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In phase retrieval problems that occur in imaging by coherent x-ray diffraction, 
one tries to reconstruct information about a sample of interest from possibly 

noisy intensity measurements of the wave fi eld traversing the sample. The math-
ematical formulation of these problems bases on some assumptions. Usually one 
of them is that the x-ray wave fi eld is generated by a point source. In order to 
address this very idealized assumption, it is common to perform a data prepro-
cessing step, the so-called empty beam correction. Within this work, we study the 
validity of this approach by presenting a quantitative error estimate. Moreover, 
in order to solve these phase retrieval problems, we want to incorporate a priori 
knowledge about the structure of the noise and the solution into the reconstruction 
process. For this reason, the application of a problem adapted iteratively regular-
ized Newton-type method becomes particularly attractive. This method includes 
the solution of a convex minimization problem in each iteration step. We present 
a method for solving general optimization problems of this form. Our method is a 
generalization of a commonly used algorithm which makes it effi ciently applicable 
to a wide class of problems. We also proof convergence results and show the per-
formance of our method by numerical examples.
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Introduction

Within this work, we consider two-dimensional phase retrieval problems that occur in
coherent x-ray optics. The fact that x-ray microscopy allows nanoscale resolution makes
this imaging technique interesting for visualizing cellular and subcellular structures of
biological samples. Often these samples consist of soft tissues with low x-ray absorption
which means that the imaginary part of the refractive index corresponding to the object
almost vanishes. However, the interaction of x-rays with matter consists not only of ab-
sorption: An x-ray wave field passing through a specimen is also modified by phase shifts.
So, the detected wave field contains information which allows to reconstruct an image of
such a specimen based on the real part of the refractive index. This reconstruction task is
complicated by the fact that only the amplitude of the wave field can be measured while
the phase information gets lost.

Using the well-established Fraunhofer or Fresnel approximation (see Chapter 1) we ob-
tain a nonlinear operator T that describes the dependence between the unknown sample
information φ and the data y (the recorded wave field amplitude). Thus, the phase retrieval
problems under consideration can be formulated as an operator equation

Tφ = y.

It describes a nonlinear inverse ill-posed problem. In practice, instead of the exact data y
one normally observes only noisy data yδ. These intensity data have a special structure:
They are Poisson distributed with the exact data y as mean (cf. [82]). Therefore we call
them Poisson data. As analyzed in [47,82], an iteratively regularized Newton-type method
(IRNM) with Kullback-Leibler-type data fidelity functional is particular suitable in order
to solve such kind of problems. This is because the method not only takes into account
the special data and noise structure but also exhibits fast convergence. It is an adap-
tion of the well-established iteratively regularized Gauß-Newton method and includes the
minimization of a convex Tikhonov-type functional in each iteration step (cf. Figure 1).
Thus, the application of a convex optimization method becomes necessary. Due to the
Kullback-Leibler data fidelity term, so-called proximal-type algorithms that rely on the
so-called resolvent of the data fidelity functional are efficient methods for this purpose.
These methods are applicable to a very general class of problems. This gives us great
flexibility in the choice of the penalty term which models conditions on the solution. A
commonly used representative of this class of algorithms is the first-order primal-dual
algorithm (CP ) of Chambolle and Pock (cf. Section 4.1 or [21]). Especially the fact that,
besides using the resolvents of data fidelity and penalty term, the method only involves the
evaluation of the derivative of the forward operator T and its adjoint, makes it attractive
for our minimization task.

In addition to adapting IRNM in terms of the data to the given phase retrieval problems,
we also want to incorporate a priori knowledge about the solution’s structure into the
reconstruction process. For example, in order to model “blocky” structured solutions, we
would like to consider φ to be an element of a Sobolev space that is not a Hilbert but
a Banach space and choose a penalty term that is based on the corresponding Sobolev
space norm. However, the method CP is defined for a Hilbert space setting. Of course,
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outer method:
IRNM

inner method:
Minimize Tikhonov-type functional

with Kullback-Leibler data fidelity term

Figure 1: Solving phase retrieval problems in x-ray optics, given by an operator equation Tφ = y,
by the IRNM with Kullback-Leibler data fidelity functional.

the existence of a norm-defining inner product which distinguishes a Hilbert space from
a Banach space gives the former space nicer properties, such as the polarization identity,
than the latter. On the other hand, the restriction to a Hilbert space setting makes a model
less adaptable to certain requirements and situations, as the considered phase retrieval
case illustrates. Therefore, we propose a generalization (CP-BS ) of CP to a Banach
space setting. Under certain conditions, we prove convergence results including also rates
of convergence.

This generalization makes the algorithm not only efficiently applicable to the minimiza-
tion problems we derive from the phase retrieval problems but also allows the solution
of a wider class of relevant problems as we will see in Chapter 4. In fact, a problem of
the form which is treated by CP-BS arises in many other applications. In order to test
the performance of CP-BS , we consider problems that can also efficiently be solved by
the original algorithm CP in Hilbert spaces, however a Banach space setting would be
more appropriate. For example, it is common to model sparsity constraints with help
of L1-penalization in the Hilbert space X = L2 or X = L2(Ω) for some Ω ⊂ R2 (cf.
soft thresholding algorithms). Here it would be much more natural to pick X = Lr or
X = Lr(Ω) with r ≈ 1. This issue will be addressed in numerical examples where we
compare CP with a Hilbert space setting to CP-BS with a more problem adapted Banach
space setting.

Solving phase retrieval problems in x-ray imaging (under the assumption that the wave
field is generated by a perfect point source) is a topic of certain interest in the literature:
The commonly used Gerchberg-Saxton-Fienup-type algorithms (cf. [30, 32, 56]) usually
disregard the special data structure. On the other hand, they are quite flexible with re-
spect to modeling constraints on the solution φ. The fact that many of these methods can
also be interpreted as extensions of convex optimization algorithms (cf. [9, 53]) creates a
connection to the algorithm CP considered here. By using the IRNM with special data
fidelity functional, our approach relies on a well-established regularized technique for
solving nonlinear inverse problems. Also other authors suggest (variants of) typical reg-
ularization methods from inverse problems for the solution of phase retrieval problems:
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See e.g. [29, 40] for nonlinear Tikhonov-type regularization, [27] for a Landweber-type
method, and, as mentioned above, [47, 82] for iteratively regularized Newton-type meth-
ods. Moreover, [70] which provides a nice overview of regularization methods in Banach
spaces lists a phase retrieval problem as application (but again without considering the
special data structure). In particular, here it is motivated that for many applications, such
as this phase retrieval problem, a Banach space setting is more appropriate than a Hilbert
space setting. In general, the application of linear Tikhonov-type regularization or IRNMs
to linear respectively nonlinear inverse problems T x = yδ in Banach spaces includes the
solution of a convex minimization problem in Banach spaces. Now, in particular if the
corresponding Tikhonov-type functional which has to be minimized is nonsmooth the
proposed generalization CP-BS is an attractive method for this purpose. We also refer
to [14, 55, 62, 78, 80] for other generalizations and extensions of CP .

This work tackles also another aspect of phase retrieval problems in coherent x-ray imag-
ing: The commonly used empty beam correction which is also referred to as product
approximation in the detector plane. It is a preprocessing step with the aim of making
the idealized assumption that the coherent x-ray field is generated by a point source ap-
plicable. In particular in near field imaging, deviations from this idealized model lead to
intensity measurements that are strongly influenced by the empty beam field. The idea
behind the empty beam correction is to “factor out” this dependence on the empty beam
field. To be more precise, this data correction step consists in dividing the measured data
yδ by the intensities of the empty beam field which one obtains by a further measure-
ment. For a perfect point source this approximation is exact as shown by Giewekemeyer
et al., [33, 34]. We study the validity of this simple but also rather crude technique for
extended source sizes: We present a quantitative error estimate that allows to determine
settings where the empty beam correction is justified, but also shows its limits. In the case
that the empty beam correction is not sufficiently accurate, one may use reconstruction
methods for the empty beam. See e.g. [36, 64] for recently proposed methods.

This thesis is organized as follows. We introduce and formulate the phase retrieval prob-
lems in coherent x-ray imaging in Chapter 1. In order to give a further example for
inverse ill-posed problems in Banach spaces, we also consider another class of phase re-
trieval problems. They occur in inverse medium scattering (see Section 1.2). In Chapter 2
we study the validity of the empty correction. The proposed error estimate is furthermore
illustrated and verified by numerical examples. A general motivation of Tikhonov-type
regularization and IRNMs is given in Chapter 3 where we additionally specify the convex
minimization problems that typically occur in this context (denoted as (P)). With regard
to these optimization problems (P), we also give definitions and results of convex analysis
as well as optimization theory which will be required for the generalization of the Cham-
bolle and Pock algorithm CP to Banach spaces. Then we introduce the algorithm CP in
Chapter 4 and present a generalization CP-BS to Banach spaces. In particular, we state
three different special versions of CP-BS for which we prove convergence results. We
close this chapter with considering the generalized resolvents that are included in CP-BS .
In Chapter 5 we test the performance of CP-BS by numerical examples. In particular,
we use the algorithm as inner solver of the IRNM in order to solve the phase retrieval
problems defined in Chapter 1. This thesis closes with a summary of our main results.





1 Phase retrieval problems in x-ray physics
and inverse medium scattering

In this section, we introduce two different kinds of phase retrieval problems. The first
occurs in imaging by coherent x-ray diffraction and is the underlying application of this
work. The second one is a time-harmonic inverse scattering problem for either elec-
tromagnetic or acoustic waves. Both problems have in common that by measurements
of electric or acoustic wave fields which pass through an object or an inhomogeneous
medium of interest we want to reconstruct information on the refractive index of the ob-
ject. The term ’phase retrieval’ refers to the fact that only the amplitude and not the phase
of the field can be measured. In both cases we obtain nonlinear inverse problems where a
Banach space setting is more appropriate than a Hilbert space setting.

1.1 Phase retrieval in coherent x-ray imaging

The basic setup in this imaging technique is as follows: A sample of interest is illuminated
by a coherent x-ray (quasi) point source. For the analysis, the optical axis in direction of
the beam is identified with the x3-axis, where the sample of thickness τ lies in between the
object plane P0 B

{
x ∈ R3 | x3 = 0

}
and the plane P−τ B

{
x B (x, x3) ∈ R3 | x3 = −τ

}
both

orthogonal to the beam (see Figure 1.1). The detectors, which are located within a plane
PΓ parallel to object plane P0 at a distance Γ > 0, measure only the intensity |u(·,Γ)|2

of the electric field u : R3 → C, while the phase information gets lost. From these
measurements we want to retrieve information on the refractive index of the sample. This
unknown information will be described by a complex function φ : D(φ) ⊆ P0 → C.
For the aim of reconstructing φ we define the Fresnel propagator that approximates the
electric field in the detector plane PΓ B

{
x = (x, x3) ∈ R3 | x3 = Γ

}
for given boundary

values u0 = u(·, 0). Based on this mapping we derive a nonlinear operator equation of the
form

Tφ = |u (·,Γ)|2 ,

which describes our problem as a nonlinear inverse ill-posed problem. For a detailed
theory of x-ray diffraction imaging we refer the reader to [7,33,60]. The necessary basics
of Fourier analysis and distribution theory are given in the appendix.

1.1.1 Fresnel and projection approximations

Let us consider the setting shown in Figure 1.1. As we assume the upper half space
H+ B {x ∈ R3 | x3 > 0} to be vacuum, within this volume the cartesian components of the
electric field u : R3 → C satisfy the Helmholtz equation

∆u + κ2u = 0 in H+ B {x ∈ R3 : x3 > 0}, (1.1a)

where ∆ is the Laplacian defined by ∆u = ∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3
and κ = 2π

λ
> 0 denotes the

wavenumber, anti proportional to the wavelength λ. Next, we will derive an operator
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Figure 1.1: Setting of the phase retrieval problem in x-ray diffraction imaging. A spherical-like
wave-field generated by a (quasi) point source in the lower half space H− B

{
x ∈ R3 | x3 < 0

}
traverses a sample of interest at the object plane P0 B

{
x ∈ R3 | x3 = 0

}
. The resulting distribu-

tion is indicated by the wavy lines. At a distance Γ > 0 from the sample, detectors measure the
intensity of the diffracted field.

which propagates the field u0 B u(·, 0) that exits the sample to the detector plane PΓ. This
means, in the plane PΓ we will give an explicit form for the solution of the Helmholtz
equation (1.1a) that satisfies the boundary condition

u(x′, 0) = u0(x′) x′ ∈ R2 . (1.1b)

In order to ensure the uniqueness of the solution, we characterize the field as an outgoing
wave by assuming it to obey a radiation condition in H+ as it is defined in [22].

In an arbitrary plane PΓ ⊆ H
+ we rewrite the (outgoing) solution u of (1.1a) - (1.1b)

as u (x′,Γ) = F −1F u|PΓ
(x′). Then, using the Fourier derivative theorem (cf. Equa-

tion (A.1))  ∂2

∂x2
1

+
∂2

∂x2
2

F −1w (ξ′) = −F −1
(
|ξ′|2w(ξ′)

)
ξ′ ∈ R2, w ∈ L2(R2)

and the bijectivity of F −1 : L2(R2) → L2(R2), we deduce that the Fourier transform of u
fulfills the following differential equation:

0 =

(
−|ξ′|2 +

∂2

∂2x3
+ κ2

)
(F u)

(
ξ′,Γ

)
∀
(
ξ′,Γ

)
∈ PΓ.

Thus, F u is of the form

F u
(
ξ′, x3

)
= eix3

√
κ2−|ξ′ |2 a(ξ′) + e−ix3

√
κ2−|ξ′ |2 b(ξ′)

(
ξ′, x3

)
∈ H+,

for some complex functions a, b : H+ → C that are independent of x3. As the second
summand is, in contrast to our assumption, “downgoing” for |ξ′| < |κ|, we set b(x) = 0.
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Then the boundary condition F u(·, 0) = F u0 leads to F u (ξ′, x3) = eix3

√
κ2−|ξ′ |2F u0. Now

it is easy to see that

u(x′, x3) = F −1eix3

√
κ2−|ξ′ |2F u0 (x′),

(
x′, x3

)
∈ H+

is indeed the outgoing solution of (1.1a) - (1.1b). This formula gives an explicit form to
the free space propagation in vacuum.

We further assume the field to be paraxial such that |ξ′| � κ for all ξ′ for which |F u0(ξ′)|
is not negligible (cf. [60]). Then, we can apply the Taylor approximation√

κ2 − |ξ′|2 ≈ κ −
|ξ′|2

2k

to the free space propagation which yields its well-known Fresnel approximation (also
known as paraxial approximation):

u|PΓ
≈ eiκΓF −1

(
exp

(
−i

Γ

2κ
|ξ′|2

)
(F u0)

)
=: DΓu0, Γ > 0. (1.2)

Let us rewrite ξ′ 7→ exp
(
−i Γ

2κ |ξ
′|2

)
as a chirp function χ f with parameter f = − Γ

κ
∈ R:

χ f : R2 → R, χ f (x′) B ei f
2 |x
′ |2 .

As we have
∣∣∣χ f (ξ′)

∣∣∣ = 1 for any ξ′ ∈ R2, this function is bounded and the operator DΓ

maps L2(R2) to L2(R2). The following lemma shows that DΓ : φ 7→ eiκΓF −1
(
χ− Γ

κ
F u0

)
defines also a continuous mapping from S

(
R2

)
into S

(
R2

)
.

Lemma 1.1.1. For any parameter f ∈ R the chirp function χ f ∈ C
∞ defines a multiplier

on S
(
R2

)
, i.e. χ f φ = χ f • φ ∈ S

(
R2

)
for any φ ∈ S

(
R2

)
. Moreover, the mapping

S
(
R2

)
→ S

(
R2

)
, φ 7→ χ f φ

in continuous.

Proof. First of all, note that for any parameter f ∈ R and any multi-index γ ∈ N2
0 there

exist some constants Cα,γ > 0 and mγ > 0 such that∣∣∣Dγχ f (x′)
∣∣∣ ≤ Cα,γ

(
1 + |x′|

)mγ , (1.3)

i.e. Dγχ f has polynomial growth. Let φ be in S
(
R2

)
. Then the definition of S

(
R2

)
as

well as the inequality |x′α| ≤ |x′|α1+α2 yields

sup
x′∈R2

∣∣∣x′αDγχ f (x′) Dβ−γφ(x′)
∣∣∣ ≤ Cα,γ sup

x′∈R2

∣∣∣x′∣∣∣α1+α2 (
1 + |x′|

)mγ
∣∣∣Dβ−γφ(x′)

∣∣∣
≤ Cα,γ

mγ∑
j=0

mγ!
j!(mγ − j)!

sup
x′∈R2
|x′| j+α1+α2

∣∣∣Dβ−γφ(x′)
∣∣∣ < ∞
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for all α, β, γ ∈ N2
0. Here we used that for any even sum α1 + α2 ∈ N0

sup
x′∈R2
|x′|α1+α2

∣∣∣Dβ−γφ(x′)
∣∣∣ = sup

x′∈R2

∣∣∣∣∣(x2
1 + x2

2

) α1+α2
2 Dβ−γφ(x′)

∣∣∣∣∣ < ∞
holds true. This last fact also shows the equivalent characterization

S
(
R2

)
=

{
φ ∈ C∞

∣∣∣∣∣∣ sup
x′∈R2
|x′|α1+α2 |Dβφ| < ∞ for all α, β ∈ N2

0

}
.

Now the general Leibniz rule

Dβχ f φ =
∑

‖γ‖l1≤‖β‖l1

β!
γ!(β − γ)!

Dγχ f Dβ−γφ where γ! B γ1!γ2!

implies ‖χ f φ‖α,β < ∞ for all α, β ∈ N2
0. This proves the first assertion. The second

one follows analogously: Let (φn)n∈N be a sequence in S
(
R2

)
that converges to some

φ ∈ S
(
R2

)
as n → ∞, i.e. ‖φn − φ‖α,β → 0 as n → ∞ for all α, β ∈ N2

0. Then we can use
the same estimates as above to show that ‖χ f φn−χ f φ‖α,β → 0 as n→ ∞ for all α, β ∈ N2

0
which completes the proof. �

Remark 1.1.2. Note that the last proof not only applies for chirp functions but for any
function ϕ ∈ C∞ that satisfies Equation (1.3) for all γ ∈ N2

0. In fact, it is well-known that
the class of continuous multipliers on S

(
R2

)
consists of all functions ϕ ∈ C∞ such that

Dγϕ has polynomial growth for all γ ∈ N2
0 (see e.g [31, Definition 8.4.1]).

So, the last lemma as well as the continuity of the Fourier transformsF : S
(
R2

)
→ S

(
R2

)
and F −1 ensure that DΓ : S

(
R2

)
→ S

(
R2

)
is continuous as well . Then by replacing χ f ,

with f = − Γ
κ
, by its distribution Tχ f : û 7→

∫
R2 χ f (x′) û(x′) dx′ (cf. A.2) we can apply

Fouriers convolution formula (A.3) to (1.2). For this purpose the Fourier transform of
Tχ f , f ∈ R\ {0} is given by the next lemma, while the well-established case f = 0, i.e.
χ f = 1, is studied in Example A.1.2.

Lemma 1.1.3. For any parameter f ∈ R\ {0} the Fourier transform of Tχ f corresponds
to the L∞-function i

f χ− 1
f
. Thus, we write

F χ f =
i
f
χ− 1

f
.

Proof. Let us consider the derivative D F Tχ f (φ) = Tχ f (FD φ), φ ∈ S
(
R2

)
. By using

(A.1) and substituting i ξ′ χ f (ξ′) = 1
f D χ f (ξ′) it can be rewritten as

D F Tχ f (φ) = iTχ f (ξ
′F φ) = i

∫
R2
ξ′ χ f (ξ′) (F φ)(ξ′) dξ′ =

1
f

∫
R2

(
D χ f

)
(ξ′) (F φ)(ξ′) dξ′.
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Now, since χ f (ξ′)F φ(ξ′)→ 0 as |ξ′| → ∞, partial integration leads to

D F Tχ f (φ) = −
i
f

∫
R2
χ f (ξ′) ξ′(F φ)(ξ′) dξ′ = −

i
f
ξ′F Tχ f (φ).

Thus, F Tχ f is a (weak) solution of the differential equation

D T +
i
f
ξ′T = 0.

We rewrite F Tχ f as the product of i
f χ− 1

f
∈ C∞(R2) and some tempered distribution

T ∈ S ′(R2). Then, since i
f χ− 1

f
∈ C∞(R2) solves the classical differential equation

D ψ(ξ′) +
i
f
ξ′ψ(ξ′) = 0, ψ ∈ C1(R2), ξ′ ∈ R2,

we conclude (by applying the product rule) that D T vanishes on S (R2). Hence, F Tχ f is
of the form Tψ for ψ = a i

f χ− 1
f

and some constant a ∈ C. It is well-known that∫
R

cos
(

f
2

t2
)

dt =

√
π√
f
,

∫
R

sin
(

f
2

t2
)

dt =

√
π√
f
,

such that the boundary condition

ψ(0) = F χ f (0) =
1

2π

∫
R2

ei f
2 |x
′ |2 dx′ =

1
2π

(∫
R

cos
(

f
2

t2
)

dt + i
∫
R

sin
(

f
2

t2
)

dt
)2

=
i
f

uniquely determines ψ = i
f χ− 1

f
. �

Now, applying the formula

F −1(Tχ− f F u0) =
1

2π

(
F −1Tχ− f ∗ u0

)
=
−i

2π f

(
Tχ 1

f
∗ u0

)
, u0 ∈ S

(
R2

)
to (1.2) leads to the convolution representation of DΓ

DΓ u0 (x′) B
−iκ
2πΓ

eiκΓ
∫
R2
χ κ

Γ
(x′ − y′) u0(y′) dy′ . (1.4)

By the extension of this equation to L2(R2) we again obtain an operator mapping from
L2(R2) to L2(R2). From expanding the square |x′ − y′|2 we derive the identity

χ κ
Γ
(x′ − y′) = χ κ

Γ
(x′) exp

(
−i
κ

Γ
x′ · y′

)
χ κ

Γ
(y′) , (1.5)

and hence end up with another useful formulation ofDΓ:

DΓ u0 (x′) =
−iκ
Γ

eiκΓ χ κ
Γ
(x′) F

(
χ κ

Γ
u0

) ( κ
Γ

x′
)
. (1.6)
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In a concrete setting, often the propagation distance Γ > 0, which controls the oscillations
of the chirp functions in (1.2) and (1.6), determines which of the two representations (1.2)
and (1.6) is favorable. So, we call Equation (1.2) near field representation and (1.6) far
field representation of the Fresnel approximation. See Section 1.1.2 for more details.

