ2 −Λγ1

](
∂nw1(x, ζt

1)
)∣∣dx.

(6.19)

For the second integral we have that

∫
∂B1

∣∣(∂nw2(x, ζt
2)
)[

Λγ2 −Λγ1

](
∂nw1(x, ζt

1)
)∣∣dx

≤
∥∥∥∂nw2(·, ζt

2)
∣∣∣ L2
�(∂B1)

∥∥∥∥∥∥∂nw2(·, ζt
2)
∣∣∣ L2
�(∂B1)

∥∥∥∥∥∥g1 − g2

∣∣∣HS(L2
�(B1), L2

�(B1))
∥∥∥

so we need to bound the Neumann traces of the complex geometric optic solutions in
the L2-norm. By Theorem 6.8 we know that wj ∈ H2

loc and combining the correspond-
ing estimates with the trace theorem we can infer that

∥∥∥∂nw1(·, ζt
1)
∣∣∣ L2
�(∂B1)

∥∥∥ ≤ ∥∥∥w1(·, ζt
1)
∣∣∣H2(B1)

∥∥∥
≤
∥∥∥eiζt

1·
∣∣∣C2(B1)

∥∥∥∥∥∥1 + v1(·, ζt
1)
∣∣∣H2(B1)

∥∥∥
≤ ct2et

(∥∥∥1
∣∣∣H2(B1)

∥∥∥+ ∥∥∥η2v1(·, ζt
1)
∣∣∣H2

∥∥∥)
≤ ct2et

(
1 + t

(
1 +

∥∥∥V1

∣∣∣H1/2+τ
∥∥∥)∥∥∥V1

∣∣∣H1/2+τ
∥∥∥)

≤ ce2t
(

1 +
∥∥∥V1

∣∣∣H1/2+τ
∥∥∥)∥∥∥V1

∣∣∣H1/2+τ
∥∥∥

with c independent of V1 and t. Likewise we can estimate ‖∂nw2(·, ζt
2) | L2

�(∂B1)‖.
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The first integral in (6.19) can be bounded by∫
B1

∣∣(V2 −V1)(x) (v1(x, ζt
1) + v2(x, ζt

2) + v1(x, ζt
1) v2(x, ζt

2))
∣∣dx

≤
∥∥∥V1 −V2

∣∣∣H−1/2(B1)
∥∥∥(∥∥∥η2 v1(·, ζt

1)
∣∣∣H1/2(R3)

∥∥∥+ ∥∥∥η2 v2(·, ζt
2)
∣∣∣H1/2(R3)

∥∥∥
+
∥∥∥η2 v1(·, ζt

1)
∣∣∣H1/2(R3)

∥∥∥∥∥v2(·, ζt
2)
∣∣ L∞∥∥)

≤ c
(

1 +
∥∥∥V2

∣∣∣H1/2+τ
∥∥∥)(max

j=1,2

∥∥∥Vj

∣∣∣H1/2+τ
∥∥∥)∥∥∥V1 −V2

∣∣∣H−1/2(B1)
∥∥∥t−1

using the estimates of Theorem 6.8 with c independent of Vk and t. Inserting the three
last estimates into (6.19) gives the desired estimate.

This leads to the following stability estimate for the Schrödinger equation:

Theorem 6.10. For k = 1, 2 let γk − 1 ∈ B3/p+1/2+s
p,2 for s ≥ 1/2 + τ where τ ∈ (0, 1)

with supp(γk − 1) ⊂ Br and γk(x) ∈ [γ, γ] for all x ∈ B1 for some γ > 0. Denote by Vk
the potentials given by (6.5) with ‖Vk |Hs‖ ≤ M for some M > 0 and k = 1, 2. Define gk
as in Theorem 6.9. Then there exists a constant c > 0 independent of Vk and gk such that the
stability estimate∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥ ≤ cM(1 + M)(1+1/τ)(1/2+s)

(
ln
(

3 + ‖g1 − g2 | Y‖−1
))−(1/2+s)

+ cM2‖g1 − g2 | Y‖

holds true.

Proof. Let b > 0, then∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥2

=
∥∥∥F ∗χ{|·|>b}F (V1 −V2)

∣∣∣H−1/2
∥∥∥2

+
∥∥∥F ∗χ{|·|≤b}F (V1 −V2)

∣∣∣H−1/2
∥∥∥2

.

Since V1 and V2 are in Hs we get the estimate∥∥∥F ∗χ{|·|>b}F (V1 −V2)
∣∣∣H−1/2

∥∥∥2

=
∫
|ξ|>b

(
1 + |ξ|2

)−1/2∣∣∣(V̂1 − V̂2

)
(ξ)
∣∣∣2 dξ

≤ sup
|ξ|>b

((
1 + |ξ|2

)−1/2−s
) ∫
|ξ|>b

(
1 + |ξ|2

)s∣∣∣(V̂1 − V̂2

)
(ξ)
∣∣∣2 dξ

≤ b−1−2s M2.
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Further for any t > 0 meeting (6.18) we get∥∥∥F ∗χ{|·|≤b}F (V1 −V2)
∣∣∣H−1/2

∥∥∥2

≤ sup
|ξ|≤b

∣∣∣(V̂1 − V̂2

)
(ξ)
∣∣∣2 ∫
|ξ|≤b

(
1 + |ξ|2

)−1/2
dξ

≤ c1b2(1 + M)4
[

M4e8t‖g1 − g2 | Y‖2 +
∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥2

t−2
]

for some c1 > 0 by Theorem 6.9.
We now first assume that the choice

t := 2c2(1 + M)2b where c2 = max
{

1
4

,
√

c1

}
(6.20)

fulfills t ≥ t0. This choice of t yields that

c1(1 + M)4b2

t2

∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥2
≤ c1(1 + M)4b2

2c1(1 + M)4b2

∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥2

≤ 1
2

∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥2

as well as t ≥ b
2 . By inserting and rearranging this implies the estimate∥∥∥V1 −V2

∣∣∣H−1
∥∥∥2
≤ cb−1−2s M2 + c(1 + M)4M4b2e16c2(1+M)2b‖g1 − g2 | Y‖2

We abbreviate ‖g1 − g2 | Y‖ = δ and set the free parameter b to

b =
1

16c2(1 + M)2 ln
(

3 + δ−1
)

which results in∥∥∥V1 −V2

∣∣∣H−1
∥∥∥2
≤ cM2(1 + M)2(1+2s) ln

(
3 + δ−1

)−1−2s
+ cM4(δ1/2 + δ2). (6.21)

since their exists a constant c > 0 such that δ2(3 + δ−1) ln
(
3 + δ−1) ≤ c(δ1/2 + δ2)

However, this is only valid if t meets (6.18). As

t = 2c2(1 + M)2b =
2c2(1 + M)2

16c2(1 + M)2 ln
(

3 + δ−1
)
=

1
8

ln
(

3 + δ−1
)
>

1
10

we need to ensure that also t ≥ cemCr(1 + C′rcemM)1/τ M will be fulfilled. Note that
there exists a c3 > 0 such that

t ≥ c3(1 + M)1+1/τ implies t ≥ cemCr(1 + C′rcemM)1/τ M.
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This stronger constraint will be met if δ ≤ δmax with

δmax :=

∞ exp
(

8c3(1 + M)1+1/τ
)
≤ 3[

exp
(

8c3M1+1/τ
)
− 3
]−1

else
.

But if δ ≥ δmax, then t ≤ c3(1 + M)1+1/τ . Yet this shows that

∥∥∥V1 −V2

∣∣∣H−1
∥∥∥2
≤ 4M2 ≤ cM2

(
(1 + M)(1+1/τ)

t

)1+2s

(6.22)

Since τ ∈ (0, 1) we get that 1 + 1/τ > 2. Further there is a constant c such that

M2δ1/4 ≤
{

cM2δ for δ ≥ 1

cM(1 + M)(1+1/τ)(1/2+s)(ln(3 + δ−1))−(1/2+s) for δ ≤ 1
.