Remark 1.1.4. By its near field representation (1.2) it is easy to see that the Fresnel ap-
proximation satisfies the following propagator property

DR ◦ DΓ = DR+Γ, R,Γ > 0.

Through defining D0 u0 B u0, the set of Fresnel propagators {DΓ | Γ ≥ 0} together with
this operation becomes a monoid, i.e. a semigroup with an identity element.

Now that we have a representation of the measured intensities |DΓu0|
2, given by the

boundary values u0, we specify the unknown sample information φ : D(φ) ⊂ P0 → C
and study its connection to u0. In the volume between P−τ and P0 the field interacts with
matter of which we assume the material properties to vary sufficiently slowly on length
scales comparable to the wavelength. Then the Helmholtz equation becomes:

∆u + n2κ2u = 0 inM B {x ∈ R3 : −τ < x3 < 0}, (1.7)

with refraction index n : M → C. In vacuum, this refraction index n coincides with 1,
cf. (1.1a), and also in each point x ∈ M its value n(x) is close to 1, characterizing the rather
weak interaction of x-rays with matter. Therefore, we will use the common notation

n(x) = 1 − δ(x) + iβ(x), x ∈ M,

where δ � 1 and β � 1 are positive real valued functions. By rewriting the field as

u(x) = ũ(x) exp(i κ x3)

we separate the rapidly oscillating unscattered plane wave component x3 → exp(i κx3)

from the envelope ũ. Then, because of the identity ∂2u
∂x2

3
= exp(i κ x3)

(
∂2

∂x2
3

+ 2iκ ∂u
∂x3
− κ2

)
ũ,

we obtain from the Helmholtz equation (1.7) the following equation:

0 = exp(i κ x3)
∆′ + ∂2

∂x2
3

+ 2iκ
∂

∂x3
+ κ2

(
n(x)2 − 1

) ũ(x) x ∈ M.

Here ∆′ = ∂2

∂x2
1

+ ∂2

∂x2
2

denotes the Laplacian in two dimensions. By again assuming the
interaction of x-rays with matter to be sufficiently weak we can neglect all the second
order derivatives which yields the projection approximation:

0 ≈ exp(i κ x3)
(
2i

∂

∂x3
+ κ

(
n(x)2 − 1

))
ũ(x). (1.8)

Moreover, by using n(x)2 − 1 ≈ −2δ(x) + 2iβ(x) we can approximate ũ by the solution ue

of the partial differential equation

∂

∂x3
ue = −iκ (δ − iβ) ue,
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and hence end up with the boundary condition

u0(x′) ≈ ue(x′, 0) = ue(x′,−τ) exp
(
−i κ

∫ 0

−τ

δ(x) − iβ(x) dx3

)
.

Now, we specify the unknown information φ of interest as the line integral

φ(x′) =

∫ 0

−τ

δ(x) − iβ(x) dx3, x = (x′, x3)

and we define the object function

O(x′) = e−i κ φ(x′). (1.9)

So, the imaginary part of φ, given by
∫ 0
−τ
β(x) dx3, describes the absorption components of

the object, while the real part models the phase shifting components. In the following, we
mainly focus on the case of pure phase objects, i.e. the amplitude |O| = e−κ=(φ) is assumed
to be constant 1 or equivalently β vanishes. This is for example a suitable assumption for
thin biological samples illuminated by hard x-rays. Introducing the illumination function
ι : R3 → C, ι(x′,−τ) = ue(x′,−τ), which describes the illumination of the sample, the
projection approximation reads as

u0(x′) ≈ ι(x′,−τ) O(x′), x′ ∈ R2.

For simplicity we write
u0 ≈ ι0 O, (1.10)

which is justified by the assumption that the illumination ι0 = exp(i κ x3) ι(·,−τ) in the
object plane P0 coincides with ι(·,−τ) up to a phase factor. This representation of the exit
field u0 as the product of object function O and illumination ι restricted to P0 requires the
sample thickness τ and the wavelength λ to be sufficiently small. See e.g. [33] or [73] for
the more general case of product approximation.

1.1.2 Fresnel propagator for tempered distributions.

In practice, frequently not only the object function O of a pure phase object (see (1.9)) but
also the illumination ι0(x′) B ι(x′, 0) in P0 has modulus 1 for every x′ ∈ R2. Therefore
the boundary value u0 ≈ ι0 O in the projection approximation does not belong to the space
L2(R2). So, in order to approximate u in the detector plane PΓ by DΓu0 for more general
u0, in the following we extend the definition of the Fresnel approximation propagator to
the space S ′(R2) of tempered distributions.

Recall from Lemma 1.1.1 that

DΓ φ =
−iκ
Γ

eiκΓ χ κ
Γ
F

(
χ κ

Γ
u0

) ( κ
Γ
·

)
=
−ik
2πΓ

eiκΓ χ κ
Γ
∗ φ ∈ S

(
R2

)
(1.11)
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for all φ ∈ S
(
R2

)
and that DΓ : S

(
R2

)
→ S

(
R2

)
is continuous. Since the Fresnel

propagator DΓ is similar to the Fourier transform, it seems to be natural to define DΓ(T )
for a tempered distribution T ∈ S ′

(
R2

)
in the same way, namely by

DΓ(T )(φ) B T (DΓφ), ∀φ ∈ S
(
R2

)
. (1.12)

The following corollary justifies this definition.

Corollary 1.1.5. For any T ∈ S ′
(
R2

)
the Fresnel propagation DΓT defined by (1.12)

exists as a tempered distribution, i.e. DΓT ∈ S ′
(
R2

)
. Moreover, it is well-defined in the

sense thatDΓTϕ = TDΓϕ for all ϕ ∈ S
(
R2

)
.

Proof. As the linearity of DΓT is obvious, we only have to show the continuity of DΓT
in order to prove the first assertion. To this end, we choose a sequence (φn)n∈N ⊂ S

(
R2

)
with φn → 0, n→ ∞. Then we haveDΓφn → 0 as n→ ∞ and also

DΓT (φn) = T (DΓφn)→ 0, n→ ∞

which gives the first assertion. For any φ, ϕ ∈ S
(
R2

)
we have

TDΓϕ(φ) =
−iκ
2πΓ

eiκΓ
〈
φ,

∫
R2
χ κ

Γ

(
· − x′

)
ϕ(x′) dx′

〉
S (R2)

=
−ik
2πR

eiκΓ
∫
R2

∫
R2
ϕ(x′) χ κ

Γ

(
x′ − ξ′

)
φ(ξ′) dξ′ dx′ =

〈
φ,DΓTϕ

〉
S (R2) ,

where 〈·, ·〉S (R2) denotes the dual paring 〈φ, ϕ〉S (R2) B
∫
R2 ϕ(x′) φ(x′) dx′. This completes

the proof. �

Example 1.1.6. For Γ > 0 the Fresnel propagation DΓ (δ0) of the delta distribution
δ0 ∈ S ′

(
R2

)
, with

δ0 : φ 7→ φ(0),

is given by the regular distribution T f ∈ S ′
(
R2

)
where

f : R2 → C, x′ 7→
−ik
2πΓ

eiκΓχ κ
Γ
(x′). (1.13)

Proof. For φ ∈ S
(
R2

)
we have

(DΓδ0) (φ) = δ0 (DΓφ) = (DΓφ) (0) =
−iκ
2πΓ

eiκΓ
∫
R2
χ κ

Γ

(
x′

)
φ(x′) dx′

=
−iκ
2πΓ

eiκΓ
〈
φ, χ κ

Γ

〉
S (R2) .

�
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Example 1.1.7. The Fresnel propagation of the constant function 1 in the sense of the
regular distribution T1 ∈ S ′

(
R2

)
is given by

DΓ (T1) =
1

2π
eikΓTχ

− Γ
κ

Γ > 0.

Proof. From F δ0 = T1 and F Tχ κ
Γ

= i Γ
k Tχ

− Γ
κ

we obtain for φ ∈ S
(
R2

)
:

DΓ (T1) (φ) = DΓ (F δ0) (φ) = δ0 (DΓ (F φ)) =
−iκ
2πΓ

eiκΓTχ κ
Γ

(F φ)

=
−iκ
2πΓ

eiκΓF Tχ k
Γ

(φ) =
1

2π
eiκΓTχ

− Γ
κ

(φ) . �

Now let us consider (tempered) distributions with compact support (cf. Appendix A.1):

E′ B
{
T ∈ S ′

(
R2

)
| supp T is compact

}
.

Lemma 1.1.8. Let T ∈ E′ be a tempered distribution with compact support. Then

g(ξ′) =
−iκ
Γ

eiκΓ χ κ
Γ
(ξ′)

〈
KF

(
κ

Γ
ξ′, ·

)
, χ κ

Γ
T
〉

S (R2)

with
KF : (ξ′, x′) 7→

1
2π

e−i ξ′·x′ ξ′, x′ ∈ R2

is a C∞(R2)-function that defines a tempered distribution Tg such that Tg = DΓT. In
particular, if T = Tω is a regular distribution with ω ∈ Lr(R2), r ∈ [1,∞] compactly
supported we obtain

g(ξ′) =
−iκ
Γ

eiκΓ χ κ
Γ
(ξ′) F

(
χ κ

Γ
ω
) ( κ

Γ
ξ′
)
.

Equivalently, we have (in the convolution representation)

g : ξ′ 7→
−iκ
2πΓ

eiκΓ
〈
χ κ

Γ

(
ξ′ − ·

)
,T

〉
S (R2) =

−iκ
2πΓ

eiκΓ
(
χ κ

Γ
∗ T

)
(ξ′) ξ′ ∈ R2.

Proof. By [31, Corollary 4.1.2] and χ κ
Γ
T ∈ E′ it follows that g is a C∞(R2)-function.

Moreover, T ∈ S ′
(
R2

)
ensuresDΓT ∈ S ′

(
R2

)
. Using [31, Theorem 8.4.1]:

〈F φ, E〉S (R2) = F (E)(φ) =

∫
R2
φ(ξ′)

〈
KF (ξ′, ·), E

〉
S (R2) dξ′ φ ∈ S

(
R2

)
, E ∈ E′

as well as the multiplier property of χ κ
Γ

( cf. Lemma 1.1.1) we obtain

DΓT (φ) =
−iκ
Γ

eiκΓ
〈
χ κ

Γ
F

(
χ κ

Γ
φ
) ( κ

Γ
·

)
,T

〉
S (R2)

=
−iκ
Γ

eiκΓ
∫
R2
φ(ξ′) χ κ

Γ
(ξ′)

〈
KF

(
κ

Γ
ξ′, ·

)
, χ κ

Γ
T
〉

S (R2)
dξ′ = Tg(φ)
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for all φ ∈ S
(
R2

)
. This proves the first assertion. Expansion (1.5) gives the convolution

representation. �

We assume that O ∈ L∞(R2) varies only within a rectangle [−rO, rO] ⊂ R2, i.e. there is
constant C such that Õ B O − C is compactly supported in [−rO, rO]. From the linearity
ofDΓ and Example 1.1.7 we obtain

DΓ(TO) = DΓ(TO−C) +
C
2π

eiκΓTχ
− Γ
κ
,

and thus the Fresnel approximationDΓ(TO) in the sense of tempered distributions can be
calculated by the Fresnel propagation of the L2(R2)-function Õ = O −C:

DΓ(O −C) + CeiκΓχ− Γ
κ
.

In order to keep the notation simple, we identify O with Õ and make the following as-
sumption:

Assumption 1.1.9. The object function O ∈ L2(R2) is supported in some rectangle
[−rO, rO] ⊂ R2.

On the other hand we denote by [−rX , rX], with diameter rX ≥ rO, the area in P0 outside
of which the whole field u0 ≈ ι0 O (in the projection approximation) is nearly constant.
Then, if the dimensionless Fresnel number

f B
κ

(
r2

X,1, r
2
X,2

)
Γ

(1.14)

is sufficiently small such that χ κ
Γ
≈ 1 on [−rX , rX], we can neglect this factor in (1.6),

which leads to the well-known Fraunhofer approximation

u(x′,Γ) ≈
−iκ
Γ

ei κ Γχ κ
Γ
(x′) F u0

(
κ

Γ
x′

)
. (1.15)

Note that f � 1 is in particular satisfied if the propagation distance Γ turns to∞. For this
reason (1.15) is also referred to as far field diffraction formula.

Now we are able to formulate the forward operator T for the introduced problem of re-
trieving the unknown object information φ from the (possibly noisy) intensities measure-
ments yδ in the detector plane PΓ. yδ is given by the exact data y = |u(·,Γ)|2 possibly
perturbed by some noise. Under the use of the projection approximation (1.8) and the
Fresnel approximation (see Equation (1.2) or Equation (1.6), respectively) the operator
reads as

TFresnel(φ)(x′,Γ) =
∣∣∣DΓ (ι0 O(φ))

(
x′

)∣∣∣2 , (x′,Γ) ∈ PΓ,

while in the case of the Fraunhofer approximation (1.15) we obtain

TFrau(φ)(x′,Γ) =

∣∣∣∣∣ κΓ
∣∣∣∣∣2 ∣∣∣∣∣F (ι0 O(φ))

(
κ

Γ
x′

)∣∣∣∣∣2 (x′,Γ) ∈ PΓ. (1.16)

Here the dependence given by Equation (1.9) of the object function O on φ is indicated
by writing O as a function of φ. The following Fresnel scaling theorem provides another
useful formulation for each of the two operators.
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1.1.3 Fresnel scaling theorem

Let us assume that the sample is illuminated by an ideal point source which is located at
(0, 0,−R) ∈ H−. Then, because of Example 1.1.6, we state the empty beam field ι0 in the
object plane P0 to be given by (1.13) for Γ = R. This Fresnel approximation is justified

by the fact that for |x′| B
√

x2
1 + x2

2 � R the Taylor approximation
√
|x′|2 + R2 ≈ R +

|x′ |2
2R

classifies ι0 as an approximation of the spherical wave scattered from (0, 0,−R):

(
x′, x3

)
7→

eiκ
√
|x′ |2+(x3+R)2√

|x′|2 + (x3 + R)2
, (1.17)

restricted to P0. Note that the field given by (1.17) is an outgoing solution to the Helmholtz
equation (1.1a) in the volume

{
x ∈ R3 | − R < x3 < 0

}
. Then, assuming the product ap-

proximation (1.10) to be valid, u0 reads as

u0(x′) =
−iκ
2πR

eiκRχ κ
R
(x′)O(x′) x′ ∈ R2.

This motivates us to factor out the spherical part of u0 also in more general cases of
illumination caused by a point-like source. It means we write u0 in the form

u0(x′) = χ κ
R
(x′) P(x′)O(x′), |x′| � R (1.18)

with (presumably) nearly plane envelope P. Inserting this ansatz into the far field repre-
sentation (1.6) yields

DΓ u0 (x′) =
−ik
Γ

eikΓ χ k
Γ
(x′) F

(
χ κ M

Γ
PO

) ( k
Γ

x′
)

(1.19)

where M > 0 denotes the geometrical magnification

M =
R + Γ

R
with

M
Γ

=
1
R

+
1
Γ
.

Moreover, introducing effective coordinates

x′eff B
x′

M
and Γeff B

Γ

M
,

we obtain

DΓ u0 (x′) =
1
M

ei κ Γ(1− 1
M ) χ κ

R+Γ
(x′)
−ik
Γeff

eikΓeff χ k
Γeff

(
x′eff

)
F

(
χ κ

Γeff
PO

) ( k
Γeff

x′eff

)
=

1
M

e−i κ Γ(1− 1
M ) χ κ

R+Γ
(x′)DΓeff PO

(
x′eff

) (1.20)

which gives another formulation for the intensities TFresnel,PO(φ)(·,Γ) = |DΓ u0|
2:

|DΓ u0 (x′)|2 =
1

M2

κ2

Γ2
eff

∣∣∣∣∣∣F (
χ k

Γeff
PO

) ( k
Γeff

x′eff

)∣∣∣∣∣∣2 . (1.21)
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R

a) b)

Figure 1.2: Illustration of the Fresnel scaling theorem: a) (quasi) point source illumination. b) plane
wave illumination in an effective geometry.

Using again Equation (1.19), we end up with the Fresnel scaling theorem:

κ2

Γ2

∣∣∣∣∣∣F (
(χ k

Γ
+ k

R
PO)

) ( k
Γ

x′
)∣∣∣∣∣∣2 = |DΓ u0 (x′)|2 =

1
M2

κ2

Γ2
eff

∣∣∣∣∣∣F (
χ k

Γeff
PO

) ( k
Γeff

x′eff

)∣∣∣∣∣∣2 , (1.22)

for all x′ ∈ R2. The right hand side of this equation is also the limit of the left hand side
when R turns to ∞ such that M → 1 and κ

R → 0. So, the Fresnel scaling theorem relates
the intensity measured in PΓ for spherical like illumination to the intensity in an effective
geometry M−1PΓeff for illumination by a plane wave where ι0 is constant. Figure 1.2 gives
an illustration.

Accordingly, we can apply the Fresnel scaling theorem (1.22) to the near field represen-
tation (1.2) which yields another useful representation of the intensity measurements:

|DΓ u0 (x′)|2 =
1

M2

∣∣∣∣∣∣F −1
(
χ− Γ

Mk
• F PO

) ( x′

M

)∣∣∣∣∣∣2 x′ ∈ R2, (1.23)

where • is the pointwise multiplication. With respect to the numerical approximation,
the crucial difference between the two formulas (1.21) and (1.23) (and likewise between
(1.6) and (1.2)) lies in the inverse parameters κ M

Γ
and − Γ

κ M of the corresponding chirp
functions. In order to keep their oscillations small, one usually uses representation (1.21)
if both the Fresnel number (1.14) as well as the magnification M are sufficiently small:

M f =
M κ

(
r2

X,1, r
2
X,2

)
Γ

≤ 1

and (1.23) otherwise. In the limit case of M f ≈ 0, however, the operator (1.16) based on
the Fraunhofer approximation is favorable.

Remark 1.1.10. All the derived representations for the forward operators TFresnel and TFrau
depend on the empty beam field ι0, which we implicitly presupposed to be given by a
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spherical or equivalently (in the effective geometry) a plane wave. However, especially
in the near field regime where usually formula (1.23) is used this assumption might not
be fulfilled. In Chapter 2, we study the validity of a common approach to overcome this
problem by ’factoring out’ ι0.

1.1.4 Phase retrieval in coherent X-ray imaging:
An inverse problem in Banach spaces

As motivated above, we formulate the introduced phase retrieval problem by an operator
equation

Tφ = yδ, (1.24)

where yδ ∈ PΓ are the (possibly noisy) intensity measurements in the detector plane PΓ

from which we want to retrieve the unknown information φ ∈ X ⊂ P0 of the object
function O. The forward operator T : X → Y maps φ to χ k

R
O composed with the modulus

square of either the Fraunhofer (1.2) or the Fresnel (1.15) approximation. See Equations
(1.21), (1.23), and (1.16) for the different representations of TFresnel and TFrau . Here we
focus on the case of pure phase objects, i.e. φ : P0 → R, and consider O as a function
of φ: O(φ) = ei κ φ. Obviously, T is not injektive with respect to a phase shift of 2π. To
prevent convergence of iterative algorithms to local minima a condition like φ(ξ) ∈ [−π, π]
is typically needed. Moreover, in order to ensure uniqueness and simplify the task of
reconstruction, one usually uses the a priori information that φ has a compact support
Ω ⊂ P0, cf. [51], [57]. However, even if injectivity of T is achieved, we are dealing with
a non-linear ill-posed inverse problem (cf. [12], [57]).

In the literature, especially projection based methods are used in order to solve phase
retrieval problems. In this context, the first approach was proposed by Gerchberg and
Saxton [32], followed by Fienup’s error-reduction (ER) and hybrid input-output (HIO)
algorithms [30]. These methods form the basis for many developed iterative projection
algorithms with this application. They are often referred to as Gerchberg-Saxton-Fienup-
type algorithms. We commend [56] for an overview. Since it was shown that ER coincides
with a nonconvex alternating projection algorithm and HIO is an instance of the well-
known Douglas-Rachford algorithm using (generalized) projections onto nonconvex sets,
these methods can be seen as the adaption of classical convex optimization methods to the
nonconvex feasibility problem of finding a solution φ in the intersection of a convex set A
of a priori constraints and the nonconvex set M B

{
φ | |Tφ| = yδa.e.

}
, see [9,53]. Note that

due to noise the intersection A ∩ M might be empty. As the Gerchberg-Saxton-Fienup-
type algorithms use the projection with respect to the L2-norm, the problem considered
there can be rewritten as

find φ = argmin
φ∈A

‖Tφ − yδ‖L2 . (1.25)

It is a main benefit that these methods are applicable for a very general set A of a priori
constraints. In addition, they can be easily adapted to changed conditions. Although
in practice these algorithms show sufficiently nice convergence behavior, there is still a
lack of mathematical foundation for this nonconvex application. See e.g. [38, 39] for
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current research in this direction. A second drawback is that the problem formulation
(1.25) does not take the specific noise model into account: As usual in photonic imaging,
we face a problem with Poisson data, i.e. the data is Poisson distributed with the exact
data y† as mean. In our setup (see Figure 1.1), we have a finite (here even) number
N B (N1,N2) ∈ N2 of equal sized detectors that are located in the detector plane PΓ. Each
of these detectors measures the number

yδi ≥ 0, i ∈ ∆N =

{N1

2
, · · · ,

N1

2
− 1

}
×

{N2

2
, · · · ,

N2

2
− 1

}
of photons reaching the pixel area during the exposure time. Then yδ =

(
yδi

)
is an event

derived from a vector of N1 N2 independent Poisson distributed random variables. Thus,
it is natural (cf. [82] sec. 2.1) to minimize the negative log-likelihood functional which is
given (up to an additive constant independent of y) by

φ 7→ klN
(
yδ; Tφ

)
, klN(yδ; y) B


∑

i∈∆N yi − yδi ln (yi) , if y|yδ>0 > 0, y|yδ≥0 ≥ 0
∞, otherwise,

(1.26)
or equally in the limit case N→ ∞×∞ its non-discrete generalization

KL(yδ; y) B


∫
R2 y − yδ ln y dx′, if y|yδ>0 > 0, y|yδ≥0 ≥ 0
∞, otherwise,

instead of the L2-norm (corresponding to l2-norm in the discrete setting) in (1.25). Here,
we set 0 ln 0 B 0 and by the notation we indicate that KL is (up to a constant) the
Kullback-Leibler divergence.

Regularization of ill-posed problems with Poisson data, also with an example in phase
retrieval, was studied in detail in a series of works [47,82,83] by Hohage and Werner. So,
motivated by the theory developed there, we solve our problem by a more noise adapted
method, the iteratively regularized Newton-type method (IRNM, see Section 3.1):

φn+1 = argmin
φ∈X

S (yδ; T (φn) + T ′[φn](φ − φn)) + αn R(φ), (1.27)

with a Kullback-Leibler like data fidelity functional

S (yδ; y) = KL(yδ + ε; y + ε), with shift parameter ε ≥ 0, (1.28)

an appropriate penalty term R, and regularization parameters αn > 0. Here T ′[φn] denotes
the Fréchet derivative in φn ∈ X, i.e. the linear, bounded operator mapping from X to Y
with

lim
ϕ∈X,‖ϕ‖X→0

1
‖ϕ‖X

‖T (φn + ϕ) − T (φn) − T ′[φn](ϕ)‖Y = 0.

Its specific formulation will be present in the following. Compared to problem (1.25), here
the a priori constraints are modeled by the preimage space X of T ′[φn] and the penalty
term R : X → R∪ {∞}. However, also for this method there still a gap in the convergence
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theory with respect to phase retrieval problems: The tangential cone condition in [47, 82,
83] has not been verified for our operator T . Moreover, in this work we remove parameter-
dependence of the data fidelity functional (1.28) by focusing on the natural case ε = 0,
although the convergence results were proven for ε > 0.

On the other hand, Newton-type methods (e.g. the IRNM) and also Landweber-type
iterations that address the reconstruction of phase information from modulus measure-
ments of its Fourier transform with a Banach or Hilbert norm monomial as data fi-
delity functional S (yδ; y) = ‖y − yδ‖sY , s > 1, have been suggested in several works, such
as [7,13,27,29,44,70]. While most of these approaches are based on a Hilbert space set-
ting, choosing X (and possibly also Y) as a Banach space seems to be more appropriate:
Since we are especially interested in the reconstruction of blocky structured biological
samples (see e.g. Figure 5.5) given on a rectangle Ω = (−rX , rX) ∈ P0, the Sobolev norm

‖φ‖W1,r(Ω) =
(
‖φ‖rLr(Ω) + ‖∇φ‖rLr(Ω)

) 1
r , r ≥ 1

with r ≈ 1 is particularly appropriate as penalty term, and hence the corresponding Ba-
nach space W1,r (Ω) B

{
φ : Ω→ R | φ,∇φ ∈ Lr(Ω)

}
is the natural choice for X. Further-

more, for an operator similar to TFrau(φ) B TFrau,O(φ), in [70, Section 1.2] it was motivated
to consider X = Lr(R2) and Y = Lr∗ (R2), where r∗ B r

r−1 is the conjugate exponent of
r ∈ (1, 2]. The Fréchet derivative T ′Frau[φ] : X → Y is given by

T ′Frau[φ](h)
(
x′,Γ

)
=

2 κ2

Γ2 <

(
FO(φ)

(
κ

Γ
x′

)
F

(
O′[φ](h)

) ( κ
Γ

x′
))
, x′ ∈ PΓ

O(φ) = ei κ φ, O′[φ](h) = i κ h ei κ φ

In fact, due to the Hausdorff-Young inequality (A.1) the operator T ′Frau[φ] is bounded by∥∥∥T ′Frau[φ](h)
∥∥∥

Lr∗ (R2) ≤ C‖h‖Lr(R2)

for some constant C > 0. Analogous, for TFresnel(φ) B TFresnel,O(φ), we obtain from (1.22)

T ′Fresnel[φ](h)
(
x′,Γ

)
=

2 κ2

Γ2 <

(
F

(
χ κ M

Γ
O(φ)

) ( κ
Γ

x′
)
F

(
χ κ M

Γ
O′[φ](h)

) ( κ
Γ

x′
))
, x′ ∈ PΓ

and thus the same estimate holds. So, we can assume that a penalty term R which is given
by a Banach space norm ‖ · ‖X for X ∈

{
Lr(Ω),W1,r (Ω)

}
is a good choice to model the

’structure’ of φn. Note that by defining X as a function space on Ω, we incorporate also
the support constraint supp φn ⊆ Ω.

Because of the pixel-wise measurements we focus our attention on the discrete data fi-
delity functional klN: The weighted least square approximation (which we obtain form
the second order Taylor expansion of y 7→ klN

(
yδ; y

)
+

∑
j∈∆N

(
yδj − yδj ln yδj

)
at yδ)

klN
(
yδ; y

)
+

∑
j∈∆N

(
yδj − yδj ln yδj

)
≈

1
2

∥∥∥∥∥∥∥
yδj − yj
√yj


j∈∆N

∥∥∥∥∥∥∥
2

l2

, y|yδ>0 > 0, y|yδ≥0 ≥ 0



20 Phase retrieval problems in x-ray physics and inverse medium scattering

motivates us to choose either L2(R2) or the weighted Hilbert space L2
Wn

(R2) with positive

weight Wn = (T (φn) + ε)−1 , ε > 0, and norm given by ‖y‖L2
Wn

(R2) = ‖W
1
2

n y‖L2(R2) as image
space Yn of T ′[φn]. We can assume that there is no intensity outside the finite (open)
detector domain D ⊂ R2. Therefore, we restrict the operator T to this domain D and
set Yn = L2(D) or Yn = L2

Wn
(D). Moreover, [57, Theorem 1] ensures that a compactly

supported solution φ is uniquely determined by its data T (φ)|D restricted to D. In sum-
mary, in the n-th iteration step of the IRNM, we consider T ′[φn] : X → Yn as a linear
mapping from X = Lr(Ω) with r ∈ [1, 2) to Yn ∈

{
L2

Wn
(D), L2(D)

}
, or by using the em-

bedding W1,r (Ω) ↪→ L
2

2−r (Ω) ⊆ Lr (Ω) , we choose W1,r (Ω) as the preimage space X.
Accordingly, the IRNM reads as

φn+1 = argmin
φ∈X

KL
(
yδ ; T (φn) + T ′[φn](φ − φn)

)
+
αn

2
‖φ‖2X , (1.29)

where

• X is a Banach space,

• Y is a Banach space, (usually finite-dimensional)

• T ′[φn] : X → Y is a linear operator,

• and (αn)n∈N ≥ 0 is an appropriate sequence of regularization parameters (cf. Sec-
tion 3.1).

Now that we have derived a promising method, the question arises of how the inner mini-
mization problem (1.29) in each iteration step of IRNM can be solved. Since kl and 1

2 ‖ ·‖
2
X

are convex functions, it is a convex optimization problem which excludes local minima
of the Tikhonov-type functional φ 7→ kl

(
yδ ; T (φn) + T ′[φn](φ − φn)

)
+ αn

2 ‖φ‖
2
X (cf. Sec-

tion 3.2). So, here we find, to some extent, a link to the Gerchberg-Saxton-Fienup-type
algorithms based on convex optimization methods.

In order to present a good alternative to these methods, we want use an algorithm which
is similar flexible with respect to modeling priori constraints. Due to this requirements
so-called proximal-type algorithms are particular suitable for solving the minimization
problem (1.29). One finds a wide class of first-order proximal algorithms in the literature
for solving the convex problem (1.29), e.g. FISTA [11], ADMM [18], proximal splitting
algorithms [25]. We also commend [15, 61] for an overview. However, these methods
usually assume X and Yn to be Hilbert spaces. Therefore, in Chapter 4, we will generalize
one of the most common representatives of this group from a Hilbert space to a Banach
space setting.

1.2 Phase retrieval in inverse medium scattering

Now we come to another phase retrieval problem where a Banach space setting is more
appropriate than a Hilbert space setting: A nonlinear inverse medium scattering problem
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with ’sparse’ contrast as studied in [52]. As opposed to the phase retrieval problems intro-
duced in the previous sections, we consider a more precise model without the projection
and Fresnel approximations. Moreover, we aim to reconstruct the whole refractive in-
dex n, not just line integrals of n. We also refer to [24, 41] for a detailed introduction
to this problem. The problem is given in m = 2, 3-dimensions. The considered model
describes time-harmonic acoustic waves scattered by an inhomogeneous medium with
constant density. For m = 2 it describes the scattering of transverse-magnetic (TM) polar-
ized electromagnetic waves scattered by cylindrical, penetrable, isotropic, non-magnetic
structures. It is also an approximate model for time-harmonic electromagnetic scattering
in m = 3 space dimensions for weak and slowly varying inhomogenieties, which is typ-
ically the case for x-ray frequencies. Similar the previous sections, the problem consists
in retrieving information on the refractive index of some unknown medium from mea-
surements of scattered fields. The setting is as follows: A scattering object of interest is
located in a ball Bρ = {x ∈ Rm | ‖x‖l2 ≤ ρ} with radius ρ > 0 to which we sent succes-
sively time-harmonic waves fields ui

d∈D from different directions {d ∈ D} each solving the
Helmholtz equation

∆ui + κ2 ui = 0 (1.30)

in m-dimensions. Here one may think of plane waves ui
d(x) = exp(−i κ x·d) propagating in

direction −d ∈ Sm−1 B
{
d ∈ R2 | ‖d‖l2 = 1

}
. As in Section 1.1, κ denotes the wave number

and n : Rm → C is the refractive index coinciding with 1 outside of the object’s support,
in particular on Rm \ Bρ. By n2 = 1 + a we rewrite n in terms of the contrast a : Rm → C
which we assume to have a “sparse” support within Bρ and nonnegative imaginary part
=(a). Thus, the Banach space X = Lr(Bρ) with Lebesgue index r > 1 smaller than 2
would be a problem adapted choice for the solution space. Considering an incident field
ui, the resulting total field u obeys the Helmholtz equation

∆u(x) + κ2 n2(x) u(x) = 0, x ∈ Rm, (1.31)

and the scattered field us = u − ui satisfies the Sommerfeld’s radiation condition

lim
r=‖x‖l2→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, uniformly in all directions

x
‖x‖l2

∈ Rm. (1.32)

In practice, usually not the scattered field us but only the amplitude of its far field pattern
u∞ which is given via the asymptotic

us(x) =
exp(i κ r)

r
m−1

2

(
u∞

( x
r

)
+ O

(
1
r

))
, r B ‖x‖l2 → ∞

can be measured. In order to compensate this lack of information, one uses incident
fields ui

d in the from of plane waves ui
d(x) = exp(−i κ x · d) from (almost) all directions

d ∈ Sm−1. So, for fixed ui
d and d ∈ Sm−1 the forward operator Tui

d
maps a to |u∞d |

2. We also
introduce the operator Fui

d
mapping a to the whole far field u∞d which is more common in

the literature.
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Under appropriate conditions one can show that the field u = us + ui, caused by some
arbitrary entire solution ui of (1.30), solves the scattering problem (1.31)-(1.30) if and
only if u is a solution to the Lippmann-Schwinger equation

u(x) + κ2V(au)(x) = u(x) + κ2
∫

Bρ
Φ(x, z) a(z) u(z) dz = ui(x), x ∈ Rm, (1.33)

or equivalently us = u − ui is a solution to

us(x) − κ2V(aus)(x) = κ2V(aui)(x), x ∈ Rm, (1.34)

where
V(ϕ)(x) B

∫
R2

Φ(x, z)ϕ(z) dz

denotes the volume potential and

Φ(x, z) B

 i
4 H(1)

0 (κ ‖x − z‖l2 ) m = 2
1

4 π
exp(κ ‖x−z‖l2 )
‖x−z‖l2

m = 3

is the fundamental solution of the Helmholtz equation. In the considered case a ∈ Lr(Bρ),
with r > 1 and =(a) ≥ 0, Lechleiter et al proved in [52] that for any incident field
ui ∈ Ls(Bρ), s > r

r−1 , which satisfies (1.30), the Lippmann-Schwinger equations (1.33)
and (1.34) are uniquely solvable in Ls(Bρ). Moreover, let v ∈ Ls(Bρ) be the solution of
(1.34). Then us B κ2V(a(v + ui)) belongs to

W
2, r s

r+s
loc (Rm) B

{
v : R2 → C |v ∈ W2, r s

r+s (BR) for all R > 0
}
↪→ Ls

loc(Rm)

and it is a solution to the Helmholtz equation ∆us+κ2 n2us = −κ2 a ui in Ls
loc(Rm) subject to

Sommerfeld’s radiation condition. Multiplying both sides of Equation (1.33) by a yields
the following operator equation (cf. [41, Eq. (5)])

a u = (I + κ2a V)−1(a ui).

We assume a u ∈ L2(Bρ) (which is assured e.g. if r ≤ 2) and introduce the operator

E : L2(Bρ)→ L2(S1), E(v)(ϑ) =

∫
Bρ

exp(−i κϑ · z) v(z) dz,

which defines the far field pattern u∞ corresponding to a u via u∞ = −κ2 γmE(a u) for

γ2 =
exp( i π

4 )
√

8 πκ
and γ3 = 1

4π . Then the nonlinear operator Fui reads as

Fui (a) = −κ2 γmE
(
(I + κ2a V)−1(a ui)

)
and also gives Tui (a) = |Fui (a)|. Moreover, it can be shown ( [41, Proposition 2.1]) that

Fui : D(F) B
{
a ∈ L∞(Bρ) | (I + κ2 aV)−1 is boundedly invertible

}
→ L2(Sm−1)
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is Fréchet differentiable for fixed ui ∈ L2(R2) with

F′ui [a](h) = −κ2 γmE
(
(I + κ2a V)−1(h u)

)
.

Consequently, we have T ′ui [a](h)(ϑ) = 2<
(
Fui (a)(ϑ)F′ui [a](h)(ϑ)

)
for any a, h ∈ D(F)

and ϑ ∈ Sm−1. Note that both the operator T and its Fréchet derivative require the solution
of a Lippmann-Schwinger equation for which Vainikko ( [79]) proposed a fast solution
method.

Also in this case the IRNM

an+1 = argmin
a∈X

S
((

u∞,δd

)
d∈D

;
(
Tui

d
(an) + T ′ui

d
[an](a − an)

)
d∈Sm−1

)
+ αn R(a), (1.35)

is an attractive method for solving the ill-posed operator equation
(
Tui

d
(a) =

∣∣∣u∞,δd

∣∣∣2)
d∈D

.

Here D ⊆ Sm−1 denotes the set of incident wave directions and
∣∣∣u∞,δd

∣∣∣2 are the given pos-
sibly noisy intensity measurements caused by some plane wave ui

d, d ∈ D. We also refer
the reader to [41,42,46] for applications of (modified) iteratively regularized Newton-type
methods to this problem (with non-sparse solutions). In order to promote sparse solutions,
R(a) = ‖a‖L1 or R(a) = 1

2‖a‖
2
X are appropriate choices for the penalty term. So, we have

to minimize a quite general Tikhonov-type functional in each step of the IRNM. Also for
this purpose proximal-type algorithms are particular suitable. Reconstructing sparse solu-
tions with the help L1-penalization is a commonly used approach and will be considered
in more detail for a “simpler” problem.





2 Validity of the empty beam correction in near field
imaging

This chapter addresses the problem that all representations of a forward operator for the
introduced phase retrieval problems involve the illumination ι0 in the object plane. More
precisely, due to the assumed projection approximation u0 ≈ ι0 O(φ) the empty beam
field ι0 is related to the object function O in such a way that for the aim of retrieving
the unknown object information φ from the recorded intensities |u(·,Γ)|2 ≈ |DΓu0|

2 in the
detector plane PΓ the knowledge of ι0 is essential. However, in particular in a near field
setting already small imperfections in the waveguide system often cause strong deviations
from the idealized assumption ι0 to be the spherical wave (1.17) or equivalently the plane
wave ι(·, x3) = exp(i κx3) in the effective geometry. See e.g. [6] for the negative influence
of mirror figure errors in a Kirkpatrick-Baez (KB) mirror system. Further experimental
illustrations are given in Figures 2.1 and 2.2. So, in a general near field setting (indicated
by a sufficiently large product Mf) the function ι0 especially depends on the concrete
experimental setup such that it often does not comply with a generalized formula. A com-
mon approach [33,34] to deal with this problem is to take a further intensity measurement
of the empty beam field Iι0 ≈ |DΓι0|

2 and then to approximate the intensity of the object
function O (in the effective geometry) by the quotient of the two measurements

|u(·,Γ)|2

Iι0
.

So, the intensity data of the product u0 ≈ ι0 O(φ) is here approximated by the product of
the intensities of each factor ι0 and O(φ). However, because the Fresnel approximation is
based on Fourier transforms, one expects the product approximation (1.10) in the object
plane to result in a convolution in the detector plane. For this reason, we also call this
empty beam correction product approximation in the detector plane. This approach is
motivated by the fact that it actually holds if ι is given by an ideal point source (see
[33, 34]) and has the huge advantage that the difficult modeling or reconstruction of ι0 is
avoided.

The following sections build up on the work that has been published by us in [36,48]. We
study the validity of the product approximation in the detector plane in case of extended
source sizes by providing a rigorous error estimate which also identifies the relevant ex-
perimental parameters. Moreover, in Section 2.3 we verify our conditions by numerical
simulations. The physical experiments in this chapter were conducted by A.-L. Robisch,
J. Hagemann, and T. Salditt with the help of M. Bartels, M. Krenkel, and C. Olendrowitz,
all from the Institute for X-ray Physics, Göttingen.

2.1 Motivation

Let us start with two experimental results illustrating the influence of the concrete exper-
imental setup on the validity of this product approximation in the detector plane.
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In the first example, shown in Figure 2.1, the distortions of the inhomogeneous illumina-
tion ι : R3 → C which are caused by imperfections within the focusing system still occur
after the division of the measured intensities in presence of the object by the intensities
of the empty beam field. Here the sample is given by a C. elegans nematode, prepared
by high-pressure freezing and epon-embedding, placed on a 1 mm thick glass [59]. The
experiment was carried out at the Göttingen Instrument for Nano Imaging with coher-
ent X-rays (GINIX), which is installed at the undulator beamline P10 of the PETRA III
storage ring of the Deutsches Elektronen SYnchrotron (DESY). For previous cone-beam
reconstructions of the same object we refer to [49, 69]. The worm is partly illuminated
(near the end) by a monochromatic 7.9 keV beam (bandwidth 0.01%). A Kirkpatrick-
Baez (KB) mirror system focuses the beam horizontally and vertically to a source size of
422 × 185 nm (FWHM, horz x vert) with a distance R = 190 mm to the object plane. The
holograms, shown in Fig. 2.1 (a) and (b), were taken at a distance R + Γ = 5.4 m by a
scintillator-microscope-based (Optique Peter) detector equipped with a 20µm LuAG:Ce
scintillator (Crytur) using a PCO2000 CCD (2048 by 2048 pixels) in combination with a
4-fold magnifying objective (Olympus) at accumulation time of 2 s. So, we have a mag-
nification of M = 28.4. The camera’s physical pixel size of 7.4µm leads to pixel sizes
of 1.85µm in the detector plane and 65 nm in the object plane. Comparing the recorded
intensity measurements (see Fig. 2.1 (a) and (b)) for the object and the empty beam to the
result (Fig. 2.1 (c)) of the division of both, we see that the strong artifacts caused by both
mirror imperfections and dirt on different vacuum windows (KB chamber, flight tube) not
only occur in the holograms (a) and (b) but still clearly appear after the empty beam cor-
rection in the area of the worm. Although in the less interesting region which carries no
object information the artifacts seem to ’divide out’, the described approximation is not
applicable in this example.

On the other hand, [59] provides examples for the empty beam correction performing
well. Besides cleaner windows and optimization of parameters like the photon energy or
the sample distance R the main reason for the successive application there is probably the
use of a clean-up pinhole which compactifies the source size.