Hence (6.21) and (6.22) make evident that the stability estimate∥∥∥V1 −V2

∣∣∣H−1
∥∥∥ ≤ cM(1 + M)(1+1/τ)(1/2+s)

(
ln
(

3 + δ−1
))−(1/2+s)

+ cM2δ

holds true for all δ > 0

Note that – even if formulated differently – the above theorem also holds true if
V1 and V2 are arbitrary potentials that are not derived from conductivities by (6.5) as
long as the respective Neumann-to-Dirichlet operators are well defined. Ignoring the
difference in the energy (as one holds for E = 0 and the other for E ≥ 1 which is not
important here) we see an interesting feature in the stability estimate we did not get
in the stability estimate obtained in Corollary 5.18. In both cases the stability estimate
is of the form

Ψ(δ) = O
(

ln(3 + δ−1)
)−µ

as δ→ 0

but in our new result we get that µ is linearly increasing in the smoothness index s
(i.e. V ∈ Hs) whereas it was bounded for all s in Corollary 5.18.. The reason for this
is the slightly different application of Theorems 5.12 and 6.9, respectively. While the
estimates of both statements are quite similar in the application we have estimates
which are roughly of the form

〈 f ∗, f † − f 〉 ≤ A(t) + B(t)
∥∥∥ f − f †

∥∥∥ν

and
∥∥∥ f − f †

∥∥∥ ≤ Ã(t) + B̃(t)
∥∥∥ f − f †

∥∥∥
respectively. While for the latter we can find a choice of t = t̄ such that B̃(t̄) ≤ 1

2
and then the obtained rate is given by Ã(t̄), in the former case we have to apply
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Young’s inequality and the rate will be given by inft(max{A(t), Br/(r−ν)(t)}). Hence
if inft(B(t)) does not improve when s→ ∞ we cannot expect to gain an unbounded
exponent µ in our estimate. Note that this approach requires that the norms on the
left and the right side of the second equation coincide, which is why we used the
H−1/2-norm for the stability estimate.

We now gain a stability estimate for the electrical impedance tomography problem
with the help of (6.9).

Theorem 6.11. Let f j ∈ D with ‖ f j | B
3/p+1/2+s
p,2 ‖ ≤ $ with $ > 0, s ≥ 1/2 + τ and

τ ∈ (0, 1) for j = 1, 2. Set gj := F( f j) the error free data of f j for j = 1, 2. Then the stability
estimate∥∥∥ f1 − f2

∣∣∣ B1
p,2

∥∥∥ ≤ c$4(1 + $ν)
(

ln
(

3 + ‖g1 − g2 | Y‖−1
))−(1/2+s)

+ c$5(1 + $3+2s)‖g1 − g2 | Y‖

holds true with ν = 4s2(τ+1)+4s(4τ+3)+11τ+5
4τ and some c > 0.

Proof. As the support of f1 and f2 is contained in B1 there exists a constant such that∥∥∥ f j

∣∣∣Hk
p

∥∥∥ ≤ c
∥∥∥ f j

∣∣∣Hk
2

∥∥∥
for all p ∈ (1, 2] and k ∈ N0. Thus we obtain that∥∥∥ f1 − f2

∣∣∣ B1
p,2

∥∥∥ =
∥∥∥ f1 − f2

∣∣∣ (Lp, H2
p) 1

2 ,2

∥∥∥≤ c
∥∥∥ f1 − f2

∣∣∣ (L2, H2) 1
2 ,2

∥∥∥= c
∥∥∥ f1 − f2

∣∣∣H1
∥∥∥.

By (6.9) we then infer that∥∥∥ f1 − f2

∣∣∣ B1
p,2

∥∥∥ ≤ c$3
∥∥∥V1 −V2

∣∣∣H−1
∥∥∥ ≤ c$3

∥∥∥V1 −V2

∣∣∣H−1/2
∥∥∥.

By Lemma 6.5 we get the norm bound
∥∥∥Vj

∣∣∣H1/2+τ
∥∥∥ ≤ $(1 + $3/2+s) hence we can

estimate the right hand side by the result of Theorem 6.10. The claim then follows
from collecting the norm powers of $.

We do not believe that the obtained dependency on $ is in any sense optimal as
even for s = 1/2+ τ we have that infτ∈(0,1) ν > 17 (note that ν for fixed τ is increasing
in s and for fixed s decreasing in τ). The reason to still make the dependency on $
explicit will become clear in the next section where we will assume that the stability
estimate is of the form R($)Ψ(‖g1− g2‖). However, none of the stability estimates for
the three-dimensional case discussed in Table 6.1 makes the dependency on a norm
bound explicit; for two dimensions a result with R($) = (1 + $) has been shown in
[RFC10].
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Author X Z µ

Heck H1 C3/2+s,
s ∈ (0, 1/2)

s
24− 4s

Caro et al H1 C1,s, s ∈ (0, 1)
s2

15
Weidling H1 H5/2+s, s > 0 1 + s

TABLE 6.2: H1 stability estimates of the form (6.3) in the literature.

We know by [Man01] that the electrical impedance tomography problem is expo-
nentially ill-posed, hence any stability estimate for this problem has to be of the form
as in Theorem 6.11 or worse. However, the optimal value of the exponent is still un-
known. Therefore we can only compare with the results presented in Table 6.1 which
turns out to be rather difficult due to different smoothness assumptions and choices
of X . In [Ale88] the choice of X = L∞ is natural as the maximum principle is used on
(6.7b). A close inspection of the proofs of [Hec09, CGR13] however reveals that they
also use Lax-Milgram as a starting point, and to obtain estimates in their respective
X they apply interpolation with a space for which they know that the norm of γ will
be bounded by a constant. As this interpolation leads to lower rates we will compare
the H1-rates obtained in these papers with our result for p = 2. For convenience the
results are presented in Table 6.2 and follow from [Hec09, p. 117], [CGR13, Eq. 4.7]
and Theorem 6.11 respectively. Setting s = 1/2 + τ we get that H3/2+1+τ ⊂ C1,τ (but
H3/2+1+τ 6⊂ C1,τ+ε, for all ε > 0), hence we see that our result requires less minimal
regularity than [Hec09] and about the same as [CGR13]. Furthermore, we see that we
achieve a much better stability estimate as the exponent µ is much larger.

We should mention that in [Hec09, CGR13] the conductivities γ do not have to
be constant near the boundary. However, as shown in [Ale88, Prop. 2] (see [Ale90]
for higher regularity) the boundary data is (Hölder) stably reconstructable which
suggests that this is not the reason for the lower exponent.

6.3 Convergence Rates

While stability estimates are important to gather insight on the problem, they do
not have immediate practical or computational relevance, and our main goal is the
derivation of convergence rates for the Tikhonov functional. Here we will prove a
general way to verify VSCs from stability estimates. This will, in combination with
the results of the previous section, yield the desired result.
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6.3.1 Excursion: from stability to variational source conditions
We will leave the problem of electrical impedance tomography for a moment. Instead
we will now prove a generalization of Theorem 2.19 in the case of r = b, also an
extension to the same range of parameters r could easily be achieved by interpolation.
Since we have already sketched the proof for Hilbert scales in Section 2.4.3.3 we will
focus the formulation and proof on the scale of Besov spaces here. We will show
that a stability estimate in the scale of Besov spaces shows that a VSC holds true.
Then convergence rates are immediately inferred either by Theorem 2.20 or by results
discussed in Section 2.4.4.2. In comparison to the original result [EH18, Thm. 2.1] this
has the advantage that we do not have to prove separately for every parameter choice
rule that convergence rates are obtained but they follow directly from the general
theory.

Theorem 6.12. Let p, q ∈ (1, ∞). Let s0 < s1 ∈ R such that F : dom(F) ⊂ Bs0
p,q → Y for

some Banach space Y and for all f1, f2 ∈ dom(F) ∩ Bs1
p,q with

∥∥ f j
∣∣ Bs1

p,q
∥∥ ≤ ρ fulfills the

stability estimate ∥∥ f1 − f2
∣∣ Bs0

p,q
∥∥ ≤ R(ρ)Ψ(‖F( f1)− F( f2) | Y‖)

where R : [0, ∞)→ [0, ∞) is a monotonically increasing function and Ψ is an index function
such that ψ ◦ id1/b is concave for some b ≥ 1. Let s2 ∈ (s1, s1−s0

q−1 + (q − 1)s1) and

‖ f † | Bs2
p,∞‖ ≤ $ for some $ > 0. Then forR(·) = 1

r ‖· | B
s1
p,q‖r where r = max{2, p, q} and

Tg†(g) = 1
b‖g− g† | Y‖b a VSC (2.26) is fulfilled by f † with

ψ(t) := 2$r−1 max{R(A$), $}
(

Ψ
(
(bt)1/b

)) (s2−s1)(q−1)r′
(s2−s1)(q−1)(r′−1)+s1−s0

for some A > 0. An explicit formula for A is given in the proof.