The influence of the source size is also studied by the second experimental example that is
shown in Figure 2.2. Here, in order to further reduce the source size generated by the KB
mirror system above, a lithographic bonded silicon channel [34,35] with a length of 1mm
and a cross-section size of 90 × 70 nm (horz x vert) is used. This in fact leads to a source
size smaller than the samples finest feature size of 50 nm where a Siemens star test pattern
(model ATN/XRESO-50HC, NTT-AT) consisting of a 200-nm-thick tantalum layer serves
as sample. It was positioned at R = 19.8 mm behind the waveguide exit. Compared to the
previous example we now obtain for the empty beam a hologram, shown in Figure 2.2 (a),
which comes very close to that of an ideal point source illumination. Also the intensity
data in presence of the sample and the result of the empty beam correction (see Figure 2.2
(b), (c)) look much cleaner so that in this case the product approximation in the detector
plane seems to be suitable. Note that due to the small source size all the structures of
the sample clearly occur in the holograms 2.2 (b) and (c). On the other hand, by causing
distortion through inserting a wavefront modifyer which consists of 2µm thick vertical
stripes fabricated in Tungsten a few mm behind the waveguide, we again obtain strongly
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(a) (b) (c)

Figure 2.1: Illustration of the described empty beam correction in a near field regime: The intensity
data of the pure object function (given by a part of a C. elegans, a transparent nematode) is
approximated by the quotient of the intensity data in presence of the worm (a) and the intensity
measurements of the empty beam (b). It can be seen that the intensity data in (a) is highly
distorted due to strong artifacts in the empty beam (b) caused by mirror imperfections and other
spurious elements such as dirt on vacuum windows. However, strong artifacts still appear in
the region with object information even after the division by the empty beam. So, the product
approximation in the detector plane is not satisfactory in this example. The square image size
corresponds to 133µm in the sample plane.

aberrated holograms not only for the empty beam and the object but also after the empty
beam division (see Figure 2.2 (d), (e), (f)).

Before studying the empty beam correction’s validity for extended source sizes, let us
formulate this product approximation in the detector plane in mathematical terms and
give, in analogy to [33,34], its motivation for ideal point source/plane wave illumination.
More generally, we show that the approximation is exact in this case not only for the
measured intensities but also for the propagated fields. Recall from Section 1.1.3 that if
the illumination ι is obtained by a perfect point source in (0, 0,−R) ∈ P−R we can assume
ι0 to be given as:

ι0(x′) = DR δ0(x′) =
−i κ
2πR

eiκRχ κ
R
(x′), x′ ∈ R2

and analogously in the detector plane PΓ we have (cf. Remark 1.1.4):

ι(x′,Γ) = DΓ ι0(x′) = DR+Γ δ0(x′) =
−i κ

2π (R + Γ)
eiκ(R+Γ)χ κ

R+Γ
(x′), x′ ∈ R2.

Using the projection approximation (1.10) as well as χ κ
MΓ

(x′) = χ Mκ
Γ

(
x′
M

)
for x′ ∈ R2 we

end up with an exact product approximation in terms of the Fresnel approximation:

DΓ u0
(
x′

)
=

(
−iκ
2π

)2 1
R Γ

eiκ(R+Γ)
(
F χ M κ

Γ
O
) ( κ

Γ
x′

)
=

(
−iκ

2π (R + Γ)
eiκ(R+Γ)χ κ

R+Γ
(x′)

) (
−iκ M
2πΓ

χ κ
MΓ

(r′) F
(
χ κM

Γ
O
) ( κ

Γ
x′

))
= eiκ Γ

M DΓ ι0
(
x′

)
D Γ

M
O

(
x′

M

)
x′ ∈ R2.

(2.1)
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(a) (d)

(b) (e)

(c) (f)

Figure 2.2: Illustration of the described empty beam correction with a fine structured Siemens star
as test pattern. While in the left column the holograms are given for a nearly ideal spherical or
parallel beam (depending on the geometry concerned) in the right column the beam is deliber-
ately scrambled by a wavefront modifyer in form of W stripes positioned a few mm behind the
waveguide. From top to bottom the images show the empty beam hologram ((a), (d)), intensity
data of the sample ((b),(e)), and the result of empty beam correction ((c),(f)), respectively. One
pixel corresponds to 25.5 nm in the object plane.

Note that D Γ
M
O

(
x′
M

)
= DΓeff O

(
x′eff

)
describes the propagated object function O in the

effective geometry (x′eff ,Γeff ) ∈ 1
MPΓeff as introduced in Section 1.1.3. By taking the mod-

ulus square of (2.1) we obtain the validity of the product approximation for the detected
intensities which is investigated here:

∣∣∣DΓ u0
(
x′

)∣∣∣2 =
∣∣∣DΓ ι0

(
x′

)∣∣∣2 ∣∣∣∣∣∣D Γ
M
O

(
x′

M

)∣∣∣∣∣∣2 x′ ∈ R2. (2.2)
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R

A

Figure 2.3: Illustration of the assumed setup with an extended x-ray source size A.

2.2 Error estimate

Now our aim is to gain deeper insight on the validity of (2.2) by considering more general
illumination functions ι0. As in particular the source size seems to be a critical parameter,
we study this prediction by the following assumption:

Assumption 2.2.1. Let ι0 be generated by the extended source A = [−a, a]2 × {−R} ∈ P−R

with diameter a ≥ 0 and R > 0 in the form that it is the Fresnel approximation of a source
function ωA : P−R → C ∈ L1(R2) supported in A (in the sense of Lemma (1.1.8) where we
identify the regular distribution TωA ∈ E

′ with ωA ):

ι0(x′) = DR (ωA) (x′) =
−ik
R

eiκR χ κ
R

(
x′

) (
F

(
χ κ

R
ωA

)) ( κ
R

x′
)
, x′ ∈ R2. (2.3)

So, ι0 is a C∞-function and due to [31, Lemma 8.4.1] it is also a multiplier on S ′
(
R2

)
.

Since there are delta sequences (δn)n∈N ⊂ L1(R2) converging to δ0 in E′ as n → ∞,
the case of point source illumination ι0 = DR δ0 studied above is a boundary value of
this assumption. Figure 2.3 sketches the setup. Furthermore, we define a dimensionless
parameter depending on the object function O. For this purpose, we state in analogy to
Assumption 1.1.9 that for a known constant C ≥ 0 the function Õ = O−C ∈ L2([−rO, rO])
is compactly supported. Then the Fourier transform F Õ is integrable and F Õ(x′) tends
to 0 as |x′| → ∞, where Õ’s degree of smoothness determines the rate of decay. Note that
due to

DΓ(ι0 O)
DΓ ι0

=
DΓ(ι0 Õ)
DΓ ι0

−C

studying the empty beam correction with respect to Õ is as interesting as with respect to
O. It might be even more practical since the reconstruction of Õ from

∣∣∣DΓ Õ
∣∣∣2 , which also

givesO, could be performed without applyingD to a distribution but to a L2(R2)-function.
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Assumption and Definition 2.2.2. Under the assumption that there is a constant C ≥ 0
such that Õ B O −C ∈ L2(R2) is compactly supported in a rectangle [−rO, rO] we define
for any spatial frequency ρ > 0 the finite parameter

εO (ρ) B

∫
‖ξ′‖l1>ρ

|(F Õ)(ξ′)| dξ′∫
R2 |(F Õ)(ξ′)| dξ′

. (2.4)

Although the compactly supported function Õ can not be band-limited, we can assume
F Õ to vanish almost outside a rectangle

{
ξ′ ∈ R2 | ‖ξ′‖l1 ≤ ρ0

}
with some ρ0 > 0. This

implies εO (ρ0) ≈ 0. Noting that a rotation by 45 degrees turns
{
ξ′ ∈ R2 | ‖ξ′‖l1 ≤ ρ0

}
into[

−
ρ0√

2
, ρ0√

2

]2
, we obtain from the Appendix A.2 that ρ0 is related via ρ0√

2
= π N

2rO to the grid{
2rO
N j | j ∈ ∆N

}
which discretizes the support [−rO, rO]. As the value pX =

2rO
N defines the

corresponding pixel size we conclude that the parameter ρ0 is reciprocal to the smallest
relevant feature size of the object.

With these definitions our main result with respect to empty beam correction reads as
follows:

Theorem 2.2.3. Under the assumptions (2.2.1) and (2.2.2) the dimensionless parameters
εO given by Equation (2.4) and

εA(ρ) B
Γ

R M
a ρ =

Γ

R + Γ
a ρ, ρ > 0

determine the validity of the product approximation in the detector plane PΓ

DΓ

(
ι0 Õ

) (
ξ′
)
≈ e−iκ Γ

M DΓ ι0
(
ξ′
)
D Γ

M
Õ

(
1
M
ξ′
)
, ξ′ ∈ R2 (2.5)

by the error estimate:∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′) − e−i κ Γ

M DΓι0(ξ′)D Γ
M
Õ

(
1
M ξ
′
)∣∣∣∣

κ
4π2(R+Γ)

(∫
A |ωA(r′)| dr′

) (∫
R2 |(F Õ)(y′)| dy′

) ≤ inf
ρ>0

(εA (ρ) + 2 εO (ρ)) . (2.6)

Proof. First of all, let us expand the Fresnel approximation of the empty beam ι0 as well
as of the product ι0 Õ ≈ u0 in the detector plane PΓ where ι0 is given by Equation (2.3).
By applying Fouriers convolution theorem (A.4) (for distributions) as well as

F T
(
cx′

)
=

1
c2 F T

(
x′

c

)
, x′ ∈ R2,T ∈ S ′

(
R2

)
, c ∈ R,

the propagated illumination function reads:

DΓ(ι0)(ξ′) =
−κ2

RΓ
eiκ(R+Γ) χ κ

Γ
(ξ′) F

(
χ κ

R + κ
Γ

(
F

(
χ κ

R
ωA

) ( κ
R
·

))) (
κ

Γ
ξ′
)

=
−k
Γ

eiκ(R+Γ) χ κ
Γ
(ξ′)

(
F

(
χ κ

R + κ
Γ

)
∗ χ κ

R
ωA

(
−

R
κ
·

)) (
κ

Γ
ξ′
)

ξ′ ∈ R2.

(2.7)
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With the help of Lemma 1.1.3 we obtain for the Fourier transform of the chirp function
χ κ

R + κ
Γ

= χ κ
Γ

M an expansion analog to (1.5):

F χ κ
Γ

+ κ
R

(
κ

Γ
ξ′ − z′ − y′

)
=
−i k M

Γ
F χ κ

Γ
+ κ

R

(
κ

Γ
ξ′ − z′

)
ei Γ

κ M y′·( κ
Γ
ξ′−z′) F χ κ

Γ
+ κ

R

(
y′

)
for all ξ′, y′, z′ ∈ R2. Substituting this in the Fresnel propagation of ι0 Õ we end up with

DΓ

(
ι0 Õ

)
(ξ′) =

−κ2

R Γ
eiκ(R+Γ) χ κ

Γ
(ξ′) F

(
Õ χ κ

Γ
+ κ

R

(
F

(
χ κ

R
ωA

) ( κ
R
·

))) (
κ

Γ
ξ′
)

=
−R

4π2 Γ
eiκ(R+Γ) χ κ

Γ
(ξ′)

(
F

(
Õ
)
∗ F

(
χ κ

Γ
+ κ

R

)
∗
(
χ κ

R
ωA

) (
−

R
κ
·

)) (
κ

Γ
ξ′
)

=
−R

4π2 Γ
eiκ(R+Γ) χ κ

Γ
(ξ′)

∫
R2

∫
R2
F Õ

(
y′

)
F χ κ

Γ
M

(
κ

Γ
ξ′ − z′ − y′

) (
χ κ

R
ωA

) (
−

R
κ

z′
)

dy′ dz′

=
i κR M
4π2 Γ2 eiκ(R+Γ) χ κ

Γ
(ξ′) (2.8)∫

R2

∫
R2

k(y′, ξ′, z′) F Õ
(
y′

)
F χ κ

Γ
M

(
y′

)
F χ κ

Γ
M

(
κ

Γ
ξ′ − z′

) (
χ κ

R
ωA

) (
−

R
κ

z′
)

dy′ dz′ (2.9)

where
k(ξ′, y′, z′) B ei Γ

κ M y′·( κ
Γ
ξ′−z′).

This step is justified by equation (A.4), [31, Remark p. 103] and Lemma 1.1.8. Now we
observe that the two variables y′ and z′ are only coupled by the first factor in line (2.9)
that is given by the function k. Therefore, we consider the case of εA(ρ) =

Γ a ρ
R M � 1 and

εO(ρ) � 1 which yields the approximation

ei Γ
κ M y′·( κ

Γ
ξ′−z′) ≈ ei 1

M y′·ξ′ , for
R
κ

z′ ∈ A = [−a, a]2, ‖y′‖l1 = |y1| + |y2| ≤ ρ. (2.10)

In fact, this uncoupling together with (2.7) and the representation

D Γ
M
Õ

(
1
M
ξ′
)

=
−i R M

2πΓ

(
Õ ∗ χ κ

Γ
M

) ( 1
M
ξ′
)

=
−i R M

2πΓ
F −1

(
F Õ F χ κ

Γ
M

) ( 1
M
ξ′
)

(2.11)

lead to a product approximation in PΓ:

DΓ

(
ι0 Õ

) (
ξ′
)

≈
i κR M
2πΓ2 eiκ(R+Γ) χ κ

Γ
(ξ′) F −1

(
F Õ F χ κ

Γ
M

) ( 1
M
ξ′
) (
F

(
χ κ

Γ
M

)
∗ χ κ

R
ωA

(
−

R
κ
·

)) (
κ

Γ
ξ′
)

= e−i κ Γ
M D Γ

M
Õ

(
1
M
ξ′
)
DΓ (ι0)

(
ξ′
)
.

Now we take this approach as a guideline to estimate the pointwise error

ε(ξ′) B

∣∣∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′) − e−i κ Γ

M D Γ
M
Õ

(
1
M
ξ′
)
DΓι0(ξ′)

∣∣∣∣∣∣ .



32 Validity of the empty beam correction in near field imaging

Inserting (2.7), (2.9), and (2.11) into this pointwise error and using the the identities∣∣∣F χ κ
Γ

M

∣∣∣ ≡ Γ
κM and

∫
(κ/R)A

∣∣∣∣ωA

(
−R
κ
z′
)∣∣∣∣ dz′ = (κ/R)2

∫
A |ωA(r′)| dr′ we obtain:

ε(ξ′) ≤
κRM
4π2 Γ2

∫
R2

∣∣∣∣∣F χ κ
Γ

M

(
κ

Γ
ξ′ − z′

)∣∣∣∣∣ ∣∣∣∣∣(χ κ
R
ωA

) (
−

R
κ

z′
)∣∣∣∣∣∫

R2

∣∣∣∣ei 1
M y′·ξ′

∣∣∣∣ ∣∣∣∣e−i Γ
κ M y′·z′ − 1

∣∣∣∣ ∣∣∣F Õ (
y′

)∣∣∣ ∣∣∣F χ κ
Γ

M
(
y′

)∣∣∣ dy′ dz′

≤
κ

4π2MR

(∫
A

∣∣∣ωA(r′)
∣∣∣ dr′

)
sup

z′∈(κ/R)A

(∫
R2

∣∣∣∣e−i Γ
κ M y′·z′ − 1

∣∣∣∣ ∣∣∣F Õ (
y′

)∣∣∣ dy′
)
.

(2.12)

Moreover, for any ρ > 0 we have

sup
‖y′‖l1≤ρ, z′∈(κ/R)A

∣∣∣∣e−i Γ
κM y′·z′ − 1

∣∣∣∣ = sup
‖y′‖l1≤ρ, r′∈A

∣∣∣∣e−i Γ
R+Γ

y′·r′ − 1
∣∣∣∣ ≤ sup

|t|≤εA(ρ)

∣∣∣eit − 1
∣∣∣

= sup
|t|≤εA(ρ)

∣∣∣∣∣∣
∫ t

0
ieis ds

∣∣∣∣∣∣ ≤ sup
|t|≤εA(ρ)

∫ t

0

∣∣∣ieis
∣∣∣ ds = εA(ρ)

and thus the second integral on the right hand side of Equation (2.12) can be bounded as
follows

sup
z′∈(κ/R)A

∫
R2

∣∣∣∣e−i Γ
κ M y′·z′ − 1

∣∣∣∣ |F Õ (
y′

)
| dy′ ≤ εA(ρ)

∫
R2
|F Õ(y′)| dy′ + 2

∫
‖y′‖l1>ρ

|F Õ
(
y′

)
| dy′

≤ (εA(ρ) + 2εO (ρ))
∫
R2
|F Õ(y′)| dy′.

Inserting the last estimate in (2.12) completes the proof. �

First of all, note that by the inequalities

|DΓ ι0(y′)| =
∣∣∣DR+Γ ωA(y′)

∣∣∣ =
κ

2π(R + Γ)

∣∣∣∣∣∫
R2
χ κ

Γ

(
y′ − ξ′

)
ωA(ξ′) dξ′

∣∣∣∣∣
≤

κ

2π(R + Γ)

∫
A

∣∣∣ωA(ξ′)
∣∣∣ dξ′, y′ ∈ R2

∣∣∣∣D Γ
M
Õ

(
1
M z′

)∣∣∣∣ ≤ 1
2π

∫
R2

∣∣∣∣χ− Γ
κ M

(ξ′) F Õ(ξ′)
∣∣∣∣ dξ′ =

1
2π

∫
R2

∣∣∣F Õ(ξ′)
∣∣∣ dξ′, z′ ∈ R2

(2.13)

we obtain a natural connection between the left hand side of our error estimate (2.6) and
the relative error

δ(ξ′) B

∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′) − e−i κ Γ

M DΓ ι0(ξ′)D Γ
M
Õ

(
1
M ξ
′
)∣∣∣∣

sup
y′∈R2
|DΓι0(y′)| sup

z′∈R2

∣∣∣∣D Γ
M
Õ

(
1
M z′

)∣∣∣∣ , ξ′ ∈ R2. (2.14)

In particular, if the values a and ρ0 or the parameters f = κ
R+Γ

and f = Γ
κ M of the corre-

sponding chirp function are sufficiently small these inequalities provide a good estimate
of the denominator

d =
κ

4π2(R + Γ)

(∫
A
|ωA(r′)| dr′

) (∫
R2
|(F Õ)(y′)| dy′

)
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in Equation (2.6). So, in these cases the error (2.6) can really be seen as a relative error.

Now let us discuss the right hand side of (2.6). While obviously the source size a should
be small to ensure validity of the product approximation (2.5) in the detector plane, stating
a condition with respect to ρ is more complicated since the parameter εA(ρ) is increasing
in ρ while εO(ρ) is decreasing. Under the assumption from above that there is a critical
size ρ0 of relevant Fourier components in Õ such that εO(ρ0) ≈ 0 we obtain for Γ

R+Γ
< 1

the simple error bound:∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′) − e−i κ Γ

M DΓ ι0(ξ′)D Γ
M
Õ

(
1
M ξ
′
)∣∣∣∣

κ
4π2(R+Γ)

(∫
A |ωA(r′)| dr′

) (∫
R2 |(F Õ)(y′)| dy′

) ≤ ρ0 a, ξ′ ∈ R2.

This implies the condition ρ0 to be small. More precisely, in order to ensure the approx-
imation’s validity, the source size a of the illumination should be much smaller than the
size ∆xO B

√
2 π
ρ0

of the smallest relevant feature in the object.

Next we state an error estimation for the measured intensities. Setting

r B inf
ρ>0

(εA (ρ) + 2 εO (ρ)) ,

we derive from inequalities (2.6) and (2.13) with the help of∣∣∣|a|2 − |b|2∣∣∣ ≤ |a − b| |a + b| ≤ |a − b| (2|b| + |a − b|) for any a, b ∈ C

the following inequality:∣∣∣∣∣∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′)

∣∣∣2 − ∣∣∣D Γ
M
Õ

(
1
M
ξ′
) ∣∣∣2 ∣∣∣DΓ ι0(ξ′)

∣∣∣2∣∣∣∣∣∣ ≤ d r
(
2
∣∣∣D Γ

M
Õ

(
1
M
ξ′
) ∣∣∣ ∣∣∣DΓ ι0(ξ′)

∣∣∣ + d r
)

≤ d2
(
2r + r2

)
.

Moreover, this estimation can be simplified in the relevant case of r ≤ 1 by using r2 ≤ r.

Corollary 2.2.4. In addition to the assumptions of Theorem 2.2.3, suppose that the right
hand side of (2.6) given by inf

ρ>0
(εA (ρ) + 2 εO (ρ)) is less or equal to 1. Then the error of the

product approximation with respect to the measured intensities is bounded for all ξ′ ∈ R2

by ∣∣∣∣∣∣∣DΓ

(
ι0 Õ

)
(ξ′)

∣∣∣2 − ∣∣∣D Γ
M
Õ

(
1
M ξ
′
) ∣∣∣2 ∣∣∣DΓ ι0(ξ′)

∣∣∣2∣∣∣∣
κ2

16π4(R+Γ)2

(∫
A |ωA(r′)| dr′

)2 (∫
R2 |(F Õ)(y′)| dy′

)2 ≤ 3 inf
ρ>0

(εA(ρ) + 2 εO (ρ)) . (2.15)

For numerical reasons we also like to state Theorem 2.2.3 in the effective geometry with
coordinates (cf. Section 1.1.3)

x′eff B
x′

M
, Γeff B

Γ

M
.
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For this purpose, we rewrite the propagated empty beam field ι0 = DΓωA given by (2.3)
in the form of Equation (1.18):

ι0 = χ κ
R

P, with P(x′) =
−iκ
R

eik R F
(
χ κ

R
ωA

) ( κ
R

x′
)
, x′ ∈ R2. (2.16)

Due to Lemma 1.1.8 the envelope P is a C∞(R2)-function with TP ∈ S ′
(
R2

)
. Then

conclude from
F P(ξ′) =

−iR
κ

eik R χ κ
R
ωA

(
−

R
κ
ξ′
)
, ξ′ ∈ R2 (2.17)

that the Fourier transform of P is compactly supported in [−b, b]2 with b B κ a
R .