The proof is a strict generalization of Theorem 4.14:

Proof. As always we will apply Theorem 2.24. The operator family (Pj)j∈N0 will be
given by (4.3) and therefore we get κ(j) = c$r−12−j(s2−s1)(q−1) by Lemma 4.6. Now
set A := 1 + ( 4

3C∆
)r′/r. Then all f with ‖ f − f † | Bs1

p,q‖ ≤ ( 4
3C∆
‖ f ∗ | B−s1

p′ ,q′‖)
r′/r where

f ∗ ∈ ∂R( f †) fulfill ‖ f | Bs1
p,q‖ ≤ A$ (recall that the norm of f ∗ can be estimated with

Corollary 4.4). For these f we can estimate

〈Pj f ∗, f † − f 〉
B
−s1
p′ ,q′×B

s1
p,q

= 〈Pj f ∗, f † − f 〉
B
−s0
p′ ,q′×B

s0
p,q

≤
∥∥∥Pj f ∗

∣∣∣ B−s0
p′ ,q′

∥∥∥∥∥∥ f † − f
∣∣∣ Bs0

p,q

∥∥∥
≤
∥∥∥Pj f ∗

∣∣∣ B−s0
p′ ,q′

∥∥∥R(A$)Ψ(‖F( f1)− F( f2) | Y‖)
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Note that the upper bound on s2 is equivalent to −s0 > −s1 + (s2 − s1)(q− 1) and
we know from Corollary 4.4 that ‖ f ∗ | B−s1+(s2−s1)(q−1)

p′ ,∞ ‖ ≤ $r−1. Therefore we get∥∥∥Pj f ∗
∣∣∣ B−s0

p′ ,q′

∥∥∥ ≤ c2j(s1−s0−(s2−s1)(q−1))$r−1,

which gives (2.28c) with σ(j) = 2j(s1−s0−(s2−s1)(q−1))$r−1R(A$), φ(t) = Ψ
(
(bt)1/b

)
and γ ≡ 0. Hence a VSC holds true with

ψvsc(t) = $r−1 inf
j∈N0

[
2j(s1−s0−(s2−s1)(q−1))R(A$)Ψ

(
(bt)1/b

)
+ 2−j(s2−s1)(q−1)r′$

]
.

Now choose j such that

2−j((s2−s1)(q−1)(r′−1)+s1−s0) ≈ Ψ
(
(bt)1/b

)
and hence obtain a VSC with

ψvsc(t) ≤ 2$r−1 max{R(A$), $}
(

Ψ
(
(bt)1/b

)) (s2−s1)(q−1)r′
(s2−s1)(q−1)(r′−1)+s1−s0 .

One easily checks that for s0 = −a, s1 = 0, s2 = s and Ψ = id one regains the
result of Theorem 4.14. Therefore the question arises how a “good” stability estimate
has to be such that it implies order optimal convergence rates via Theorem 6.12 with
Bs1

p,q = B0
p,q. We will discuss this for an operator satisfying (4.5).

Example 6.13. For the a-times smoothing operators discussed in Section 4.4 we have
the stability estimates∥∥∥ f1 − f2

∣∣∣ B−θa
p,q

∥∥∥ ≤ Lθ
∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥1−θ∥∥∥Fa( f1)− Fa( f2)
∣∣∣ L2
∥∥∥θ

, for θ ∈ (0, 1]
(6.23)

which for θ < 1 are obtained by interpolation from (4.5b). This implies a stability
estimate with Ψ(t) = Lθtθ and R(ρ) = (2ρ)1−θ . Assume that f † ∈ Bs

p,q for s ∈ (0, s−a
q−1 )

with ‖ f † | Bs
p,q‖ ≤ $. Setting b = 2 and inserting the parameters we see that we obtain

a VSC with

ψ(t) = c($)tν with ν =
θ

2
s(q− 1)r′

s(q− 1)(r′ − 1) + a
=

{
θ

q
2

s
s+a q ≥ 2

θ
s(q−1)

s(q−1)+a q < 2
.

Comparing with Theorem 4.14, we see that we get an extra factor of θ ∈ (0, 1] in the
exponent. Therefore we can infer from Theorem 4.20 that the VSC yields optimal
rates only for q ≥ 2 and the Lipschitz estimate – i.e. θ = 1.
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It therefore seems that a “good” stability estimate for finitely smoothing operators
can be obtained by choosing the largest s0 for which F is Lipschitz for all f ∈ B0

p,q. But
why do we get suboptimal convergence rates if this is not the case? A short analysis
shows that the reason for this is the estimate

∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥ ≤ 2$, as it is still possible
to get order optimal rates from the stronger equation (6.23). Indeed for q ≥ 2 and
θa > s(q− 1) this equation yields

〈Pj f ∗, f † − f 〉 ≤
∥∥∥ f ∗

∣∣∣ Bθa
p′ ,q′

∥∥∥∥∥∥ f − f †
∣∣∣ B−θa

p,q

∥∥∥
≤ c$q−12j(θa−s(q−1))

∥∥∥ f1 − f2

∣∣∣ B0
p,q

∥∥∥1−θ∥∥∥Fa( f1)− Fa( f2)
∣∣∣ L2
∥∥∥θ

.

Hence we get (2.28c) with σ ≡ 0, γ(j) = c$q−12j(θa−s(q−1)), φ̃(t) = tθ/2 and ϑ = 1− θ.
Thus Theorem 2.24 shows that a VSC is fulfilled with

ψ(t) = inf
j∈N

c($)
[

2−jsq +
(

2j(θa−s(q−1))tθ/2
) q

q−(1−θ)

]
≤ c($)t

q
2

s
s+a

for the choice of j such that 2−2j(s+a) = t, and this VSC implies order optimal rates.
For infinitely smoothing operators the situation is different as the following exam-

ple illustrates:

Example 6.14. Consider again the backward heat equation (3.13). In a manner similar
to Theorem 4.23 we can also derive a stability estimate which we do for q = 2 only
for simplicity. Denote by Pj the projection in (4.3). Then for f ∈ B0

p,2 (that is s1 = 0)
for p ∈ (1, 2] we get that for s0 < 0∥∥∥(I − Pj) f

∣∣∣ Bs0
p,2

∥∥∥2
= ∑

k>j
2−ks02‖ fk | Lp‖2 ≤ 22js0

∥∥∥ f
∣∣∣ B0

p,2

∥∥∥2

holds true. Further Pj commutes with the duality mapping jX := jBs0
p,2,2. This leads to

the estimate∥∥∥Pj f
∣∣∣ Bs0

p,2

∥∥∥2
= 〈jX ( f ), Pj f 〉 ≤

∥∥∥jX ( f )
∣∣∣ Lp′

∥∥∥∥∥∥∥1
∣∣∣∣ L

2p
2−p

∥∥∥∥∥∥∥Pj f
∣∣∣ L2
∥∥∥

≤ c
∥∥∥ f
∣∣∣ Bs0

p,2

∥∥∥e22jτ
∥∥∥T f

∣∣∣ L2
∥∥∥

which can be obtained as the ill-posedness estimate in Theorem 4.23. Using in addition
a similar choice of j

22j ≈ 1
τ

ln

√
3 +

1
‖T f | L2‖



184 6. Electrical Impedance Tomography

then gives a stability estimate with

R($) = c max
{

$2, $
}

,

Ψ(t) =
[
3t2 + t

] 1
4
+

[
ln

((
3 +

1
t

)1/2
)] s0

2

.

For s2 such that s2 ∈ (0,−s0) we then get

(s2 − s1)(q− 1)r′

(s2 − s1)(q− 1)(r′ − 1) + s1 − s0
=

2s2

s2 − s0

which implies that a VSC with

ψ(t) =
(

ln t−1
)−−s0s2

s2−s0 , as t→ 0

is fulfilled. As s2
s2−s0

−s0
2 ≤

s2
2 if and only if s2 ≥ 0 this shows that the derived VSC is

always suboptimal.

The main problem here is that the scale of Besov spaces does not include spaces
such that we can get a Lipschitz stability estimate. In order to obtain order optimal
rates the remedy might be to allow stability estimates in spaces of analytic functions
as discussed in [KWH16].