Corollary 2.2.5. In addition to Assumption 2.2.2, suppose that the illumination ι0 = χ κ
R

P
in the object plane P0 is given by a band limited probe field P ∈ S ′

(
R2

)
with bandwidth

b = κ a
R and F P ∈ L1([−b, b]2). Then we have for any x′eff ∈

1
MR

2 the following error
estimate∣∣∣∣DΓeff (P Õ)(x′eff ) − e−iκΓeffDΓeff Õ(x′eff )DΓeff P(x′eff )

∣∣∣∣
1

4π2

(∫
R2 |F P(r′)| dr′

) (∫
R2 |F Õ(y′)| dy′

) ≤ inf
ρ>0

(
ρb

Γeff

κ
+ 2 εO (ρ)

)
. (2.18)

Proof. Obviously there is an one-to-one correspondence between the probe field P given
by (2.16) with F TP ∈ E

′ and the source function ωA which we consider as the regular
distribution TωA ∈ E

′. With the additional assumption ωA,F P ∈ L1(R2), Equation (2.17)
yields ∫

R2
|ωA(r′)| dr′ =

R
κ

∫
R2
|F P(r′)| dr′.

Now, the assertion immediately follows by inserting a = Rb
κ

as well as the representation
(1.20) of the Fresnel propagations forDΓ ι0 andDz2 (ι0Õ) into Equation (2.6). �

Let us interpret the area
{
ξ′ ∈ R2 | ‖ξ′‖l1 ≤ ρ0

}
with diameter ρ0 =

√
2 π

∆xO
given by the finest

relevant feature size ∆xO of the object as the support of F Õ. Then a remarkable fact of
the error estimate (2.18) in near field imaging is that the roles of P and Õ are completely
symmetric within this inequality where one support can be transformed into the other by
using a 45 degree rotation. So, analogously, we define the finest relevant feature size
∆xP of the probe P which is related via (the Nyquist sampling rate):

∆xP =
π

b
=
πR
κ a

to the support size a. Then we see that up to a factor
√

2 also the corresponding support
sizes a and ρ are interchangeable in Corollary 2.2.5. Usually the parameters ∆xO and
∆xP coincide with the ”correlation lengths“, i.e. the typical length scales over which P
and Õ vary.
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2.3 Numerical results

Based on the theory developed in the previous section, we now evaluate the results by
numerical examples. From Theorem 2.2.3 we obtain the parameters ρ0 and a to be critical
for the validity of the product approximation (2.5) so that their influence is of special
interest for us. As we are considering a near field regime where it is numerically favorable
to represent the Fresnel propagator in an effective geometry, we in particular focus on the
error estimate given by Corollary (2.2.5). In this parallel beam case the source size a finds
its expression in the bandwidth b = κ a

R of the probe field P. Moreover, the parameters b
and ρ0 are enclosed in the corresponding correlation lengths ∆xP and ∆xO . In order to
be independent from the sharpness of the inequalities (2.13), we study the relative error δ
given by Equation (2.14) instead of the right hand side of (2.18). Note from the proof of
Corollary (2.2.5) that with respect to an effective geometry δ reads:

δ(r′) =

∣∣∣∣DΓeff (P Õ)(r′eff ) − e−iκΓeffDΓeff Õ(r′eff )DΓeff P(r′eff )
∣∣∣∣∥∥∥DΓeff P

∥∥∥
∞

∥∥∥DΓeff Õ
∥∥∥
∞

.

Introducing the ’effective’ Fresnel number feff B
κ
(
r2

X,1,r
2
X,2

)
Γeff

and assuming ε(ρ0) = 0, Equa-
tion (2.6) yields

δ(r′) ≤
√

2
4 ‖feff ‖l1

rX

∆xP
·

rX

∆xO

(∫
R2 |F P(k′)| dk′

) (∫
R2 |F Õ(k′)| dk′

)∥∥∥DΓeff P
∥∥∥
∞

∥∥∥DΓeff Õ
∥∥∥
∞

. (2.19)

In order to create probe fields P which differ only in their bandwidth b, we filter a ’fine
structured’ complex function P̃ by sinc filters with different cutoff frequencies b:

P = F −1
(
1[−b,b]2 • F P̃

)
,

where 1[−b,b]2 (x′) is 1 if x′ ∈ [−b, b]2 and vanishes otherwise. The amplitude of P̃
is chosen to be Dürer’s Melencolia I, see Figure 2.4 (b), while an image of a man-
drill, depicted in Figure 2.4 (a), serves as the phase. The resolution of the images is
512 × 512 pixels and they are padded with ones (for the amplitude image) and zeros
(for the phase image) to obtain a resolution of 2048 × 2048 pixels in time and Fourier
space, respectively. Then we vary b in the range between 1 and 1024 pixels in the Fourier
domain. We assume that the distances are R = 6 mm and Γ = 519 mm, the wavenum-
ber is κ = 86 nm−1, and the pixel size is 2.2µm yielding an effective pixel size of 25
nm. Therefore, the effective source size a = Rb

κ
corresponding to b is in the interval

[9 nm, 8748 nm]. As sample we choose a pure phase object where the phase is a grating
in [−0.3, 0] with structure size ∆xO = 8, 16, 32, 128 px generated by sine functions (see
Figure 2.4 c) for ∆xO = 32 px). According to our theory, in this example one clearly
obtains aberrations in the approximation

∣∣∣DΓeff P
∣∣∣−2 ∣∣∣DΓeff PO

∣∣∣2 (see Figure 2.4 f)) com-

pared to the true intensities
∣∣∣DΓeffO

∣∣∣2, shown in Figure 2.4 g). The corresponding error
|DzeffO(r′eff )|2−|Dzeff (P ·O)(r′eff )|2 |Dzeff (P)(r′eff )|−2 is depicted in Figure 2.4 i). By compar-
ison with the studied error δ (Figure 2.4 h)) we see that both terms have the same behavior
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Figure 2.4: Overview of the simulation setup and data generation. The resolution is 512×512 pix-
els. a) + b): Images of a mandrill and Dürer’s Melencolia I which serve as phase (in [−0.4, 0.4]
rad) and amplitude (in [0.8, 1.2]) for the complex (unfiltered) probe field P. c): Phases of the
object function where the feature size constant ∆xO is 32 pixels. d): Intensities |DΓeff P|2 where
the empty beam field is defined by a) and b). e): Intensities |DΓeff PO|2. f): Result of the empty
beam correction, i.e. e) divided by d). g): Intensities |DΓeffO|

2 which are supposed to be ap-
proximated by the empty beam correction. h): δ-error matrix as defined by Equation (2.14).
i): error matrix

∣∣∣(g) − (f)
∣∣∣. For better visual comparison of f) and g) the insets show a zoom into

the region indicated by a red square.
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Figure 2.5: Error δmax = max δ under the setup of Figure 2.4 for different correlation lengths
∆xO and bandwidths b given in units of pixels. In addition to b the x-label on top indicates the
corresponding effective source size a in nanometer.
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Figure 2.6: Illustration of the accuracy of the error estimate (2.19). log10 δmax is plotted versus
log10 of the minimum of the right hand side (RHS) of (2.19). The same color coding as in
Figure 2.5 is used. The purple solid curve is the identity.
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Figure 2.7: Influence of the empty beam correction on the reconstruction. Under the experimental
setup described above the (real valued) phase φ of the object function O(φ) = exp(iκφ) is the
Siemens star shown in (a). The illumination is given by a probe field P with different source
sizes a which is generated by filtering the ’Mandrill-Dürer-Probe’, from Figure 2.4. (d) are the
intensities |DΓeffO|

2 corresponding to plane wave illumination (a ≈ 0). (e) and (f) show the
empty beam corrected data for a = 183 nm and a = 4667 nm, respectively. (b) and (c) are the
reconstructions from this data (e) and (f), performed by the IRNM with αn = 0.01 0.5n−1 after
12 iterations.

and yield values in the same range. Note that as the object functions O of sine gratings
are sufficiently well-behaved we here considered O instead of Õ.

Based on the estimate (2.19), in Figures 2.5 and 2.6 we study the maximum error

δmax B max
ξ′∈M−1PΓeff

δ(ξ′)

(for the shifted object function Õ) with respect to the finest relevant feature sizes ∆xP and
∆xO. As expected, the error increases when either ∆xP or ∆xO is decreased. So, the
smaller the structures in the object, the more stringent is the requirement to keep the
correlation length ∆xP of the wavefront aberrations large or equivalently the source size
a small. This also means that for quite extended source sizes a it can not be assured that
small structures in the object will be transferred correctly after application of the empty
beam division. Note that the case of a plane wave illumination where a → 0 is well
captured. In Figure 2.6 we see that the right hand side of (2.19) provides a sufficiently
good upper bound of δwhere we can assume that the accuracy of (2.19) relies in particular
on the sharpness of the inequalities (2.13). The outliers where δmax vanishes belong to
the case of plane wave illumination and thus verify the proven exactness of the product
approximation in the detector plane for this case.
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Figure 2.8: Error δmax = max δ as the function of the bandwidth b for the object functionO (instead
of Õ) of a Siemens star test pattern (cf. Figure 2.7 (a)). The setup is described in Figure 2.7. In
addition to b, the x-label on top indicates the corresponding effective source size a in nanometer.

Figure 2.7 illustrates the influence of the error δmax which is given as a function of the
source size a on the reconstruction of a phase shifting Siemens star shown in (a). Although
the results of the empty beam correction in (e) and (f) (obtained for a = 183 nm and
a = 4667 nm, respectively) look quite similar to the exact intensities

∣∣∣DΓeffO
∣∣∣2 shown in

(d), the reconstructions differ considerably. Note that by the IRNM of the form

xn+1 = argmin
φ∈X

1
2

∥∥∥∥∥∥ |DΓeff PO|2

|DΓeff P|2
− TFresnel(φn) − T ′Fresnel[φn](φ − φn)

∥∥∥∥∥∥
2

Y

+
αn

2
‖φ‖2X ,

with αn B 0.01 2−n+1, X = l1.5, and Y = l2 we already used a method that takes noisy data
into account. The inner minimization problem is solved by the generalized Chambolle-
Pock algorithm CP-BS that will be introduced in Section 4.2. We applied the version
CP-BS 1 described in Theorem 4.2.1, with τ = 6 and σ = 0.96 ‖T ′Fresnel[φn]‖−2 τ−1. In
both cases (a = 183 nm and a = 4667 nm) we obtained after 12 IRNM iterations approxi-
mations which are closest to the true solution. So, this example underlines for δmax being
large the need of including further information on the illumination function in the recon-
struction process, e.g. the approximated source size. In this context, promising algorithms
for the simultaneous reconstruction of the empty beam ι0 and the object function by taking
intensity measurements at several distances have been proposed recently [36,64]. Figures
2.7 and 2.8 also illustrate that in order to predict the reconstruction’s quality the error
value δmax has to be considered in relation to the hologram’s contrast. Since the image
information is contained in the deviation of the pixel values (in the normalized hologram)
from unity amplitude, for the given weak object with an averaged contrast of 5% an error
δ of a similar, small level significantly deteriorates the reconstruction result.





3 Tikhonov-type regularization on Banach spaces

In the following section, we motivate iteratively regularized Newton-type methods (IRNM)
for solving nonlinear inverse ill-posed problems T x = yδ such as the phase retrieval prob-
lem introduced in the previous chapter. Then, in order to develop a method for the inner
convex optimization problems of the IRNM which consist of finding the minimizer of a
general linear Tikhonov-type functional

x 7→ S (yδ; Ax) + α R(x)

with a linear operator A and not necessary differentiable data misfit S (yδ; ·) and/or penalty
term R. Sections 3.2 and 3.3 provide the necessary definitions and results.

3.1 Tikhonov regularization and IRNM

First of all, let us consider a linear ill-posed problem given by the operator equation

T x = y,

where T : D(T ) ⊂ X → Y is a linear operator between the Banach spaces X and Y .
Moreover, as in applications the exact right-hand side y is usually not available, but only
noisy data yδ, we assume that our given data yδ ∈ Y might be disturbed with a noise level
δ > 0 such that the misfit between y and yδ, which is measured by some data fidelity
functional S̃ (yδ; ·) : Y → [0,∞], is bounded by δ > 0:

S̃ (yδ; y) ≤ δ.

However, due to the ill-posedness, the minimization problem

argmin
x∈X

S̃ (yδ; T x)

neither needs to be solvable nor stable. To overcome these drawbacks, we use a Tikhonov-
type regularization of the general form

xα = argmin
x∈X

S (yδ; T x) + α R(x), (3.1)

where α > 0 is the regularization parameter. The penalty term R : X → [0,+∞) as
well as the data fidelity functional S (yδ; ·) : Y → [0,+∞), most likely picked as S = S̃ ,
are chosen problem adapted and belong to the class Γ(X) and Γ(Y) of proper, convex,
and lower semicontinuous (l.s.c.) functions (see definitions in the next section). This
approach was introduced by Tikhonov ( [75, 76]) for a Hilbert space setting with special
interest in S and R given by Hilbert space norms: S (yδ; y) = ‖y−yδ‖2X and R(x) = ‖x−x0‖

2
Y .

However, there are a lot of applications where such a quadratic Tikhonov functional does
not adequately reflect the properties of the problem. That is for example the case if the
solution is known to have a blocky structure or is sparse, which is typically modeled by
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choosing the total variation, a non-Hilbertian-Sobolev norm, or the L1-norm as penalty
term R, respectively. For the same reasons, a general Banach space setting is preferable to
a Hilbert space setting. General Tikhonov-type regularization has been studied intensely
during the last decade. For instance, see [70] and the references therein for the case of
general penalties and norm monomials as data fidelity functionals, [82] for Kullback-
Leibler like data fidelity functionals, and [63] for the even more general theory of a vector
space setting. Under certain assumptions, including, inter alia, the existence of an exact
solution x ∈ D(T ) which is uniquely determined by the exact right hand side y = T (x),
the following properties of the Tikhonov-type regularization (3.1) can usually be shown
(cf. e.g. [63]):

• The method (3.1) is well-defined, i.e. for any α > 0 and yδ ∈ Y there exists a
minimizer xα ∈ X.

• The method (3.1) is stable in the sense that for any arbitrary α > 0 the minimizer
xα depends continuously on the data yδ.

• The method (3.1) converges in the sense that together with an appropriate parameter
choice α(δ, yδ), depending on the noise level δ and/or the given data yδ, or any
monotonically decreasing sequence of noise levels δk∈N ↘ 0 and any (noisy) data
sequence yδk∈N, with S (yδk; y) ≤ δk, the corresponding sequence xα,k converges to
the exact solution x, as k → ∞. Typically, a sufficient condition on the parameter
choice rule (independent of yδ) is:

α(δ, yδ)→ 0 and
δ

α(δ, yδ)
→ 0, as δ→ ∞.

This rule reflects the understanding that for less noise on the given data yδ also less
regularization of the problem is required.

Here, ’convergence’ does not necessarily mean strong convergence in the corresponding
Banach space, but it can also denote weak convergence of subsequences.

Example 3.1.1. As a simple illustration, let us consider a linear ill-posed problem T x = y
with convolution operator

T (x) : [−1, 1]→ R, T (x)(t) B
∫ 1

2

− 1
2

x(s) k(t − s) ds, k(t) B exp (−5|t|) (3.2)

and sparse solution x : [−1/2, 1/2] → R (see Figure 3.1). This sparsity constraint is in-
corporated by setting R(x) = ‖x‖L1([−0.5,0.5]) in (3.1). Moreover, as instead of the ex-
act data y, only data yδ distrubed by 18 % normal distributed noise is given, we choose
S (yδ; y) = 1

2‖y
δ−y‖2L2([−1,1]) as data fidelity functional. So, accordingly, X = Lr ([−1/2, 1/2]) ,

with r ∈ (1, 2] and Y = L2([−1, 1]) seems to be an appropriate setting. Figure 3.1 b) shows
the minimizer xα of the Tikhonov-type functional

x 7→
1
2
‖yδ − y‖2L2([−1,1]) + α‖x‖L1([− 1

2 ,
1
2 ])
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Figure 3.1: Sparse convolution problem: (a) exact solution, (b) reconstruction xα, (c) exact (blue)
and given (green) data, (d) reconstructed data.

for α = 5. Although we obtain the same xα for all preimage spaces X = Lr ([−1/2, 1/2]) ,
with r ∈ (1, 2], intuitively r close to 1 seems to be preferable. In fact, we will illustrate
that a problem adapted choice for X and Y will have positive effects on the performance
of our method for solving convex optimization problems of the form (3.1).

Now let us consider nonlinear inverse problems T x = y with a nonlinear Fréchet differen-
tiable operator T : D(T ) ⊂ X → Y . As e.g. also studied in [70, 82], for given (noisy) data
yδ the corresponding solution can similarly be approximated by the iteratively regularized
Newton-type method (IRNM)

xn+1 = argmin
x∈X

S (yδ; T (xn) + T ′[xn](x − xn)) + αn R(x) (3.3)

for some initial guess x0 ∈ X and positive regularization parameters (αn)n∈N which now
also depend on the iteration step n. The idea behind this method is to apply a Tikhonov-
type regularization not to the nonlinear operator equation T x = y, since this often leads to
a Tikhonov-type functional with local minima, but iteratively to the linearized versions

T (xn) + T ′[xn](x − xn) ≈ yδ, n ∈ N.

Based on the works [47,82,83], our interest in the IRNM is to use it for solving the phase
retrieval problems introduced in Section 1.1. Under appropriate conditions, one typically
obtains the following properties of the IRNM equipped with a parameter choice rule for
αn(δ, yδ) (cf. [82]):
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• The IRNM (3.3) is well-defined, i.e. for any iteration step n ∈ N and any yδ ∈ Y
there exists a minimizer xn+1.

• The method (3.3) converges for exact data in the sense that if yδ = y there either
exists a finite index N ∈ N such that xN coincides with the exact solution x, or the
sequence (xn)n∈N converges to x, as n turns to∞.

• The method (3.3) converges for noisy data in the sense that together with an ap-
propriate rule for a stopping index N(δ, yδ) ∈ N for any monotonically decreasing
sequence of noise levels δk∈N ↘ 0 and (noisy) data yδk∈N, with S (yδk; y) ≤ δk the
corresponding sequence xN(δk ,yδk) converges to the exact solution x, as k → ∞.

Typically, the parameter choice rule for αn(δ, yδ) has to satisfy the following condition:

α0 ≤ 1, 1 ≤
αn(δ, yδ)
αn+1(δ, yδ)

≤ C for n ∈ N, αn(δ, yδ)↘ 0 as n→ ∞,

for some constant C ≥ 1. Moreover, with the help of source conditions or variational
inequalities, also convergence rates have been proven. But, as already mentioned in Sec-
tion 1.1, in order to apply the IRNM with the non-quadratic data fidelity term (1.28) and
very general penalty term we also need a quite general method for solving the inner min-
imization problem. To this end, we rewrite this optimization problem in the common,
basic form

x̄ = argminx∈X (g(T x) + f (x)) , (P)

where g = S (yδ; ·) and f = αR. Together with standard assumptions given by the IRNM
and its application to phase retrieval problems we consider a problem which frequently
arises in many other contexts as well. For example, common approaches in image deblur-
ring (e.g. the ROF model [68] ) or sparse signal restoration (e.g. the LASSO problem [74])
can be interpreted as Tikhonov-type regularizations of the form (3.1) (covered by (P)). In
order to formulate the corresponding assumptions and to present a method for solving
(P), we will need some basic definitions and results from convex analysis.

3.2 Duality theory for linear Tikhonov-type regularization

The following basics from convex analysis on Banach spaces can be found e.g. in [5,
86]. As above, we assume X, Y , and Z to be reflexive and real Banach spaces with
corresponding norms given by ‖ · ‖X , ‖ · ‖Y , and ‖ · ‖Z , respectively. Z∗, equipped with the
norm

‖z∗‖Z∗ = sup {|z∗(z)| = |〈z, z∗〉Z | | z ∈ Z, ‖z‖Z = 1} ,

denotes the corresponding topological dual space of such a Banach space Z, paired by
〈·, ·〉Z : Z × Z∗ → R. Moreover, we introduce the set R B R ∪ {±∞} of real numbers
extended by +∞ and −∞.
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3.2.1 The class of proper, convex and lower semicontinuous functions

First of all, let us define some key properties of data fidelity functionals g = S (yδ; ·) :
Y → R and penalty terms f = αR : X → R.

Definition 3.2.1 ( [5] Def. 1.1, Prop. 1.2). A function h : A→ R given on a convex subset
A of Z is called convex if for any z, u ∈ A and any λ ∈ [0, 1] the following inequality holds:

h(λz + (1 − λ)u) ≤ λh(z) + (1 − λ)h(u).

If this inequality strictly holds for all z , u we call h strictly convex. Equivalently, convex-
ity of h is given if and only if its epigraph epi h B {(z, α) ∈ A × R | h(z) ≤ α} is a convex
subset of A × R .

With respect to Tikhonov-type functionals it makes no sense to consider functions f , g
taking the value −∞. Therefore we introduce the following property:

Definition 3.2.2. A convex function h : Z → R is called proper if for any point z ∈ Z we
have h(z) > −∞ and there is at least one point z ∈ Z where h(z) is different from +∞.

Assuming f and g to be proper and convex and at least one of the functions x 7→ g(T x)
or f to be even strictly convex ensures the uniqueness of the minimizer of the then also
strictly convex function F : x 7→ (g(T x) + f (x)):

Theorem 3.2.3. Let both f : X → R and g : Y → R be proper and convex and
T : X → Y a linear, bounded operator. Then every local minimum of the convex function
F : x 7→ (g(T x) + f (x)) is also a global minimum of F. Moreover, the set of minimizers{

x̄ ∈ X | x̄ = argminx∈X (g(T x) + f (x))
}

is convex. If in addition f is strictly convex or g is strictly convex and T is injective, then
F has at most one global minimum.

Proof. It is easy to see that the sum F of the two convex functions f and g(T ·) is convex
as well. Moreover, F is strictly convex if one of the conditions of the last assertion is
satisfied. With this knowledge the assertions are given by Propositions 2.5.6 and 2.5.8.
in [86]. �

Moreover, we want to allow f and g to be discontinuous in a certain manner.

Theorem and Definition 3.2.4. A function h : Z → R is called lower semicontinuous
(l.s.c) if one of the following equivalent conditions holds true:

• For any z ∈ Z and any sequence (zn)n∈N ⊆ Z converging (with respect to ‖ · ‖Z ) to z
as n→ ∞, we have

lim inf
n→∞

h(Zn) = h(z).
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• For any α ∈ R the level set Lα B {z ∈ Z | h(z) ≤ α} is closed.

• The epigraph epi f is closed in Z × R.

Proof. See e.g. Definition 1.2. and Proposition 1.3 in Chap. 2 of [5]. �

Now that we have defined all the properties that f and g should satisfy, we introduce
for any reflexive Banach space Z the set of proper, convex and lower semicontinuous
functions

Γ(Z) B
{
h : Z → R | h is proper, convex and l.s.c

}
and assume f ∈ Γ(X) and g ∈ Γ(Y). It is easy to check that then also the sum

x→ g(T x) + f (x)

belongs to the class Γ(X).

Example 3.2.5. The following typical choices for f and g are proper, convex and l.s.c:

(i) For any Banach space Z and any exponent r ≥ 1 the norm monomial ‖ · ‖rZ : Z → R
belongs to Γ(Z).

(ii) The indicator function

χC : Z → R, χC(z) =

0 z ∈ C
+∞ otherwise.

(3.4)

of a set C ⊂ X belongs to Γ(Z) if and only if C is nonempty, convex and closed.

(iii) For any N ∈ N2 and any yδ ∈ Y = lr
∗

(4N) with yδi ≥ 0 for any index i ∈ N and r∗ > 1
the function klN

(
yδ; ·

)
: Y → R given by Equation (1.26) belongs to Γ(Y).

Proof. The first assertion directly follows from the triangle inequality and the convexity
and continuity of z 7→ |z|r. For the second assertion we consider the epigraph epiχC ,
which is convex and closed if and only if C has the same properties. klN

(
yδ; ·

)
is convex

since it is a linear combination of the convex functions a 7→ a for a ≥ 0 and a 7→ − ln a
for a > 0. Similarly, it is lower semicontinuous as any summand

hi : yi 7→


yi − yδi ln (yi) , if yδi > 0 and yi > 0,
yi if yδi = 0 and yi ≥ 0
∞ otherwise,

is. Finally, because of −∞ < hi(yδi ) ≤ hi(yi) for all yi in the case of yδi > 0 and
hi(0) = 0 ≤ hi(yi) for all yi in the case yδi = 0 the function klN

(
yδ; ·

)
is proper. �
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3.2.2 Subdifferential and conjugate function

Next, we would like to characterize the solutions to the problem (P). For this purpose we
introduce the subdifferential which generalizes the derivative:

Definition 3.2.6. For a proper and convex function h : Z → R on a Banach space Z the
(possibly set-valued) subdifferential ∂h : Z ⇒ Z∗ of h is given by

∂h(z) B {z∗ ∈ Z∗ | 〈u − z, z∗〉Z ≤ h(u) − h(z), for all u ∈ Z} .

This definition directly yields the following necessary and sufficient condition for solu-
tions of convex minimization problems:

Theorem 3.2.7. (Theorem 2.5.7 [86]) Let h : Z → R be a proper and convex function.
Then x̄ ∈ Z with h(x̄) < ∞ is a minimizer of h if and only if 0 ∈ ∂h(x̄).

Proof. h(x̄) ≤ h(u) for all u ∈ Z is equivalent to 0 ≤ h(u) − h(x̄) for all u ∈ Z which holds
true if and only if 0 ∈ ∂h. �

One can show that a proper and convex function h : Z → R is subdifferentiable at a
point z ∈ Z if it is finite and continuous in z . Moreover, if h is continuous at a point
z ∈ Z and ∂h(z) is single valued, then also the Gâteaux derivative h′(z) exists in z with
∂h(z) = h′(z). On the other hand, if h is Gâteaux differentiable at a point z ∈ Z, the
derivative h′(z) coincides with the subdifferential at z. Thus, the subdifferential can be
seen as a generalized Gâteaux derivative.

Example 3.2.8. Let us consider the non-differentiable function h : R → R, h(x) = |x|
which obviously is in Γ(R). We have ∂h(x) = sign(x) for R\ {0} and ∂h(0) = [−1, 1]. So,
we see that in the origin the subdifferential corresponds to all lines passing h(0) = 0 which
lie completely under the graph of h, c.f. Figure 3.2. This statement applies accordingly to
all other points z ∈ R\ {0} where the subdifferential coincides with the Gâteaux derivative
and hence, is given by the tangent to h at z. Theorem 3.2.7 determines z = 0 as the unique
minimizer of h.

Proposition 3.2.9. The subdifferential of the norm monomial h2,Z(z) = 1
2 ‖z‖

2
Z is given by

∂h2,Z(z) =
{
z∗ ∈ Z∗ | 〈z, z∗〉Z = ‖z‖2Z = ‖z∗‖2Z∗

}
.

Proof. [cf. [5, p. 102]] Suppose that z∗ ∈ Z∗ satisfies 〈z, z∗〉Z = ‖z‖2Z = ‖z∗‖2Z∗ . Then for
any u ∈ Z we have

〈u − z, z∗〉Z ≤ ‖u‖Z ‖z‖Z − ‖z‖
2
Z =
−1
2

(‖u‖Z − ‖z‖Z)2 +
1
2
‖u‖2Z −

1
2
‖z‖2Z ≤ h2,Z(u) − h2,Z(z)

and hence z∗ ∈ ∂h2,Z(z). Conversely, assume that z∗ ∈ ∂h2,Z such that the inequality
〈u − z, z∗〉Z ≤ 1

2‖u‖
2
Z −

1
2 ‖z‖

2
Z holds true for any u ∈ Z. Substituting u = z + λv for λ > 0

and v ∈ Z yields

λ 〈v, z∗〉Z ≤
1
2

(
(‖z‖Z + λ ‖v‖Z)2 − ‖z‖2Z

)
≤ λ‖z‖Z ‖v‖Z +

λ2

2
‖v‖2Z .
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Figure 3.2: Illustration of the subdifferential

Then dividing by λ and taking the limit for λ → 0 leads to |〈v, z∗〉Z | ≤ ‖z‖Z ‖v‖Z for any
v ∈ Z. On the other hand, for u = (1 − λ)z with λ ∈ (0, 1) we obtain

−λ 〈z, z∗〉Z ≤
1
2

(
(1 − λ)2‖z‖2Z − ‖z‖

2
Z

)
≤ −

λ2

2
‖z‖2Z ,

and thus 〈z, z∗〉Z ≥ ‖z‖2Z . This proves the assertion. �

So, if Z is a Hilbert space, the subdifferential ∂h2,Z is the identity operator (cf. Theorem
3.3.6). This fact is in particular useful for minimizing problems of the form

argmin
z∈Z

τh(z) +
1
2
‖z − u‖2Z , (3.5)

on a Hilbert space Z where h ∈ Γ(Z), τ > 0 and u ∈ Z: Under the assumption that h is finite
and continuous at at least one point in Z we can apply the sum rule for the subdifferential.
Then because of 3.2.7, a solution x̄ ∈ Z to (3.5), which is unique due to Theorem 3.2.3,
satisfies

u ∈ (τ∂h + I) (x̄).

It is well-known ( [65]) that the operator (τ∂h + I) is bijective for any h ∈ Γ(Z) and any
τ > 0. Therefore its inverse (τ∂h + I)−1 : Z∗ = Z → Z, the resolvent of h, is well-
defined and single-valued. This well-established operator (τ∂h + I)−1 is also referred to
as proximity operator, abbreviated proxτ h, (see e.g. [26] and the references therein) and
can be interpreted as the generalization of the orthogonal projection

argmin
z∈C

‖z − u‖2Z = argmin
z∈Z

ιC(z) +
1
2
‖z − u‖2Z = (∂ιC + I)−1 (u)

onto convex sets C ⊂ Z. It is a major benefit that for a lot of interesting penalty terms and
data fidelity functionals the corresponding resolvent has a closed or at least “sufficiently
simple” form as the following example illustrates:
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Example 3.2.10. Let us consider the l1-norm h(z) =
∑N

i=1 |zi| on the N-dimensional
Hilbert space l2({1, . . .N}). Due to Example 3.2.8 the subdifferential reads as

(∂h(z))i =

sign(zi) zi , 0
[−1, 1] zi = 0,

where i ∈ {1, . . .N}. Therefore the resolvent for τ > 0 is given by the shrinkage operation(
(τ∂h + I)−1 (z∗)

)
i
= max

{
|z∗i | − τ, 0

}
sign(z∗i ) i ∈ {1, . . .N} .

As a second example we determine the resolvent of klN(yδ; ·) : l2(4N)→ R given by Equa-
tion (1.26) for some yδ ∈ l2(4N) with nonnegative entries and some N ∈ N2. Computing
the subdifferential at a point y in the effective domain

{
y ∈ l2(4N) | klN(y) < ∞

}
:

(
∂ klN(yδ; y)

)
i
= 1 −

yδi
yi

for yδi > 0, and
(
∂ klN(yδ; y)

)
i
= 1 for yδi = 0,

we see that at y the resolvent p̄ B
(
τ ∂ klN(yδ; ·) + I

)−1
(y) is the nonnegative solution of

(τ − yi) p̄i − τ yδi + p̄2
i = 0, i ∈ 4N,

and hence

p̄i =

((
τ ∂ klN(yδ; ·) + I

)−1
(y)

)
i
=

yi − τ +

√
(yi − τ)2 + 4 τ yδi

2
i ∈ 4N.

The obvious way of generalizing this concept of resolvents to Banach spaces is to replace
the Hilbert norm and space in (3.5) by a Banach norm ‖ · ‖Z and the corresponding Banach
space Z. Also the literature refers to this as resolvent on Banach spaces (cf. [23, p. 168],
[10]). However, we will proceed in a different way: On a Hilbert space Z we can apply
the polarization identity (see (3.14)) to Equation (3.5) yielding

(τ∂h + I)−1 (u) = argmin
z∈Z

τh(z) +
1
2
‖z‖2Z + 〈z, u〉Z . (3.6)

Accordingly, on a Banach space Z we consider the minimization problem

argmin
z∈Z

τ h(z) +
1
2
‖z‖2Z + 〈z, u〉Z (3.7)

where u ∈ Z∗.

But before we introduce this generalization in detail, let us come back to our functional
F : x→ (g(T x) + f (x)) ∈ Γ(X) which we want to minimize. Assuming that there is a
point u ∈ X where F is finite and continuous we can apply the sum rule as well as the
chain rule for subdifferentials to F:

∂F(x) = T ∗∂g(T x) + ∂ f (x), x ∈ X.
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Here T ∗ denotes the adjoint of T . So, in opposite to problem (3.5), for F it might be
difficult to compute the minimizer x̄ by the optimality condition 0 ∈ ∂F(x̄) as it depends
on both the subdifferentials of f and g linked with T and T ∗. To avoid this, it is a common
approach to utilize the relation between (P) and its so called Fenchel dual problem, which
will be defined in the following.

Theorem and Definition 3.2.11. For h : Z → R the function

h∗ : Z∗ → R, h∗(z∗) B sup
z∈Z
〈z, z∗〉Z − h(z),

is called conjugate or Fenchel conjugate of h. It has the following properties:

(i) h∗ is convex and lower semicontinuous in Z∗. Moreover, if h ∈ Γ(Z), then it follows
that h∗ ∈ Γ(Z∗).

(ii) Let h be proper, then h∗∗ = h holds true if and only if h ∈ Γ(Z).

(iii) If h is proper and convex, ∂h∗ coincides with the inverse of ∂h, i.e.:

z ∈ ∂h(z∗)⇔ z∗ ∈ ∂h∗(z).

Proof. Writing the epigraph epi h∗ = ∩z∈Z epi lz as the intersection of the continuous,
linear functions lz : z∗ 7→ 〈z, z∗〉Z −h(z) we see that it is closed and convex, which prooves
the first part of (i). For the second part of (i) as well as assertions (ii) and (iii) see Corollary
1.4, Theorem 1.4 and Proposition 2.1 in Chap. 2 of [5], respectively. �

Example 3.2.12. For r ∈ (1,∞) consider the function hr,Z(z) = 1
r ‖z‖

r
Z ∈ Γ(Z). With the

help of Theorem 3.2.7 we obtain that ‖z∗‖
1

r−1
Z∗ minimizes the function λ 7→ 1

r λ
r − λ‖z∗‖Z∗

given on [0,∞) and thus the conjugate of hr,Z reads as

h∗r,Z(z∗) = sup
z∈Z

(
〈z, z∗〉Z −

1
r
‖z‖rZ

)
= sup

z∈Z

(
‖z‖Z‖z∗‖Z∗ −

1
r
‖z‖rZ

)
=

1
r∗
‖z∗‖r

∗

Z∗ = hr∗,Z∗ (z∗)

where r∗ B r
r−1 is the conjugate exponent of r.

3.2.3 Extremal relations and saddle point problem

Now let us introduce the perturbation function

H : X × Y → R, (x, y) 7→ g(T x − y) + f (x)

which embeds our problem (P) given by argminx∈X H(x, 0) into a family of problems:

argmin
x∈X

H(x, y) y ∈ Y.



3.2 Duality theory for linear Tikhonov-type regularization 51

Obviously, we have H ∈ Γ(X × Y). Calculating the conjugate of H

H∗(x∗, p) = sup
x∈X,y∈Y

{
〈x, x∗〉X + 〈y, p〉Y − g(T x − y) − f (x)

}
= sup

x∈X,w∈Y

{
〈x, x∗〉X + 〈w, (−p)〉Y − g(w) − f (x) + 〈T x, p〉Y

}
= sup

x∈X

{
〈x, x∗ + T ∗p〉X − f (x)

}
+ g∗(−p) = f ∗(x∗ + T ∗p) + g∗(−p),

we call the maximization problem

argmax
p∈Y∗

−H∗(0, p) = argmax
p∈Y∗

(− f ∗(T ∗p) − g∗(−p)) (D), (3.8)

the dual problem of the primal problem (P) with respect to H. First of all, note that, due
to

H∗(0, p) ≥ 〈0, p〉Y − H(x, 0) = −(g(T x) + f (x)) for all p ∈ Y∗, x ∈ X,

the extremal value m(P) B inf
x∈X

g(T x) + f (x) in the primal problem (P) is always greater
or equal to the extremal value M(D) B sup

p∈Y∗
− f ∗(T ∗p) − g∗(−p) in the dual problem (D).

This relation M(D) ≤ m(P) is referred to as weak duality. In the case of strong duality
m(P) = M(D) one obtains the following crucial relationship between solutions to (P) and
(D):

Theorem 3.2.13. Let there are at least one point x0 ∈ X and one point p0 ∈ Y∗ where the
function values f (x0), g(T x0), f ∗(T ∗p0), g∗(−p0) are finite. We have:

• If in addition g is continuous at T x0, then the dual problem (D) has a solution and
strong duality m(P) = M(D) holds.

• If in addition f ∗ is continuous at T ∗p0, then the primal problem (P) has a solution
and strong duality m(P) = M(D) holds.

• x̄ ∈ X is a solution to the primal problem (P) and p̄ ∈ Y∗ a solution to the dual
problem (D) and strong duality g(T x̄) + f (x̄) = m(P) = M(D) = − f ∗(T ∗ p̄) − g∗(−p̄)
holds if and only if

T ∗ p̄ ∈ ∂ f (x̄), − p̄ ∈ ∂g(T x̄). (3.9)

Proof. Theorem 2.2., Lemma 2.2. and Theorem 2.4. in Chap. 3 of [5] �

Moreover, solutions to (P) and (D) build the saddle point of the Lagrange function (also
referred to as Lagrangian):

L(x, p) = −(H(x, ·))∗(p) = − sup
y∈Y

{
〈y, p〉Y − g(T x − y) − f (x)

}
= f (x) − 〈T x, p〉Y − g∗(−p)

associated to (P) and (D) via

sup
p∈Y∗

L(x, p) = g(T x) + f (x), sup
x∈X

L(x, p) = − f ∗(T ∗p) − g∗(−p).
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Theorem 3.2.14. Under the assumptions of Theorem 3.2.13, the following assertions are
equivalent:

• x̄ ∈ X is a solution to the primal problem (P) and p̄ ∈ Y∗ a solution to the dual
problem (D) and strong duality g(T x̄) + f (x̄) = m(P) = M(D) = − f ∗(T ∗ p̄) − g∗(−p̄)
holds.

• (x̄, p̄) ∈ X × Y∗ is a saddle point of L, i.e.

L(x, p̄) ≤ L(x̄, p̄) ≤ L(x̄, p), for all x ∈ X, p ∈ Y∗. (3.10)

If one of these assertions holds we obtain the minmax equality

m(P) = M(D) = min
x∈X

max
p∈Y∗

L(x, p) = max
p∈Y∗

min
x∈X

L(x, p).

Proof. see [5, Theorem 2.7 in Chap. 3]. �

More precisely, L has a saddle point (x̄, p̄) if and only if L satisfies the minmax equality.
Therefore the saddle point problem of finding a pair (x̄, p̄) ∈ X × Y∗ obeying (3.10) can
be formulated as

argmin
x∈X

argmax
p∈Y∗

− 〈T x, p〉Y + f (x) − g∗(−p) (S).

Characterizing a solution x̄ to (P) by the extremal relations (3.9) which are because of
Assertion 3.2.11 (iii) equivalent to

T ∗ p̄ ∈ ∂ f (x̄), T x̄ ∈ ∂g∗(−p̄) (3.11)

has the advantage that x̄ is connected to the dual solution p̄ via rather simple equations.
This fact is also used by the primal-dual algorithm (CP ) of Chambolle and Pock, studied
in Chapter 4, which tries to solve the primal and the dual problem simultaneously. In order
to generalize this method from Hilbert and Banach spaces X and Y∗, where X and X∗ as
well as Y and Y∗ not necessarily coincide, we will need some concepts of the Banach
spaces and the relations to their duals.

3.3 Duality mappings and Bregman distance

The following definitions and results can be found in Chapter I and II of [23]. First we
make some assumptions on the geometry of the Banach spaces X and Y .

Definition 3.3.1. Consider a real Banach space Z. The function δZ : [0, 2]→ [0, 1],

δZ(ε) B inf
{

1 −
∥∥∥∥∥1

2
(z + u)

∥∥∥∥∥
Z

∣∣∣∣∣ z, u ∈ Z, ‖z‖Z = ‖u‖Z = 1, ‖z − u‖Z ≥ ε
}
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is called the modulus of convexity and ρZ : [0,∞)→ R,

ρZ(τ) B
1
2

sup { ‖z + u‖Z − ‖z − u‖Z − 2 | z, u ∈ Z, ‖z‖Z = 1, ‖u‖Z ≤ τ}

is the modulus of smoothness. Then Z is said to be

• strictly convex if for any z, u ∈ Z with z , u and ‖z‖Z = ‖u‖Z = 1 we have
‖z + u‖Z < 2.

• uniformly convex if δZ(ε) > 0 for any ε ∈ (0, 2].

• r−convex with r ∈ (1,∞) (also referred to as the modulus of convexity is of power
type r ) if there exists a constant C > 0 such that

δZ(ε) ≥ C εr, ε ∈ [0, 2].

• smooth if for any z ∈ Z\ {0} there exists a unique z∗ ∈ Z∗ with ‖z∗‖Z∗ = 1 such that
〈z, z∗〉Z = ‖z‖Z .

• uniformly smooth if ρZ (τ)
τ
→ 0 as τ→ 0.

• r−smooth with r > 1 (also referred to as the modulus of smoothness is of power
type r ) if there exists a constant G > 0 such that

ρX(τ) ≤ G τr, τ ∈ [0,∞).

Note that r−convexity with r ∈ (1,∞) yields uniform convexity, which in turn implies
strict convexity. Conversely, on a finite dimensional Banach space Z the continuous func-
tion (z, u) 7→ 1 −

∥∥∥ 1
2 (x + u)

∥∥∥
Z attains its minimum on the compact set SZ × SZ of unit

spheres SZ B {z ∈ Z | ‖z‖Z = 1} so that Z is strictly convex if and only if it is uniformly
convex.