6.3.2 Variational source conditions for electrical impedance
tomography

We now return to our original problem as we now have all the tools available to verify
a VSC. Recall that in order to reconstruct γ we proposed to set f := γ− 1 and use
Tikhonov regularization of the form (6.4), that is:

f̂α ∈ arg min
f∈D

[
1

2α

∥∥∥F( f )− gobs
∣∣∣Y∥∥∥2

+
1
2
‖ f | X ‖2

]
with X := B

3
p +1+τ

p,2 , Y := HS
(

L2
�(∂B1), L2

�(∂B1)
)

and D :=
{

f ∈ B
3
p +1+τ

p,2 : f (x) ∈ [γ− 1, γ− 1] ∀x ∈ B1, supp( f ) ⊂ Br

}
.

Theorem 6.15. Let τ ∈ (0, 1) and f † ∈ D. Assume that f † additionally satisfies that
f † ∈ Bs

p,∞ for some s ∈ (3/p + 1 + τ, 6/p + 1 + 2τ) with ‖ f † | Bs
p,∞‖ ≤ $ for some $ > 0.

Then f † fulfills a VSC of the form

〈 f ∗, f † − f 〉 ≤ 3
4

∆ f ∗
1
2 ‖· | X ‖

( f , f †) + ψ

(
1
2

∥∥∥F( f )− F( f †)
∣∣∣Y∥∥∥2

)
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for the Tikhonov functional given by (6.4) where f ∗ ∈ ∂‖ f † | B
3
p +1+τ

p,2 ‖ and

ψ(t) = c$(1 + $ν+3)

(
ln
(

3 + t−1/2
)−(1+τ)

+ t
1
2

)µ

with µ =
2
(

s−( 3
p +1+τ)

)
s−1 and ν = τ3+6τ2+9τ+3

τ .

Proof. We will prove the VSC by applying Theorem 6.12. By Theorem 6.11 a stability
estimate with

Bs0
p,q := B1

p,2, Bs1
p,q = B3/p+1+τ

p,2 , Ψ(t) :=
(

ln
(

3 + t−1
))−(1+τ)

+ t

and R(ρ) := cρ
(

1 + ρν+3
)
≥ c max

{
ρ4(1 + ρν), ρ5

(
1 + ρ2+τ

)}
holds true and we have r = 2. By increasing the constant if necessary we see that
R($) ≥ $ and the value of ν follows by setting s = 1

2 + τ. Inserting the parameters in
Theorem 6.12 finishes the proof.

Corollary 6.16. Let the assumptions of Theorem 6.15 be fulfilled. Then there exists a
minimizer f̂α of the Tikhonov functional given by (6.4) and for a parameter choice α = ᾱ
according to Section 2.4.4.2 the convergence rate∥∥∥ f̂ᾱ − f †

∣∣∣ B3/p+1+τ
p,2

∥∥∥ ≤ c
(

ln δ−1
)−µ̃

as δ→ 0,

holds true for µ̃ =
(1+τ)

(
s−( 3

p +1+τ)
)

s−1 and all minimizers f̂ᾱ.

Proof. In Section 6.1.2 we have shown that Assumption 1.4 is met, thus Theorem 1.6
yields existence of a minimizer. The convergence rate then follows from Theorem 6.15
and Section 2.4.4.2.

To the best of our knowledge Corollary 6.16 yields the first convergence rate
result for an reconstruction algorithm for electrical impedance tomography in three
dimensions. Note that the ellipticity condition, the support constraint as well as the
Besov norm by wavelets are all rather easy to implement in practice. However, calcu-
lating the minimizer of the Tikhonov functional is still a challenge as the Tikhonov
functional is nonconvex due to the nonlinearity of F. This is the advantage of the
D-bar method which reconstructs the conductivity from the data without having
to solve a nonconvex optimization method. As already mentioned in Section 6.1 it
is known that for C2 conductivities in two dimensions this method converges with
rate (− ln(δ))−1/14 (see [KLMS09, Thm. 3.1]). This algorithm has been extended to a
reconstruction algorithm in three dimensions in [CKS06] for conductivities close to



186 6. Electrical Impedance Tomography

γ = 1 and more recently to the full problem in [DK14] for γ ∈ C1,1. However for this
three dimensional generalization a convergence rate result is not yet available.

Implicitly convergence rates could have been obtained by Theorem 2.17. But there
the smoothness of the true solution has to be known a-priori. Further the stability
estimates discussed in Table 6.1 either require a very high smoothness (γ ∈ Hs for
s > 7/2) or have smoothness assumptions that would be hard to implement as a
penalty term (γ ∈ C1,ε for ε ∈ (0, 1)).

We think that our result could be improved in two ways: One the hand one could
allow the conductivities to be nonconstant near the boundary. As the boundary values
of γ depend stably on the data this should not lead to slower convergence rates. The
difficult part here would be to extend the conductivities outside of the domain to γ̃ in
such a way that the smoothness of the function is preserved and a slightly weaker
ellipticity condition, say γ̃(x) ∈ [γ/2, 2γ] for all x ∈ R3, is fulfilled. However, in
these cases we have to choose Y = L(H−1/2

� (∂B1), H1/2
� (∂B1)) as we can no longer

show that the data is a Hilbert-Schmidt operator. On the other hand applying the
results of [Hab15] might allow to reduce the smoothness assumptions by roughly
one derivative. But even then one would still be far away from the ideal case which
would be given by regularizing with a Bs

p,q-norm with s < 1/p in order to allow
conductivities which are smooth up to jumps which would be the most important
application.



CONCLUSION & OUTLOOK

In this work we have studied how to verify VSCs for various settings and problems
with the motivation to obtain convergence rates for Tikhonov estimators. Most results
of this thesis are based on our strategy Theorem 2.24 to verify VSCs. Hence it can be
seen as the central result of this work while the following chapters have shown the
great flexibility of the presented approach.

From Chapter 3 we can conclude that VSCs are (under mild assumptions) neces-
sary and sufficient for low order convergence rates for the two most common error
models and a large set of estimators. The advantage of VSCs – compared to most
other conditions that yield equivalence – is, however, that their formulation does not
require the functional calculus. This underlines that they are the “right” condition
in order to obtain low order convergence rates (i.e. rates slower then O(

√
δ)). For

higher order rates (that is, rates of o(
√

δ)) higher order VSCs have been suggested
(see Section 2.4.4.1 and reference therein). For the verification of these conditions our
main strategy is also applicable (see [SH18, Sec. 5]).

Chapter 4 has illustrated that our strategy is also applicable in Besov spaces. A
key step was the characterization of smoothness of subgradients for certain norms.
However, the picture we get is less complete than for Hilbert spaces. We are only able
to obtain order optimal rates for Besov penalties with fine index q ≥ 2. For q < 2
several reasons are possible why we do not obtain optimal convergence rates. We
believe that our upper bounds are too pessimistic, this can be seen e.g. by comparing
with the case q = 1 treated in [HM18]. But note that in this case the VSC is not
formulated with respect to the Bregman distance. Thus an immediate direction
of further research is to try to close this gap in optimality for q ∈ (1, 2). However,
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proving better upper bounds most likely has to rely on another technique as presented
here, since – taken individually – we believe all our estimate to be optimal up to
constants. Another interesting topic would be to study converse results in the sense
of equivalence of convergence rates, smoothness and VSCs.

In our study of the Schrödinger equation in Chapter 5 we have shown that the
findings of the previous chapter are not limited to simple operators on the torus but
can also be applied to more involved problems. Here we could improve our previous
findings of [HW15] and get convergence rates under lower smoothness assumptions
as well as prove that the rates are of Hölder-logarithmic type for near field data, i.e.
are of Hölder type in the high energy limit. We would like to point out, that (to the
best of our knowledge) no other convergence rate result for this problem is available.
As discussed later on it seems that the main downside of our derived stability estimate
– the bounded exponent of the logarithm – seems to be inherited by the fact that we
verify a VSC first; as can e.g. be seen in Theorem 6.10.

Chapter 6 contains two main results: a first convergence rate result for electric
impedance tomography in three dimensions and a general method to verify VSCs
by stability estimates. Possibilities to improve our stability estimate (which implies
that the VSC is fulfilled) are already discussed at the end of that chapter; namely
varying conductivity up to the boundary and using estimates on complex geometric
optics solutions which require less smoothness on the involved potentials. We believe
that further investigation of Theorem 6.12 might lead to new interesting research
questions: First of all it shows the usefulness of stability estimates in weak (i.e.
negative smoothness) norms. Second, now that we see that stability estimates are
not only implied by VSCs but also imply them, the question arises whether the two
conditions are actually equivalent. As we have seen that VSCs derived by stability
estimates are not always optimal, so a step forward would be to investigate when
sharp converse implications can be obtained.