Example 3.3.2. (i) If Z is a Hilbert space the parallelogram law

‖z + u‖2Z + ‖z − u‖2Z = 2(‖z‖2Z + ‖u‖2Z),

yields for any ε ∈ [0, 2]

δZ(ε) = inf

1 −

√
1
2

(
‖z‖2Z + ‖u‖2Z

)
−

1
4
‖z − u‖2Z

∣∣∣∣∣∣∣ ‖x‖Z = ‖u‖Z = 1, ‖x − u‖Z ≥ ε


= 1 −

√
1 −

ε2

4
≥
ε2

8
,

and hence Z is 2-convex.
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(ii) The reflexive Banach spaces lr, Lr and W1,r with r ∈ (1,∞) are max {r, 2}-convex
and min {r, 2}-smooth, cf. [85]. One can easily check that the same holds for the
weighted sequence space lrW with positive weight W = (w j) j∈N and norm given by

‖x‖lrW B

∑
j

w j |x j|
r


1
r

=

∥∥∥∥∥(w 1
r
j x j

)
j

∥∥∥∥∥
lr
.

Observe that in the last example no Banach space has a modulus of convexity of power
type q smaller than 2. In fact, there is no Banach space at all with this property as the
following theorem states:

Theorem 3.3.3. The Banach space Z has a modulus of convexity of power type r ∈ (1,∞)
if and only if its dual space Z∗ has a modulus of smoothness of power type r∗ where
r∗ ∈ (1,∞) denotes the conjugate exponent satisfying

1
r

+
1
r∗

= 1.

Moreover, if Z is r-convex, then it is reflexive and r is greater or equal to 2.

Proof. The first assertion follows by the Lindenstrauss duality theory, see [54, Sec. 1.e].
For the second see [23, Corollary 2.15 in Chapter II] and [85, p. 193]. �

In particular in the ’symmetric case’ r = r∗ = 2 an r-convex Banach space Z takes
characteristics similar to Hilbert space properties which will play an important role for the
generalization of CP to Banach spaces. So, in the following, we assume both X and the
dual space Y∗ to be (reflexive,) smooth and 2-convex Banach spaces. Because of the last
theorem and [23, Theorem 1.3 in Chap. II], here the second statement is equivalent to the
condition that Y is a reflexive, strictly convex and 2-smooth Banach space. Note that by
Example 3.3.2 (ii), these conditions are consistent with preferable choices of the preimage
and image space X and Y for the phase retrieval problems introduced in Chapter 1. So,
based on the assumptions for the phase retrieval problem, we are now able to specify the
inner minimization problem in the IRNM 3.3, rewritten as (P), which we consider within
this work:

Problem 3.3.4. For a linear, bounded operator T : X → Y given on spaces X and Y let
us consider the convex optimization problem

x̄ = argminx∈X (g(T x) + f (x)) (P), (3.12)

where:

• X is a reflexive, smooth and 2-convex Banach space,

• Y is a reflexive, strictly convex and 2-smooth Banach space,

• f ∈ Γ(X), g ∈ Γ(Y),
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• there exists at least one point x0 ∈ X and one point p0 ∈ Y∗ such that the function
values f (x0), g(T x0), f ∗(T ∗p0), g∗(−p0) are finite and g is continuous at T x0 and
f ∗ is continuous at T ∗p0.

Now let us introduce the so-called duality mappings Jq,Z which give useful relations be-
tween a Banach space Z and its dual Z∗:

Definition 3.3.5. Let Z be a Banach space. For q ∈ (1,∞) the (set-valued) mapping

Jq,Z : Z ⇒ Z∗, Jq,Z(x) B
{
z∗ ∈ Z∗ | 〈z, z∗〉Z = ‖z‖Z ‖z

∗‖Z∗ , ‖z
∗‖Z∗ = ‖z‖q−1

Z

}
is called duality mapping with respect to the weight function t 7→ tq−1.

In the case q = 2, J2,Z is also referred to as normalized duality mapping and we use the
short notation JZ = J2,Z . From Proposition 3.2.9 we already know that the normalized
duality mapping JZ is given by the subdifferential of the norm monomial z 7→ 1

2 ‖z‖
2
Z . For

arbitrary q ∈ (1,∞) it follows from the theorem of Asplund ( [3]) that Jq,Z coincides with
the subdifferential ∂hq,Z of hq,Z(z) B 1

q‖z‖
q
Z . In addition to this characterization, by the

next theorem we summarize some important properties of the duality mappings:

Theorem 3.3.6. For any (real) Banach space Z and q ∈ (1,∞) we have:

(i) If Z is smooth, then Jq,Z is single-valued.

(ii) Z is reflexive if and only if Jq,Z is surjective.

(iii) If Z is strictly convex, then Jq,Z is strictly monotone and hence injective.

(iv) If Z is 2-convex and smooth, then Jq,Z is bijective with inverse Jq∗,Z∗ : Z∗ → Z∗∗ = Z
where q∗ ∈ (1,∞) denotes the conjugate exponent of q, i.e. 1

q + 1
q∗ = 1.

(v) If Z is a Hilbert space, then the normalized duality mapping JZ is the identity.
Moreover, Z is a Hilbert space if and only if JZ is linear.

(vi) Jq,Z(z) = ∂hq,Z , where hq,Z(z) B 1
q ‖z‖

q
Z .

(vii) If Z is q-convex, as a consequence of the Xu-Roach inequalities there exists a con-
stant CZ > 0 such that the following inequality holds for all u, z ∈ Z:

1
q
‖z − u‖qZ ≥

1
q
‖z‖qZ −

〈
u, Jq,Z(z)

〉
Z

+
CZ

q
‖u‖qZ (3.13)

Proof. Assertions (i) − (iii) are given by Corollary 4.5 in Chap. I, Theorem 3.4 in Chap.
II and Corollary 1.9 in Chap. II of [23], respectively. Assertion (iv) follows from the
previous ones together with Corollary 3.5 in Chap. II of [23]. For (v) see Proposition
4.8 in Chap. I of [23]. (vi) is a special case of the Theorem of Asplund [3] and (vii) is a
consequence of the Xu-Roach inequalities ( [85]). �
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So, under the regularity assumptions of Problem 3.3.4 on the Banach spaces X and Y the
corresponding duality mappings are quite well-behaved as well, but in general nonlin-
ear. Due to (iv) − (v) we can interpret Jq,Z as the generalization of the identity mapping
to this Banach space setting. From this point of view inequality (3.13) generalizes the
polarization identity

1
2
‖z − u‖2Z =

1
2
‖z‖2Z − 〈z, u〉Z +

1
2
‖u‖2Z , x, u ∈ Z (3.14)

which characterizes a Hilbert space Z. The following example illustrates the duality map-
ping’s nonlinearity at one side and their strong dependence on norm monomials on the
other. As remarked in [70], by the theorem of Asplund 3.3.6 (vi) we can expect the nu-
merical computation of a duality mapping at some point to be of a comparable complexity
as the evaluation of the corresponding norm to a certain power.

Example 3.3.7. For the reflexive, smooth and strictly convex Banach space Z = lr with
r ∈ (1,∞) the dual space with respect to standard scalar product is Z∗ = lr

∗

. From the last
theorem we derive the duality mapping to be given as:

Jq,lr : lr → lr
∗

, Jq,lr (x) =
1

||x||r−q
lr
|x|r−1 sign(x), for q ∈ (1,∞)

which has to be understood componentwise.

Considering again the symmetric case q = q∗ = 2 and a reflexive, smooth, strictly convex
Banach space Z, then for CZ = 1 the right hand side of (3.13) becomes the so-called
Bregman distance

BZ(u, z) B
1
2
‖u‖2Z −

1
2
‖z‖2Z − 〈u − z, JZ(z)〉Z =

1
2
‖u‖2Z +

1
2
‖z‖2Z − 〈u, JZ(z)〉Z ,

with gauge function h2,Z : z 7→ 1
2 ‖z‖

2
Z (see Figure 3.3 for an illustration). So, with respect

to the polarization identity, this Bregman distance behaves more like a Hilbert space norm
squared than the functional ΦZ(u, z) 7→ 1

2 ‖u − z‖2Z . Obviously, if Z is a Hilbert space BZ

coincides with ΦZ . Since h2,Z : z 7→ 1
2 ‖z‖

2
Z is strictly convex and we have JZ = ∂h2,Z , BZ

has also the following metric property in common with ΦZ :

BZ(u, z) ≥ 0, where equality holds if and only if u = z. (3.15)

Note thatBZ is not a metric as symmetry is not fulfilled. Nevertheless, a kind of symmetry
with respect to the duals holds true:

BZ∗ (JZ (v) , JZ (x)) = BZ (x, v) . (3.16)

Moreover, the Bregman distance associated with h2,Z satisfies the three-point identity:

BZ (u, x) + BZ (v, u) =
1
2
‖v‖2Z −

1
2
‖x‖2Z − 〈u − x, JZ(x)〉Z − 〈v − u, JZ(u)〉Z

= BZ (v, x) + 〈v − u, JZ(x) − JZ(u)〉Z , x, u, v ∈ Z.
(3.17)
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Figure 3.3: Illustration of the Bregman distance with the gauge function h2,Z : z 7→ 1
2 ‖z‖

2
Z

Although we will mainly focus on BZ , we also would like to introduce the more general
class of Bregman distances associated with hq,Z where we again restrict our considerations
on the case of single-valued, bijective duality mappings:

Definition 3.3.8. Let Z be a reflexive, smooth and strictly convex Banach space. For a
parameter q ∈ (1,∞) the function

Bq,Z(u, z) B
1
q
‖u‖qZ −

1
q
‖z‖qZ −

〈
u − z, Jq,Z(z)

〉
Z

=
1
q
‖u‖qZ +

1
q∗
‖z‖qZ − 〈u, JZ(z)〉Z

is called Bregman distance with gauge function hq,Z : z 7→ 1
q‖z‖

q
Z .

It is easy to check that for any q ∈ (1,∞) the Bregman distanceBq,Z satisfies the properties
(3.15), (3.16), (3.17) as well.

Proposition 3.3.9. Let Z be a Banach space which is smooth and convex of power type
q ∈ (1,∞). Then there exists a constant CZ > 0 such that inequality (3.13) holds and we
have:

Bq,Z (u, z) ≥
CZ

q
‖u − z‖qZ , z, u ∈ Z (3.18)

Proof. In order to show that the constant CZ in (3.18) is the same as in (3.13) we repeat
the proof given in [16]: The assertion directly follows by substituting (3.13) for u = z − v
and arbitrary v, z ∈ Z into the Bregman distance:

Bq,Z (v, z) =
1
q
‖z − (z − v)‖qZ −

1
q
‖z‖qZ −

〈
v − z, Jq,Z(z)

〉
Z
≥

CZ

q
‖z − v‖qZ .

�

Example 3.3.10. The connection of the last proposition to inequality (3.13) helps to find
optimal constants CZ . For example, in [84] it is shown that for the 2-convex Banach space
Z = lr with r ∈ (1, 2] the inequality (3.13) holds for any constant CZ < r − 1.
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Note that due to Theorem 3.3.3 the inequality (3.18) is only stated for q ≥ 2. The as-
sumption of Problem 3.3.4 that X and Y∗ are reflexive, smooth and 2-convex Banach
spaces provides that there exist positive constants CX and CY∗ , such that the inequalities:

BX (x, u) ≥
CX

2
‖x − u‖2X , and BY∗ (y∗, p) ≥

CY∗

2
‖y∗ − p‖2Y∗ , (3.19)

hold for all x, u ∈ X and all y∗, p ∈ Y∗. Consequently, we obtain the following inequality
which plays a key role in our convergence analysis of the generalized Chambolle-Pock
algorithm:

Proposition 3.3.11. Under the assumptions of Problem 3.3.4 we have for any x, u ∈ X,
any y∗, p ∈ Y∗ and any positive constant α:∣∣∣〈T (x − u), p − y∗〉Y

∣∣∣
≤ ‖T‖

(
α min {BX (x, u) ,BX (u, x)}

CX
+

min {BY∗ (p, y∗) ,BY∗ (y∗, p)}
αCY∗

)
,

(3.20)

where ‖T‖ = max {‖T x‖Y | x ∈ X, ‖x‖X = 1} denotes the operator norm.

Proof. Applying Cauchy-Schwarz’s inequality as well as the special case of Young’s
inequality:

ab ≤
α a2

2
+

b2

2α
, a, b ≥ 0 (3.21)

with a B ‖xk − xk−1‖X , and b B ‖pk+1 − pk‖Y∗ ∈ R leads to∣∣∣〈T (x − u), p − y∗〉Y
∣∣∣ ≤ ‖T‖ ‖x − u‖X ‖p − y∗‖Y∗ ≤ ‖T‖

α ‖x − u‖2X
2

+
‖p − y∗‖2Y∗

2α

 .
Now the inequalities (3.19) give the assertion. �

The last proposition is also the reason for restricting Problem 3.3.4 to 2-convex Banach
spaces X and Y∗ which of course already covers a lot of interesting problems of the form
(P). We observe that the corresponding proof only works with the use of Young’s inequal-
ity

ab ≤
α aq

q
+

bq∗

q∗ αq∗−1 , a, b ≥ 0, α > 0

for the symmetric case q = 2 = q∗. In the general case q ∈ (1,∞)\{2} either q or
the conjugate exponent q∗ must be smaller than 2 such that inequality (3.18) can not
be applied. However, here the question arises if under more general conditions on the
moduli of convexity of X and Y∗ (which are still assumed to be reflexive, smooth and
strictly convex) the following more general form of inequality (3.20) holds true for some
q ∈ (1,∞), some r > 0 and some positive constants CX ,CY∗ :∣∣∣〈T (x − u), p − y∗〉Y

∣∣∣
≤ ‖T‖r

min
{
Bq,X (x, u) ,Bq,X (u, x)

}
CX

+
min

{
Bq∗,Y∗ (p, y∗) ,Bq∗,Y∗ (y∗, p)

}
CY∗

 , (3.22)
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for all x, u ∈ X, y∗, p ∈ Y∗. Also in the case of X and Y∗ being 2-convex, it would
be helpful if (3.22) is satiesfied for some q ∈ (1,∞)\ {2} . Although making additional
assumptions on the operator T would be also conceivable, we study the validity of (3.22)
for a special operator T , namely the identity (and thus X = Y), since T = I should
be sufficiently well-behaved in any case. The three-point identity (3.17) shows that, if〈
v − w, p − Jq,Y (w)

〉
Y

is nonnegative for some points v,w ∈ Y and p ∈ Y∗, the following
inequality holds: ∣∣∣∣〈v − w, p − Jq,Y (w)

〉
Y

∣∣∣∣ ≤ Bq,Y (v,w) + Bq∗,Y∗ (p,w).

So, in this special case the validity of symmetry properties of the form

Bq,Y (v,w) ≤ Csym
q,Y Bq,Y (w, v) and Bq∗,Y∗ (p, y∗) ≤ Csym

q∗,Y∗Bq∗,Y∗ (y∗, p), (3.23)

for some positive constants Csym
1 ,Csym

2 > 0 and v,w ∈ Y, p, y∗ ∈ Y∗ would give the
assertion. However, it is not clear if there exists a constant q ∈ (1,∞) and a non-Hilbertian
Banach space Y such that this condition is fulfilled by Bq,Y and Bq∗,Y∗ , respectively. Let us
assume, for a moment, that for some Y and some q the Bregman distances satisfy (3.23)
as well as the following triangle property for some Ctria

q,Y , Ctria
q∗,Y∗ > 0:

Bq,Y (v, y) − Bq,Y (v, u) ≤ Ctria
1 Bq,Y (u, y) , Bq,Y (v, y) − Bq,Y (u, y) ≤ Ctria

2 Bq,Y (v, u) ,

on suitable subsets U ⊆ Y and P ⊆ Y∗. Then the well-known four-point identity (see
e.g. [8])

〈v − w, p − y∗〉Y = Bq,Y

(
v, Jq∗,Y∗ (y∗)

)
− Bq,Y

(
v, Jq∗,Y∗ (p)

)
+ Bq,Y

(
w, Jq∗,Y∗ (p)

)
− Bq,Y

(
w, Jq∗,Y∗ (y∗)

)
v,w ∈ Y, p, y∗ ∈ Y∗,

yields(
1
2

+
1
2

) ∣∣∣〈v − w, p − y∗〉Y
∣∣∣

≤
Ctria

1

2
Bq,Y

(
Jq∗,Y∗ (p), Jq∗,Y∗ (y∗)

)
+

Ctria
1

2
Bq,Y

(
Jq∗,Y∗ (y∗), Jq∗,Y∗ (p)

)
+

Ctria
2

2
Bq,Y (v,w) +

Ctria
2

2
Bq,Y (w, v)

=
Ctria

1

2
Bq∗,Y∗ (y∗, p) +

Ctria
1

2
Bq∗,Y∗ (p, y∗) +

Ctria
2

2
Bq,Y (v,w) +

Ctria
2

2
Bq,Y (w, v)

≤
Ctria

1

(
Csym

q∗,Y∗ + 1
)

2
min

{
Bq∗,Y∗ (y∗, p) ,Bq∗,Y∗ (p, y∗)

}
+

Ctria
2 (Csym

q,Y + 1)

2
min

{
Bq,Y (v,w) ,Bq,Y (w, v)

}
.

for all v,w ∈ U, p, y∗ ∈ P. This fuels the hope that there exist at least suitable subsets
U ⊆ X and P ⊆ Y∗ on which (3.22) is satisfied for some q , 2 or non-2-convex Banach
spaces X and Y∗. Unfortunately, we did not succeed in proving this conjecture.
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Let us come back to the concept of resolvents on Hilbert spaces which serves for a whole
class of convex optimization methods for solving problems of the form (P) as a basic
tool (cf. [25], [11]). Also the algorithm of Chambolle and Pock (CP , [21]) relies on the
efficient evaluation of resolvents. As mentioned above, for its generalization to Banach
spaces we will need a generalization of (3.6) as well. For this purpose we consider the
canonical generalization (3.7) of the right hand side of (3.6). Note that under the use of
the Bregman distance BZ it reads as:

argmin
z∈Z

τ h(z) + BZ(z, JZ∗ (u)),

where h ∈ Γ(Z), τ > 0 and u ∈ Z∗. Obviously, BZ is proper and convex with respect to
the first argument such that Theorem 3.2.3 ensures the uniqueness of a solution to (3.6).
Assuming that there is a point in Z where h ∈ Γ(Z) is finite and continuous, Theorem
3.2.7 together with the sum rule and Theorem 3.3.6 (vi) characterizes the solution z̄ by

0 ∈ (τ∂h + JZ) (z̄) − u.

Since Rockafellar proved ( [65], Proposition 1) that the operator (τ∂h + JZ)−1 : Z∗ → Z is
well-defined and single-valued on any reflexive Banach space Z, our generalized resolvent
is given by

(τ ∂h + JZ)−1 (u) = argmin
z∈Z

τ h(z) + BZ(z, JZ∗ (u)). (3.24)

In particular, under the assumptions of Problem 3.3.4 due to Theorem 3.2.11, the gener-
alized resolvents of f and g :

(τ ∂ f + JX)−1 (x∗), (σ∂g∗ + JY∗ )
−1 (y) (3.25)

are well-defined and single valued for any x∗ ∈ X∗, y ∈ Y and any parameters τ, σ > 0. In
Section 4.3 we will study these operators in more detail.



4 Generalization of the Chambolle-Pock’s algorithm
to Banach spaces

Based on our preliminary considerations of concepts in convex analysis and of duality
theory for linear Tikhonov-type functionals

x 7→ S (yδ; T x) + αR(x),

in the following section we now introduce the first-order primal-dual algorithm of Cham-
bolle and Pock (CP , [21]) for solving such minimization Problems 3.3.4 on Hilbert spaces
X,Y∗. In Section 4.2 we then present a generalization (CP-BS ) of CP for the given Ba-
nach space setting of Problem 3.3.4 and prove corresponding convergence results. The
generalized resolvents (3.25) on which the algorithm CP-BS relies on are the topic of Sec-
tion 4.3. The following sections are an extended version of the work that we published
in [45].

4.1 Chambolle-Pock’s first-order primal-dual algorithm

Recall from Theorem 3.2.13 that the saddle point problem (S) associated with Problem
3.3.4 is solvable and a solution pair (x̄,− p̄) ∈ X × Y∗ is characterized by (3.11):

T x̄ ∈ ∂g∗(p̄), −T ∗ p̄ ∈ ∂ f (x̄). (4.1)

In order to motivate CP on Hilbert spaces X and Y we rewrite these extremal relations for
some parameters τ, σ > 0 as:

( p̄ + σT x̄) − p̄ ∈ σ∂g∗( p̄) ⇔ p̄ = (σ∂g∗ + I)−1 ( p̄ + σT x̄)

(x̄ − τT ∗ p̄) − x̄ ∈ τ∂ f (x̄) ⇔ x̄ = (τ∂ f + I)−1 (x̄ − τT ∗ p̄) .