APPENDIX A
CONVEX ANALYSIS

In the following we will summarize some basic concepts of convex analysis. The
presented results can e.g. be found in [BP86, Chap. 2] and [Zal02].

Convex functions We will look at properties of functions mapping into the extended
reals R̄ := R∪ {±∞}.

Definition A.1. Let X be a vector space, then a mapping h : X → R̄ is called convex,
if h(λx + (1− λy)) ≤ λh(x) + (1− λ)h(y) for all λ ∈ [0, 1] and all x, y ∈ X . It is
called strictly convex if the inequality is strict for all λ ∈ (0, 1) and x 6= y. Further h is
(strictly) concave, if −h is (strictly) convex. The set dom(h) := {x ∈ X : h(x) < ∞} is
called the effective domain of h. The mapping is furthermore called proper if h(x) > −∞
for all x ∈ X and dom(h) 6= ∅.

For convex mappings the following generalization of continuity is often of interest:

Definition A.2. Let X be a vector space and h : X → R̄ a mapping. Then h is lower
semicontinuous at x0 ∈ X , if h(x0) = lim infx→x0 h(x). Furthermore h is called lower
semicontinuous if it is lower semicontinuous at every point x0 ∈ X .

It connects in the following way to the classical continuity property:

Lemma A.3. Let X be a Banach space and h : X → R̄ be a proper, lower semicontinuous
and convex function. Then h is continuous at every point of the interior of its effective domain.

We are mainly interested in convex functionals due to the following minimization
property.
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Proposition A.4. Let X be a reflexive Banach space and h : X → R̄ a proper, convex
and lower semicontinuous mapping. Then h attains its minimal value on every bounded,
convex and closed subset C ⊂ X . If h is even strictly convex, then the minimizer is unique.
Further the statements remain true if boundedness is replaced with the coercivity condition
limx∈C,‖x | X ‖→∞ h(x) = ∞.

Subdifferential For convex functions there is the following generalization of a
derivative:

Definition A.5. Let X be a Banach space and h : X → R̄ convex. Then x∗ ∈ X ′ is
called a subgradient of h at x, if h(x) is finite and

h(y) ≥ h(x) + 〈x∗, y− x〉 ∀y ∈ X .

We call the mapping ∂h : X → 2X
′

– where 2X
′

is the power set of X ′ – with

∂h(x) :=

{
{x∗ ∈ X ′ : x∗ is a subgradient of h at x} h(x) is finite
∅ else

the subdifferential of h.

Example A.6. Let C ⊂ X be a closed, nonempty, convex set. Then the indicator
function ιC : X → R̄ of C is defined as

ιC(x) :=

{
0 x ∈ C
∞ x 6∈ C

and the corresponding subdifferential is given by

∂ιC(x) :=

{
{x∗ ∈ X ′ : 〈x∗, x− y〉 ≤ 0 for all y ∈ C} x ∈ C
∅ x 6∈ C

.

The set ∂ιC(x) is also called the normal cone to C at x. One immediately sees that
0 ∈ ∂ιC(x) for all x ∈ C and can show that ∂ιC(x) = {0} if and only if x is in the
interior of C.

Lemma A.7. Let X be a Banach space and h : X → R̄ be convex. For x ∈ X let h be
Gateaux differentiable at x with derivative h′[x], then ∂h(x) = {h′[x]}.

The previous lemma showed how to calculate the subdifferential for differential
functions. Furthermore, it has the following calculus rules:

Proposition A.8. Let X ,Y be Banach spaces, h1, h2 : X → R̄ be proper and convex and
T : Y → X be linear and continuous.
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(a) Assume there exists x0 ∈ X such that h1, h2 are finite at x0 and h1 is continuous at x0.
Then ∂(h1 + h2)(x) = ∂h1(x) + ∂h2(x) for all x ∈ X .

(b) If h1 is lower semicontinuous and there exists x0 ∈ X such that h1 is finite and
continuous at x0, then ∂(h1 ◦ T)(y) = T∗∂h1(Ty) for all y ∈ Y .

Further the subdifferential can be used to characterize minimizers of convex
functions:

Proposition A.9. Let the assumption of Proposition A.4 hold true, then x0 is a minimizer of
h on C if and only if 0 ∈ ∂(h + ιC)(x0).

Bregman distance The Bregman distance defined below can be seen as the subdif-
ferential equivalent of a first order Taylor reminder.

Definition A.10. Let X be a Banach space and h : X → R̄ be convex. Let x0 ∈ X such
that ∂h(x0) 6= ∅, then for x∗ ∈ ∂h(x0) the Bregman distance of x and x0 is defined as

∆x∗
h (x, x0) := h(x)− h(x0) + 〈x∗, x− x0〉.

If ∂h(x0) is a singleton we write ∆h(x, x0)

The next example motivates to use the Bregman distance as a generalized distance
measure:

Example A.11. Let X be a Hilbert space and h(x) = 1
2‖x− x0 | X ‖2 for some x0 ∈ X .

Then ∂h(x) = (x− x0) and ∆h(x̃, x) = 1
2‖x̃− x | X ‖2

In general the Bregman distance has the following properties:

Lemma A.12. Let the assumption of Definition A.10 be fulfilled. Then

(a) ∆x∗
h (x, x0) ≥ 0 for all x ∈ X ,

(b) x 7→ ∆x∗
h (x, x0) is convex,

(c) if h is strictly convex, then ∆x∗
h (x, x0) = 0 implies x = x0.

Conjugate functional A fundamental role in convex analysis is played by the conju-
gate function defined below.

Definition A.13 (Fenchel conjugate). Let X be a Banach space, h : X → R̄ be a
mapping, then the mapping h∗ : X ∗ → R̄ defined by

h∗(x∗) := sup
x∈X
{〈x∗, x〉 − h(x)}

is called the Fenchel conjugate of h.
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The conjugate function generalizes the well-known inequality of Young.

Proposition A.14 (Young inequality). Let X be a Banach space and h : X → R̄. Then

〈x∗, x〉 ≤ h(x) + h∗(x∗) ∀x ∈ X , x∗ ∈ X ′

and equality occurs if and only if x∗ ∈ ∂h(x).

Corollary A.15. Let X be a Banach space and h : X → R̄ be convex, proper and lower
semicontinuous. Then x∗ ∈ ∂h(x) if and only if x ∈ ∂h∗(x∗).

Proposition A.16. Let X be a reflexive Banach space and h : X → R̄ be a mapping. Then
h∗∗ = h if and only if h is convex and lower semicontinuous.



APPENDIX B
FUNCTION SPACES

We will now take a look at function spaces. While the first two sections – dealing
with geometry properties and the construction of new spaces by real interpolation
– are valid for more general classes of spaces we deal with them having classical
function spaces in mind. Finally we introduce a special class of function spaces
(namely Besov spaces) in Section B.3. We will assume that the reader has knowledge
of these properties in Section 3.5 and from Chapter 4 onwards.

B.1 Geometry of Banach Spaces

The following collects some properties of the geometry of Banach spaces as far as they
touch the topic of this thesis. Important for us are the connection of smoothness and
convexity of power type to Bregman distances and the connection between duality
mappings and subgradients. All presented results can be found in standard textbooks,
e.g. [Haz90, Chap. 1 and 2] and [DGZ93, Chap. 4] if not mentioned otherwise.

B.1.1 Smoothness and convexity

Definition B.1. Let X be a Banach space. The function δX : (0, 2]→ [0, 1] defined by

δX (t) :=
1
2

inf
‖x | X ‖=‖h | X ‖=1
‖x−h | X ‖=t

(2− ‖x + h | X ‖)
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is called the modulus of convexity of X . If δX (t) > 0 for all t ∈ (0, 2], then X is said to
be uniformly convex. If for r > 1 there exists a constant cδ > 0 such that δ(t) ≥ cδtr,
then X is called r-convex (or convex of power type r). Further it is called strictly convex
if δX (2) = 1.

Definition B.2. Let X be a Banach space. The function ρX : [0, ∞)→ R defined by

ρX (t) :=
1
2

sup
‖x | X ‖=‖h | X ‖=1

(‖x + th | X ‖+ ‖x− th | X ‖ − 2)

is called the modulus of smoothness of X . If limt→0 ρ(t)/t = 0, then X is said to be
uniformly smooth. If for r > 1 there exists a constant cρ > 0 such that ρ(t) ≤ cρtr, then
X is called r-smooth (or smooth of power type r).

Example B.3. Let p ∈ (1, ∞), then both `p and Lp spaces are min{2, p}-smooth and
max{2, p}-convex.

Proposition B.4. Let X be a Banach space.
(a) X is uniformly smooth if and only if X ′ is uniformly convex.

(b) X is uniformly convex if and only if X ′ is uniformly smooth.

(c) If X is uniformly convex, then X is reflexive.

(d) X is r-convex if and only if X ′ is r′-smooth.

(e) Let X be r-convex, then r ≥ 2, likewise if X is r-smooth, then r ≤ 2.

One of the main reasons for our interest in the smoothness and convexity prop-
erties of spaces is that it allows to estimate the Bregman distance from below and
above.

Proposition B.5 (see [XR91]). Let X be a Banach space.
(a) If X is r-convex, then there exists a constant CX > 0 such that

∆ 1
r ‖· | X ‖r ( f1, f2) ≥

CX
r
‖ f1 − f2 | X ‖r.

(b) If X is r-smooth, then there exists a constant C′X > 0 such that

∆ 1
r ‖· | X ‖r ( f1, f2) ≤

C′X
r
‖ f1 − f2 | X ‖r.

For estimates from below and above when r is not the power of convexity or
smoothness respectively, see [Spr18, Cor. 4.5].
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B.1.2 Duality mappings
We now introduce duality mappings, which generalize the well known Riesz map in
Hilbert spaces:

Definition B.6. Let X be a Banach space.
(a) A function ϕ : [0, ∞)→ [0, ∞) that is continuous, strictly increasing with ϕ(0) =

0 and limt→∞ ϕ(t) = ∞ is called a gauge function.

(b) The duality mapping of gauge function ϕ is the mapping JX ,ϕ : X → 2X′ given by

JX ,ϕ(x) :=
{

x′ ∈ X ′ : 〈x′, x〉 =
∥∥x′

∣∣X ′∥∥‖x | X ‖, ∥∥x′
∣∣X ′∥∥ = ϕ(‖x | X ‖)

}
.

(c) A selection of the duality mapping JX ,ϕ is a mapping jX ,ϕ : X → X ′ with
jX ,ϕ(x) ∈ JX ,ϕ(x) for all x ∈ X .

If ϕ(t) = tq−1 for some q > 1 we will write jX ,q := jX ,ϕ and if q = 2, then
jX := jX ,2.

The duality mapping can be evaluated with the help of the subdifferential:

Theorem B.7. Let X be a Banach space, ϕ be a gauge function and define ψ(t) :=∫ t
0 ϕ(u)du. Then ψ is convex and

JX ,ϕ(x) = ∂ψ(‖x | X ‖) ∀x ∈ X .

Furthermore the following calculus rules hold true:

Proposition B.8. Let X be a Banach space and ϕ a gauge function, then
(a) JX ,ϕ(−x) = −JX ,ϕ(x),

(b) JX ,ϕ(λx) = ϕ(λ‖x | X ‖)
ϕ(‖x | X ‖) JX ,ϕ(x),

(c) x′ ∈ JX ,ϕ(x) if and only if x ∈ JX ′ ,ϕ−1(x′),

(d) if ϕ̃ is another gauge function, then ϕ̃(‖x | X ‖)JX ,ϕ(x) = ϕ(‖x | X ‖)JX ,ϕ̃(x).

The mapping properties of duality mappings are closely linked to the geometry of
the underlying space.

Proposition B.9. Let X be a Banach space and JX ,ϕ be a duality mapping.

(a) X is reflexive if and only if
⋃

x∈X JX ,ϕ(x) = X′.

(b) X is uniformly smooth if and only if JX ,ϕ is single valued.

(c) JX ,ϕ is monotone, that is

〈x′ − y′, x− y〉 ≥ 0 for all x, y ∈ X , x′ ∈ JX ,ϕ(x) and y′ ∈ JX ,ϕ(y).

If in addition X is strictly convex, then JX ,ϕ is strictly monotone (i.e. the inequality
above holds with “>” instead of “≥”) and hence injective.
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B.2 Real Interpolation

Given two Banach spaces X0 and X1 which are embedded into the same larger space,
one might ask if there exists some “intermediate” space between X0 and X1. One way
to construct such spaces is by real interpolation methods which we will present in the
following. The Besov spaces introduced below can be constructed in this way, and a
lot of properties of these spaces follow from general interpolation results.

There are several ways to define the real interpolation method we will use the
approach via the K-functional. For further possible constructions and information
about interpolation spaces, see e.g. [BL76] which is the main reference for this section.

Definition B.10 (compatible spaces). We say that a pair of Banach spaces (X0,X1) is
compatible if there exists a topological vector spaceH such that Xi ⊂ H for i = 0, 1.

Definition and Lemma B.11. Let (X0,X1) be a pair of compatible Banach spaces.
Then the sum Σ(X0,X1) and the intersection ∆(X0,X1) defined as

Σ(X0,X1) := {x ∈ H : ∃x0 ∈ X0, x1 ∈ X1 such that x = x0 + x1}
and ∆(X0,X1) := {x ∈ H : x ∈ X0 and x ∈ X1}

respectively are Banach spaces with the norms

‖x |Σ(X0,X1)‖ := inf
x=x0+x1

(
‖x0 | X0‖2 + ‖x1 | X1‖2

)1/2
,

and ‖x |∆(X0,X1)‖ := max{‖x | X0‖, ‖x | X1‖}.

We will now call every space X such that Σ(X0,X1) ⊂ X ⊂ ∆(X0,X1) with
continuous inclusions an intermediate space. To construct such spaces note that
for every t > 0 an equivalent norm on Σ(X0,X1) is given by infx=x0+x1(‖x0 | X0‖2 +

t2‖x1 | X1‖2)1/2; this serves as motivation for the following definition.

Definition B.12 (K-functional). Let (X0,X1) be a pair of compatible Banach spaces
and x ∈ Σ(X0,X1). Then the K-functional is defined as

K(t, x) := inf
x=x0+x1

(
‖x0 | X0‖2 + t2‖x1 | X1‖2

)1/2
.

One can check that the K-functional is a positive, increasing and concave function
in t > 0. To define the real interpolation spaces we will impose growth conditions on
K via the following functional

Φθ,q(g(t)) :=
(∫ ∞

0

∣∣∣t−θ g(t)
∣∣∣q dt

t

) 1
q

for θ ∈ (0, 1) and q ∈ [1, ∞].
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Definition and Lemma B.13 (real interpolation space (X0,X1)θ,q). Let (X0,X1) be a
pair of compatible Banach spaces, θ ∈ (0, 1) and q ∈ [1, ∞] then

(X0,X1)θ,q :=
{

x ∈ Σ(X0,X1) : Φθ,q(K(t, x)) < ∞
}

is a Banach space with the norm∥∥x
∣∣ (X0,X1)θ,q

∥∥ := Φθ,q(K(t, x)).

Real interpolation provides a set of useful inequalities:

Proposition B.14. Let (X0,X1) and (Y0,Y1) be two pairs of compatible Banach spaces,
θ ∈ (0, 1) and q ∈ [1, ∞].

(a) There exists a constant c > 0 such that for all x ∈ ∆(X0,X1)∥∥x
∣∣ (X0,X1)θ,q

∥∥ ≤ c‖x | X0‖1−θ‖x | X1‖θ .

(b) Let T : Σ(X0,X1)→ Σ(Y0,Y1) be a linear operator that restricts to a bounded operator
T : X0 → Y0 and T : X1 → Y1, then T : (X0,X1)θ,q → (Y0,Y1)θ,q is bounded and
there exists a constant c > 0 independent of T such that∥∥T

∣∣ (X0,X1)θ,q → (Y0,Y1)θ,q
∥∥ ≤ c‖T | X0 → Y0‖1−θ‖T | X1 → Y1‖θ .

Next we study the relation between different interpolation spaces.

Lemma B.15. Let (X0,X1) be a pair of compatible Banach spaces, then:
(a) (X0,X1)θ,q = (X1,X0)1−θ,q for all θ ∈ (0, 1) and q ∈ [1, ∞];

(b) (X0,X1)θ,q ⊂ (X0,X1)θ,q′ for 1 ≤ q ≤ q′ ≤ ∞ and θ ∈ (0, 1);

(c) if in addition X1 ⊂ X0, then (X0,X1)θ,q ⊂ (X0,X1)θ′ ,q for q ∈ [1, ∞] and 0 < θ′ <
θ < 1, further the embedding is compact if the embedding X1 ⊂ X0 is compact;

(d) (X0,X1)θ,q = ((X0,X1)θ0,q0 , (X0,X1)θ1,q1)η,q for q, q0, q1 ∈ [1, ∞] and η, θ, θ0, θ1 ∈
(0, 1) if θ = (1− η)θ0 + ηθ1.

Lastly, dual spaces of interpolation spaces are again interpolation spaces.

Lemma B.16. Let (X0,X1) be a pair of compatible Banach spaces, θ ∈ (0, 1) and q ∈ [1, ∞).
Assume that ∆(X0,X1) is dense in X0 and X1, then

(X0,X1)
′
θ,q = (X ′0,X ′1)θ,q′

where 1/q + 1/q′ = 1.
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B.3 Besov Spaces

We now introduce the scale of Besov spaces. As a general reference for these spaces
we recommend [Tri10, Tri92] where all properties stated here can be found if not
stated otherwise.

We assume that the reader is familiar with Lebesgue spaces Lp on manifoldsM.
We will only consider manifolds meeting the following properties:

Assumption B.17. Let M be a connected smooth Riemannian manifold which is
complete, has an injectivity radius of r > 0 and has a bounded geometry.

Here completeness means that all geodesics are infinitely extendable; the injectivity
radius refers to the size of the domains in which the exponential map is bijective; and
bounded geometry means that the determinant of the Riemannian metric is bounded
from below by a positive constant while all its derivatives are bounded from above.
Important examples of such manifolds include Rd as well as compact manifolds
without boundaries and finite products of manifolds of this type.

Then for p ∈ (1, ∞) and s ∈ R we can define the Sobolev space Hs
p as the

set of all distributions f for which (I − ∆)−s/2 f ∈ Lp(M) with norm ‖ f |Hs
p‖ =

‖(I − ∆)−s/2 f | Lp‖ where ∆ is the Laplace-Beltrami operator onM. Recall that for
k ∈ N0 we have f ∈ Hk

p if and only if ∂α f ∈ Lp for all multi-indices α ∈ Nd
0 with

|α| ≤ k. In the special case of p = 2 we will write Hs = Hs
2.

We now define the Besov space of smoothness s, integrability p ∈ (1, ∞) with fine
index q ∈ [1, ∞] as

Bs
p,q(M) :=

(
Hs0

p , Hs1
p
)

θ,q (B.1)

where s0 6= s1 ∈ R are such that s = (1− θ)s0 + θs1 (see [Tri92, Chap. 7] for further
discussions). Note that a lot of properties of Besov spaces already follow from this
definition by interpolation.

Lemma B.18. The following continuous embeddings hold true.
(a) Bs

p,q1
⊂ Bs

p,q2
for all s ∈ R, p ∈ [1, ∞] and 1 ≤ q1 ≤ q2 ≤ ∞.

(b) Bs
p,∞ ⊂ Bs−ε

p,1 for all s ∈ R, p ∈ [1, ∞] and ε > 0.

(c) B0
p,min{p,2} ⊂ Lp ⊂ B0

p,max{p,2} for all p ∈ (1, ∞).

(d) Let s1 ≥ s2, p1 ≤ p2 such that s1 − d
p1
≥ s2 − d

p2
, then Bs1

p1,q ⊂ Bs2
p2,q.

We would like to point out that for p = q = 2 we get Bs
2,2 = Hs.

As this generality in the definition of Besov spaces is only needed in Chapter 3,
we will now go into further details for Besov spaces defined on Rd and Td.
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B.3.1 Besov spaces on the Euclidean space

We are interested in finding more explicit equivalent norms on Bs
p,q(R

d). The most
common one is via a smooth dyadic resolution of unity in the Fourier domain. For
our purposes it is, however, easier if the resolution of unity is not smooth but given
by characteristic functions.

Recall that for a function f ∈ S(Rd) in the Schwartz space the Fourier transform
F is defined as

(F f )(ξ) :=
1
√

2π
d

∫
Rd

f (x)e−ix·ξ dx (B.2)

and that F : S(Rd) → S(Rd) is a linear isomorphism. Hence we can extended the
definition to tempered distribution f ∈ S′(Rd) by

f̂ = F f if and only if 〈 f̂ , g〉 = 〈 f ,F ∗g〉 for all g ∈ S(Rd).

We now construct a dyadic resolution of unity in the Fourier domain. Define for
k ∈ N0

ϕk(ξ) =

{
1 ξ ∈ Γk

0 ξ 6∈ Γk
, (B.3a)

where the sets Γk for k ∈ N0 are given by

Γ0 =

{
z ∈ Rd : max

i=1,...,d
|zi| ≤

1
2

}
and Γk :=

{
z ∈ Rd : max

i=1,...,d
|zi| ≤ 2k

}
\
{

z ∈ Rd : max
i=1,...,d

|zi| ≤ 2k−1
}

for k ∈ N;

(B.3b)
then we have for all ξ ∈ Rd that ∑k∈N0

ϕk(ξ) = 1. For p ∈ (1, ∞) we then have that
any tempered distribution f fulfills f ∈ Bs

p,q if and only if the following norm is finite:

∥∥∥ f
∣∣∣ Bs

p,q

∥∥∥
F

:=

[
∑

k∈N0

2ksq
(∫

Rd
|(F ∗ϕkF f )(x)|p dx

) q
p
] 1

q

(B.3c)

(with the usual modification if q = ∞). Thus (B.3c) provides an equivalent norm in
this case, see [Tri10, Sec. 2.5].

As Besov spaces are defined by real interpolation it is immediately clear that real
interpolation of two Besov spaces with the same p yields again a Besov space. One
can even interpolate Besov spaces with different p and again obtain a Besov space.

Lemma B.19 (see [Tri78, Sec. 2.4.1]). Let p0, p1, q1, q2 ∈ (1, ∞) such that p0 6= p1,
s0, s1 ∈ R and θ ∈ (0, 1). Let s = (1 − θ)s0 + θs1, 1/p = (1 − θ)/q0 + θ/p1 and
1/p = (1− θ)/q0 + θ/q1, then (Bs0

p0,q0 , Bs1
p1,q1)θ,p = Bs

p,p.
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B.3.1.1 Wavelet norms

We now introduce a second equivalent norm on Bs
p,q(R

d) as in [Tri08, Sec. 1.2]. Con-
sider a system of functions on Rd of the form

(φl
j,m)(j,l,m)∈I , I := {j ∈ N0; l = 1, . . . , Lj; m ∈ Zd}, Lj :=

{
1, j = 0,
2d − 1, else.

Assume that for a σ ∈ N this system fulfills

• φl
j,m(x) =

{
φ0(x−m) if j = 0, l = 1, m ∈ Zd,

2j d
2 φl(2j−1x−m) if j ∈ N, 1 ≤ l ≤ 2d − 1, m ∈ Zd ;

• supp(φ0) ⊂
{

x ∈ Rd : |x| ≤ 1
2

}
and supp(φl) ⊂

{
x ∈ Rd : |x| ≤ 1

2

}
;

• φ0, φl ∈ Cσ(Rd,R) for l = 1, . . . , 2d − 1;

•
∫
Rd

xαφl(x)dx = 0, α ∈ Nd
0, |α| ≤ σ;

• (φl
j,m)(j,m,l)∈I forms an orthonormal basis of L2(Rd).

(B.4)

We will call a system fulfilling these equations a wavelet system; an example is given
by the Daubechies wavelet bases.

For a fixed system (φl
j,m)(j,l,m)∈I meeting (B.4) denote by

W f := λ := (λl
j,m)(j,l,m)∈I where λl

j,m := 〈 f , φl
j,m〉 (B.5a)

the corresponding wavelet transform which is defined for sufficiently smooth func-
tions f . Then the following holds true:

f =W∗λ = ∑
(j,m,l)∈I

λl
j,mφl

j,m is a unique decomposition of f (B.5b)

and if σ > |s|, then

∥∥∥ f
∣∣∣ Bs

p,q

∥∥∥
W

:=

 ∑
j∈N0

Lj

∑
l=1

2jsq2jd( 1
2−

1
p )q

 ∑
m∈Pd

j

|λl
j,m|p


q
p


1
q

(B.5c)

is an equivalent norm on Bs
p,q for p, q ∈ [1, ∞] with the usual modification if p = ∞ or

q = ∞. The convergence in (B.5b) is in Bs̃
p,q for any s̃ < s and in Bs

p,q if p, q 6= ∞.
Concerning the properties of Banach spaces discussed in Section B.1.1 the follow-

ing is known if the spaces are equipped with the wavelet norm:
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Proposition B.20 ([Kaz13, Sec. 4]). Let 1 < p, q < ∞. Then Besov spaces Bs
p,q equipped

with the wavelet norm are min{2, p, q}-smooth and max{2, p, q}-convex.

Furthermore, the constant C∆ of Assumption 2.22 in the form of Example 2.23(b)
has been calculated in [Kaz13] for the case p = q. One obtains CBs

p,p = C`p =

min{p− 1, 22−p} from known results on `p spaces of [XR91]. We would like to show
that this also extends to the spaces Bs

p,2 for p ∈ (1, 2], which are favored by our
theoretical results in Chapter 4. Note that the knowledge of this constant is of interest
as it plays a role in the parameter choice of Algorithm 1.11.

Lemma B.21. Let 1 < p ≤ 2. Then for X = Bs
p,2 with norm ‖· | Bs

p,2‖W the constant CX
in Example 2.23(b) can be chosen as CBs

p,2
= p− 1.

Proof. As shown in [Kaz13, Sec. 3] it suffices to examine `q(`p) spaces as in Section
4.2.1.

Let λ, λ̃ ∈ `2(`p). Then fixing the index j we obtain with the inequalities in [XR91]
that the inequality

1
2

∥∥λ̃j,·
∣∣ `p∥∥2 − 1

2

∥∥λj,·
∣∣ `p∥∥2 − 〈µj,·, λ̃j,· − λj,·〉`p′×`p ≥

p− 1
2

∥∥λ̃j,· − λj,·
∣∣ `p∥∥2

holds true for all j ∈ Nwith µj,· ∈ ∂ 1
2‖λj,· | `p‖2, that is

µj,k = ‖λj,· | `p‖2−p λj,k

|λj,k|2−p k ∈ N.

Now summing up these inequalities over j ∈ Nwe get that

1
2

∥∥∥λ̃
∣∣∣ `2(`p)

∥∥∥2
− 1

2

∥∥∥λ
∣∣∣ `2(`p)

∥∥∥2
− 〈µ, λ̃− λ〉

`2(`p′ )×`2(`p)
≥ p− 1

2

∥∥∥λ̃− λ
∣∣∣ `2(`p)

∥∥∥2

where µ = (µj,k)j,k∈N is given by the formula above. It remains to notice that µ

defined in this way fulfills µ ∈ ∂ 1
2‖λ | `2(`p)‖2 and hence the left hand side equals

∆ 1
2 ‖· | `2(`p)‖2(λ̃, λ).

B.3.1.2 Smoothness of products and compositions

For smooth functions the product and chain rule provide rules to calculate the deriva-
tive of products and compositions respectively. Here we present some extensions of
these results to Sobolev and Besov spaces including fractional and negative deriva-
tives. These results will be an important tool throughout Chapter 6.



202 B. Function Spaces

Proposition B.22 (see [Joh95, Thm. 6.1]). Let p0, p1 ∈ (0, ∞) and s0 ≥ s1 such that
s0 + s1 ≥ d max{0, 1

p0
+ 1

p1
− 1}. Then there exists a constant c > 0 depending on pi, si

such that for all f ∈ Hs0
p0(R

d) and g ∈ Hs1
p1(R

d),∥∥∥ f g
∣∣∣Hs1

p (Rd)
∥∥∥ ≤ c

∥∥∥ f
∣∣∣Hs0

p0(R
d)
∥∥∥∥∥∥g

∣∣∣Hs1
p1(R

d)
∥∥∥

for all q0 ≤ p < q1 where q0, q1 are defined by the equations:

1
q0

=
1
p0

+
1
p1

,

d
q1

=
d
p1

+

(
d
p0
− s0

)
+

+

(
s1 −

d
p1
−
(

s0 −
d
p0

)
+

)
+

.
(B.6)

Further the value p = q1 can be included if
(a) either Hs0

p0 ↪→ L∞ and one of the following:

(i) s1 − d
p1

> s0 − d
p0

,

(ii) or s1 − d
p1

< s0 − d
p0

,

(iii) or s1 − d
p1

= s0 − d
p0

and Hs1
p1 ↪→ L∞;

(b) or if s0 < d
p0

and in addition

(i) s1 > d
p1

,

(ii) or s1 < d
p1

.

Proposition B.23 (see [Joh95, Thm. 6.4]). Let p0, p1 ∈ (0, ∞) such that 1 ≥ 1
p0

+ 1
p1

and
s0 > 0 and set s1 = −s0. Then there exists a constant c > 0 depending on pi, si such that for
all f ∈ Hs0

p0(R
d) and g ∈ Hs1

p1(R
d),∥∥∥ f g

∣∣∣Hs1
p (Rd)

∥∥∥ ≤ c
∥∥∥ f
∣∣∣Hs0

p0(R
d)
∥∥∥∥∥∥g

∣∣∣Hs1
p1(R

d)
∥∥∥

for all q0 ≤ p < q1 where q0, q1 are defined as in (B.6). Further p = q1 can be included if

(a) either s0 > d
p0

,

(b) or s0 < d
p0

and 1 > 1
p0

+ 1
p1

.

Proposition B.24 (see [BS11, Thm. 1]). Let f ∈ H1
p(R

d) for p ∈ [1, ∞] and g : R → R

measurable such that g(0) = 0 and g′ ∈ L∞, then∥∥∥g ◦ f
∣∣∣H1

p(R
d)
∥∥∥ ≤ ∥∥g′

∣∣ L∞∥∥∥∥∥ f
∣∣∣H1

p(R
d)
∥∥∥.
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Proposition B.25 (see [BMS14, Thm. 4]). Let p ∈ (1, ∞) and s > 1 + 1/p. Then for
functions f ∈ Bs

p,p(R
d) such that ∇ f ∈ L∞ and g : R → R such that g(0) = 0 and

g ∈ Bs
p,p(R) there exists a constant c > 0 depending on g only, such that∥∥∥g ◦ f

∣∣∣ Bs
p,p(R

d)
∥∥∥ ≤ c

∥∥∥ f
∣∣∣ Bs

p,p(R
d)
∥∥∥(1 + ‖∇ f | L∞‖)s−1−1/p.

B.3.2 Periodic Besov spaces

We now look at the equivalence of the two norms defined on Bs
p,q(R

d) on Bs
p,q(T

d).
They can be obtained by replacing the Fourier and wavelet transform via their coun-
terparts on Td. Hence a norm on Bs

p,q(T
d) is defined if we replace (B.2) in (B.3c) with

the Fourier series transform

F f := f̂ :=
(

f̂ (z)
)

z∈Zd
where f̂ (z) :=

∫
Td

f (x)e−2πix·z dx.

For the periodic version of the wavelet norm, denote by (φ
l,per
j,m ) the periodization

of φl
j,m fulfilling (B.4), that is

φ
l,per
j,m (x) = ∑

z∈Zd

φl
j,m(x− z), x ∈ Td.

Then (φ
l,per
j,m )(j,l,m)∈I for I = {j ∈ N0; l = 1, . . . , Lj; m ∈ Pd

j } with Pd
j = {z ∈ Zd : 0 ≤

zi < 2j} is an orthonormal basis for L2(Td) and denote by

W f := λ := (λl
j,m)(j,l,m)∈I where λl

j,m :=
∫
Td

f (x)φl,per
j,m (x)dx

the wavelet transform defined for smooth enough f , then (B.5) remains valid.
Note that all the properties of Besov spaces on Rd carry over to Td; as a main

difference we would like to point out that the embeddings in Lemma B.18(b) are
compact, likewise the embeddings (d) are compact if s1 > s2.
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EsI n inverse problems one wants to fi nd some parameter of interest which is not directly 

observable by indirect measurement. These measurements are usually noisy while 
the mapping of measurement to parameter is typically illposed (that is unstable). 
Therefore one applies regularization techniques that balance these two factors to fi nd 
a stable approximation of the sought for parameter. However, in order to bound the 
reconstruction error, one needs additional information on the true parameter, which is 
nowadays typically formulated in terms of variational source conditions. In this thesis, 
we develop a general strategy to verify these conditions based on smoothness of the 
true parameter and the illposedness of the problem; the latter will be characterized 
by exploiting structural similarities to stability estimates. Following this, we apply our 
strategy to verify variational source conditions for parameter identifi cation problems, 
inverse scattering and electrical impedance tomography.
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