So, we have derived a relation between a solution x̄ to the problem (P) and the solution
−p̄ to its dual problem (D) that base on the resolvents of f and g∗. Under the reasonable
assumption that evaluating these resolvents has a comparable complexity as the evaluation
of the operator T , the algorithm CP combines these both equations together with an over-
relaxation step x̂k+1 B xk+1+θk (xk+1 − xk) for θk ∈ [0, 1] to the following iterative scheme:

Algorithm 1 (CP, [21]). For (τk, σk)k∈N ⊆ (0,∞), (θ)k∈N ⊆ [0, 1], (x0, p0) ∈ X × Y∗,
x̂0 B x0, set:

pk+1 B (σk ∂g∗ + I)−1 (pk + σk T x̂k) (4.2)

xk+1 B (τk ∂ f + I)−1 (xk − τk T ∗pk+1) (4.3)
x̂k+1 B xk+1 + θk (xk+1 − xk) (4.4)

As pointed out in [21], line (4.4) serves as an approximation for the desirable implicit
choice x̂k = xk+1. Obviously, the algorithm is designed to solve the corresponding saddle
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point problem (S), i.e. to find a solution x̄ ∈ X to the primal problem (P) and the corre-
sponding solution −p̄ to the dual problem (D) simultaneously. Therefore on a bounded
subset B1 × B2 ⊂ X × Y the objective value can be expressed by the partial primal-dual
gap:

GB1×B2 (x, p) B max
−p′∈B2

L(x,−p′) − min
x′∈B1

L(x,−p)

= max
−p′∈B2

(〈
T x, p′

〉
Y − g∗(p′) + f (x)

)
− min

x′∈B1

(〈
T x′, p

〉
Y − g∗(p) + f (x′)

)
.

Observe that if there is a saddle point (x̄,−p̄) in B1 × B2 ⊂ X × Y the functional

GB1×B2 (x, p) ≥ L(x,− p̄) − L(x̄,−p)

is non-negative for all (x, p) ∈ X × Y and vanishes at (x̄,−p̄). Conversely, one can show
that if GB1×B2 vanishes at an interior point (x̄,−p̄) of B1×B2 ⊂ X×Y , then the pair (x̄,− p̄)
solves the saddle point problem (S). Moreover, we introduce for (x, y∗) ∈ X×Y∗ the misfit
functional

4k(x, y∗) B
‖y∗ − pk‖

2

σk
+
‖x − xk‖

2

τk
.

With these definitions Chambolle and Pock stated a parameter choice and proved the
following convergence result:

Theorem 4.1.1 (Theorem 1 [21]). Suppose that assumptions of Problem 3.3.4 hold true.
For some σ, τ with

√
στ‖T‖ < 1 we choose constant parameters σk = σ, τk = τ and

θk = 1 in Algorithm 1. Then for the resulting version, denoted as CP 1, the following
assertions hold true:

• The sequence (xk, pk)k∈N remains bounded in the form that for any solution (x̄,− p̄)

of the saddle point problem (S) in X×Y there exists a constant C <
(
1 − ‖T‖2 στ

)−1

such that for any N ∈ N:
4N(x̄, p̄) ≤ C 40(x̄, p̄).

• We define the sequence
(
xN , pN

)
N∈N

of mean values xN B 1
N

∑N
k=1 xk ∈ X and

yN B 1
N

∑N
k=1 yk ∈ Y. For any N ∈ N and any bounded set B1 × B2 ⊂ X × Y the

restricted primal-dual gap GB1×B2

(
xN , pN

)
is bounded by

D(B1, B2) B
1
N

sup
(x,y∗)∈B1×B2

40 (y∗, x) .

Moreover, for every weak cluster point (x̃, p̃) of the sequence
(
xN , pN

)
N∈N

, (x̃,− p̃)
solves the saddle point problem (S).

• If we further assume the Hilbert spaces X and Y to be finite dimensional, then there
exists a solution (x̄,−p̄) to the saddle point problem (S) such that the sequence
(xk, pk) converges strongly to (x̄, p̄).
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He and Yuan ( [37]) recognized that this version CP 1 can be also interpreted as an proxi-
mal point algorithm (PPA) for finding (x̄, p̄) ∈ X × Y such that 0 ∈ K(x̄, p̄), where

K : X × Y → X × Y, K(x, p) =

(
∂ f (x) + T ∗p
∂g∗(p) − T x.

)
(4.5)

Note that 0 ∈ K(x̄, p̄) corresponds to the optimality condition (4.1). In general for a
maximal monotone operator K : Z → Z on some Hilbert space Z, i.e. K is monotone and
its graph is not properly contained in the graph of another monotone operator, a proximal
point algorithm defines the k + 1-iterate by

0 ∈ K(uk+1) +
1
rk

(uk+1 − uk),

or equivalently by the variational inequality〈
v − uk+1,K(uk+1) +

1
rk

(uk+1 − uk)
〉

Z
≥ 0, for all v ∈ Z,

where rk, k ∈ N are positive parameters and 1
rk

(uk+1 − uk) is referred to as proximal term
(cf. [67]). Setting uk = (xk, pk)t the algorithm CP can be rewritten in PPA-form with
(generalized) linear proximal term M(uk+1 − uk) as follows ( [37, 62]):〈(

x − xk+1
p − pk+1

)
,K(xk+1, pk+1) + M

(
xk+1 − xk

pk+1 − pk

)〉
X×Y
≥ 0, M B

( 1
τ
I −T ∗

−θT 1
σ

I

)
for all (x, p) ∈ X × Y . Since the theory of proximal point algorithms covers only the case
of symmetric, positive definite matrices M, θ needs to be 1 in order for CP to be a PPA.

In [21] Chambolle and Pock also give parameter choice rules for which they could prove
convergence rates. For this purpose an additional assumption on f or / and g∗ is required:

Definition 4.1.2. A function h : Z → R on a Hilbert space Z is called strongly convex
with modulus γ > 0 if it satisfies the following inequality :

h (λz + (1 − λ)u) + λ(1 − λ) γ ‖z − u‖2Z ≤ λ h(z) + (1 − λ) h(u) z, u ∈ Z, λ ∈ [0, 1]. (4.6)

If this inequality holds true for λ = 1
2 we call h strongly midconvex with modulus γ > 0,

while h is said to be midconvex if it obeys (4.6) for λ = 1
2 and γ = 0.

Obviously, strong convexity implies strong midconvexity as well as convexity. More-
over, one can show (see [58]) that h is strongly (mid)convex with modulus γ > 0 if and
only if the function h − γ ‖ · ‖2Z is (mid)convex. Therefore the Hilbert norm monomial
h2,Z(x) = 1

2‖ · ‖
2
Z is strongly (mid)convex with modulus γ = 1

2 . In [21] the following con-
sequence of f being strongly midconvex with modulus γ > 0 is used (see [21, Eq. (35)]):

Corollary 4.1.3. On a Hilbert space Z, let h : Z → R be a proper, convex and strongly
midconvex function with modulus γ > 0. Then for any u, z ∈ Z and any z∗ ∈ ∂h(z) we have

h(u) − h(z) ≥ 〈u − z, z∗〉Z +
γ

2
‖z − u‖2Z . (4.7)
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Moreover, the function Φ2,Z(Z) = 1
2‖x− z0‖

2
Z satisfies this inequality for any γ ∈ (0, 1) and

any shift vector z0 ∈ Z.

Proof. The first assertion follows directly from the definitions of strong midconvexity
and of the subdifferential:

h(u) − h(z) ≥ 2 h
( z + u

2

)
− 2h(z) +

γ

2
‖z − u‖2Z ≥ 〈u − z, z∗〉Z +

γ

2
‖z − u‖2Z ,

for any u, x ∈ Z and x∗ ∈ ∂h(x). Rewriting the polarization identity (3.14) as

Φ2,Z(u) − Φ2,Z(z) = 〈u − z, z − z0〉Z +
1
2
‖z − u‖2Z , u, z − z0 = ∂Φ2,Z(z) ∈ Z

completes the proof. �

Stating a parameter rule in dependence of the modulus of midconvexity of f and/or g∗,
Chambolle and Pock reached the following accelerated versions of CP :

Theorem 4.1.4 (Theorem 2 and 3 in [21]). Under the assumptions of Problem 3.3.4,
suppose that X and Y are Hilbert spaces and (x̄,− p̄) is a solution to (S).

(i) Assuming that f satisfies condition (4.7) for some γ > 0, we obtain a second version
(CP 2) of algorithm 1 by choosing the parameters (σk, τk)k∈N , (θk)k∈N as follows:

• σ0τ0‖T‖2 = 1

• θk B (1 + 2 γ τk)−
1
2 , τk+1 B θk τk, σk+1 B θ−1

k σk.

Then the sequence (xk, pk)k∈N we receive from CP 2 satisfies the following error
bound: For any ε > 0 there exists a N0 ∈ N such that

‖x̄ − xN‖
2
Z ≤

1 + ε

N2

‖x̄ − x0‖
2
Z

γ2 τ2
0

+
‖p̄ − p0‖

2
Z

γ2 σ0 τ0

 ,
for all N ≥ N0.

(ii) We assume that both f and g∗ satisfy condition (4.7) with some γ > 0 and δ > 0,
respectively. Then we obtain a third version (CP 3) of algorithm 1 by the constant
parameter choice σk = σ, τk = τ, θk = θ, k ∈ N with:

• µ ≤ 2
√
γ δ
‖T‖

• σ =
2 µ
δ
, τ =

2 µ
γ
, θ ∈

[
1

1+µ
, 1

]
.

The sequence (xk, pk)k∈N which we receive from CP 3 satisfies the following error
bound:

(1 − ω) δ ‖p̄ − pN‖
2
Z + γ ‖x̄ − xN‖

2
Z ≤ ω

N
(
δ ‖ p̄ − p0‖

2
Z + γ ‖x̄ − x0‖

2
Z

)
,

where ω = (1 + θ)(2 + µ)−1 < 1.
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Equivalently, the assertion (i) holds true if we assume g∗ to satisfy condition (4.7) instead
of f and interchange the roles of τk and σk. So if f or g∗ is strongly midconvex we
obtain by CP 2 convergence inO

(
k−1

)
, while in the case where both functions are strongly

midconvex CP 3 convergences in O
(
ω

1
k

)
to (x̄, p̄).

Before we come to the generalization of CP to Banach spaces we also like to refer to
other generalizations of this method: In addition to the above-mentioned preconditioned
versions, there exist extended variants for solving monotone inclusion problems ( [14,78])
and also to the case of nonlinear operators T ( [80]). Recently, Lorenz and Pock ( [55])
proposed a quite general forward-backward algorithm for monotone inclusion problems
with CP as a special case.

4.2 Generalization and convergence results

Now, under the assumptions of Problem 3.3.4 let us consider the extremal relations (4.1)
for a solution pair (x̄,− p̄) of (S) in a Banach spaces setting. The idea of the generalization
is to rewrite these conditions in an analogous way as above with the help of positive
parameters σ, τ and the duality mappings JX : X → X∗, JY : Y → Y∗:

(JY∗ ( p̄) + σT x̄) − JY∗ ( p̄) ∈ σ∂g∗( p̄) ⇔ p̄ = (σ∂g∗ + JY∗ )
−1 (JY∗ (p̄) + σT x̄)

(JX(x̄) − τT ∗ p̄) − JX(x̄) ∈ τ∂ f (x̄) ⇔ x̄ = (τ∂ f + JX)−1 (JX(x̄) − τT ∗ p̄) .
(4.8)

Consequently, we propose the following iterative method:

Algorithm 2 (CP-BS). For (τk, σk)k∈N ⊆ (0,∞), (θ)k∈N ⊆ [0, 1], (x0, p0) ∈ X × Y∗,
x̂0 B x0, set:

pk+1 B (σk ∂g∗ + JY∗ )
−1 (JY∗ (pk) + σk T x̂k) (4.9)

xk+1 B (τk ∂ f + JX)−1 (JX (xk) − τk T ∗pk+1) (4.10)
x̂k+1 B xk+1 + θk (xk+1 − xk) (4.11)

First of all, note that, because of the duality mapping’s nonlinearity, this algorithm is in
general nonlinear. As in Theorem 4.1.1 we also like to bound the distance of one element
of the sequence (xk, pk)k∈N to the solution (x̄,−p̄). For this purpose we generalize the
measure 4k to the given general Banach space case by

4k(x, y∗) B
BY∗ (y∗, pk)

σk
+
BX(x, xk)

τk
(x, y∗) ∈ X × Y∗.

For bounded subsets B1 × B2 ∈ X × Y∗ the partial primal-dual gap GB1×B2 generalizes in a
straightforward way

GB1×B2 (x, p) B max
−p′∈B2

L(x,−p′) − min
x′∈B1

L(x,−p) (x, p) ∈ X × Y∗,

where L denotes the Lagrange function associated with (S). With these definitions we can
prove the following extended version of Theorem 4.1.1:
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Theorem 4.2.1. Suppose that the assumptions of Problem 3.3.4 hold true. We choose
positive parameters σ, τ such that

√
στ‖T‖ < min {CX ,CY∗ } where CX ,CY∗ are given by

(3.18) and set σk = σ, τk = τ and θk = 1 for all k ∈ N in Algorithm 2. Then for the
resulting version of CP-BS , denoted as CP-BS 1, the following assertions hold true:

(i) The sequence (xk, pk)k∈N remains bounded in the form that for any solution (x̄,− p̄)
to the saddle point problem (S) in there exists a constant

C <

(
1 −
‖T‖2 στ
CX CY∗

)−1

,

such that for any N ∈ N
4N(x̄, p̄) ≤ C 40(x̄, p̄). (4.12)

(ii) We define the sequence
(
xN , pN

)
N∈N

of mean values xN B 1
N

∑N
k=1 xk ∈ X and

yN B 1
N

∑N
k=1 yk ∈ Y∗. For any N ∈ N and any bounded set B1 × B2 ⊂ X × Y∗ the

restricted primal-dual gap GB1×B2

(
xN , pN

)
is bounded by

D(B1, B2) B
1
N

sup
(x,y∗)∈B1×B2

40 (y∗, x) .

Moreover, for every weak cluster point (x̃, p̃) of the sequence
(
xN , pN

)
N∈N

, (x̃,− p̃)
solves the saddle point problem (S).

(iii) If we further assume the Banach spaces X and Y to be finite dimensional, then there
exists a solution (x̄,−p̄) to the saddle point problem (S) such that the sequence
(xk, pk) converges strongly to (x̄, p̄).

Proof. Using the property (3.17) of the Bregman distance the misfit functional 4k(x, y∗)
for some (x, y∗) ∈ X × Y∗ can be expanded as

4k(x, y∗) =
BY (JY∗ (pk) , JY∗ (y∗))

σ
+
BX∗ (JX (xk) , JX (x))

τ

=
BY (JY∗ (pk+1) , JY∗ (y∗))

σ
−

〈
JY∗ (pk) − JY∗ (pk+1)

σ
, y∗ − pk+1

〉
Y

+
BY (JY∗ (pk) , JY∗ (pk+1))

σ
+
BX∗ (JX (xk+1) , JX (x))

τ

−

〈
x − xk+1,

JX (xk) − JX (xk+1)
τ

〉
X

+
BX∗ (JX (xk) , JX (xk+1))

τ
.

The iteration formulas (4.9) and (4.10) imply that

1
σ

(JY∗ (pk) − JY∗ (pk+1))+T x̂k ∈ ∂g∗(pk+1) and
1
τ

(JX(xk) − JX (xk+1))−T ∗pk+1 ∈ f (xk+1).
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So, by the definition of the subdifferential we obtain:

g∗ (y∗) − g∗ (pk+1) ≥
〈

JY∗ (pk) − JY∗ (pk+1)
σ

, y∗ − pk+1

〉
Y

+ 〈T x̂k, y∗ − pk+1〉Y (4.13)

f (x) − f (xk+1) ≥
〈
x − xk+1,

JX(xk) − JX (xk+1)
τ

〉
X
− 〈T (x − xk+1) , pk+1〉X . (4.14)

Plugging this into the expansion of 4k(x, y∗) it follows from Equation (3.16) that

4k(x, y∗) ≥ g∗ (pk+1) − g∗ (y∗) − 〈T x̂k, pk+1 − y∗〉Y
+ f (xk+1) − f (x) − 〈T (xk+1 − x) ,−pk+1〉Y

+
BY∗ (y∗, pk+1)

σ
+
BY∗ (pk+1, pk)

σ
+
BX (x, xk+1)

τ
+
BX (xk+1, xk)

τ

+ 〈T xk+1, pk+1 − y∗〉Y − 〈T (xk+1 − x) , pk+1〉Y

+ 〈T xk+1, y∗〉Y − 〈T x, pk+1〉Y

=
[
< T xk+1, y∗ >Y −g∗(y∗) + f (xk+1)

]
−

[
〈T x, pk+1〉Y − g∗(pk+1) + f (x)

]
+ 4k+1(x, y∗) +

BY∗ (pk+1, pk)
σ

+
BX (xk+1, xk)

τ

+ 〈T (xk+1 − x̂k), pk+1 − y∗〉Y .

(4.15)

In order to estimate the last summand of this inequality, we insert (4.11) with θk = 1 and

apply Proposition 3.3.11 with α B
(
σ
τ

) 1
2 > 0 yielding

〈T ((xk+1 − xk) − (xk − xk−1)) , pk+1 − y∗〉Y
= 〈T (xk+1 − xk) , pk+1 − y∗〉Y − 〈T (xk − xk−1) , pk − y∗〉Y − 〈T (xk − xk−1) , pk+1 − pk〉Y

≥ 〈T (xk+1 − xk) , pk+1 − y∗〉Y − 〈T (xk − xk−1) , pk − y∗〉Y

−
‖T‖σ

1
2 τ

1
2

CX

BX (xk, xk−1)
τ

−
‖T‖σ

1
2 τ

1
2

CY∗

BY∗ (pk+1, pk)
σ

.

Thus, we conclude that

4k(x, y∗) ≥
[
〈T xk+1, y∗〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x, pk+1〉Y − g∗(pk+1) + f (x)

]
+ 4k+1(x, y∗) +

1 − ‖T‖σ 1
2 τ

1
2

CY∗

 BY∗ (pk+1, pk)
σ

−
‖T‖σ

1
2 τ

1
2

CX

BX (xk, xk−1)
τ

+
BX (xk+1, xk)

τ

+ 〈T (xk+1 − xk) , pk+1 − y∗〉Y − 〈T (xk − xk−1) , pk − y∗〉Y .

(4.16)
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Summing from k = 0 to N − 1 leads to

40(x, y∗) + | 〈T (xN − xN−1) , pN − y∗〉Y |

≥

N∑
k=0

[
〈T xk+1, y∗〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x, pk+1〉Y − g∗(pk+1) + f (x)

]
+ 4N(x, y∗) +

1 − ‖T‖σ 1
2 τ

1
2

CY∗

 N∑
k=1

BY∗ (pk, pk−1)
σ

+
BX (xN , xN−1)

τ

+

1 − ‖T‖σ 1
2 τ

1
2

CX

 N−1∑
k=1

BX (xk, xk−1)
τ

.

Now we apply again Proposition 3.3.11 with α = Cx
‖T‖ τ :

| 〈T (xN − xN−1) , pN − y∗〉Y | ≤
BX (xN , xN−1)

τ
+
‖T‖2 στ
CX CY∗

BY∗ (y∗, pN)
σ

, (4.17)

so that we deduce

40(x, y∗) ≥
N∑

k=0

[
〈T xk+1, y∗〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x, pk+1〉Y − g∗(pk+1) + f (x)

]
+
BX (x, xN)

τ
+

1 − ‖T‖σ 1
2 τ

1
2

CX

 N−1∑
k=1

BX (xk, xk−1)
τ

(4.18)

+

(
1 −
‖T‖2 στ
CX CY∗

)
BY∗ (y∗, pN)

σ
+

1 − ‖T‖σ 1
2 τ

1
2

CY∗

 N∑
k=1

BY∗ (pk, pk−1)
σ

.

Here, because of the choice σ
1
2 τ

1
2 < min {CX ,CY∗ }

‖T‖ , we obtain only positive coefficients. For
a solution (x̄,− p̄) to the saddle point problem (S) we set (x, y∗) = (x̄, p̄) . Then, due to the
extremal relations (4.1), every summand in the first line of (4.18) is non negative as well:[
− 〈T xk+1,− p̄〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x̄, pk+1〉Y − g∗(pk+1) + f (x̄)

]
= f (xk+1) − f (x̄) − 〈xk+1 − x̄,−T ∗ p̄〉X + g∗(pk+1) − g∗( p̄) − 〈T x̄, pk+1 − p̄〉Y ≥ 0.

(4.19)

This proves assertion (i). The second assertion follows directly along the lines of the
corresponding proof for Theorem 4.1.1 in [21], p. 124: Because of (4.18) and (4.19) we
have

GB1×B2

(
xN , pN

)
= sup

(x,y∗)∈B1×B2

[
〈T xN , y∗〉Y − g∗(y∗) + f (xN)

]
−

[
〈T x, pN〉Y − g∗(pN) + f (x)

]
≤

1
N

sup
(x,y∗)∈B1×B2

N∑
k=0

[
〈T xk+1, y∗〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x, pk+1〉Y − g∗(pk+1) + f (x)

]
≤

1
N

sup
(x,y∗)∈B1×B2

40(x, y∗).
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Moreover, observe that the sequence
(
xN , pN

)
N∈N

is bounded. So, it has at least one cluster
point (x̃, p̃) ∈ X×Y∗ and because of the last inequality at this point the global primal-dual
gap is non-positive:

G (x̃, p̃) ≤
[
< T x̃, y∗ >Y −g∗(y∗) + f (x̃)

]
−

[
〈T x, p̃〉Y − g∗( p̃) + f (x)

]
≤ 0.

We conclude that (x̃,−ỹ) must be a solution to the saddle point problem (S) which com-
pletes the proof of (ii). Also for the last assertion which requires the assumption that X
and Y are finite dimensional, we apply the same arguments as in [21], p. 124, to (4.18):
In order to prove strong convergence of the bounded sequence (xk, pk)k∈N let us consider a
convergent subsequence

(
xl(k), pl(k)

)
k∈N with limit (x̃, p̃). Due to inequality (4.18) we have

lim
k→∞
BX (xk, xk−1) = lim

k→∞
BY∗ (pk, pk−1) = 0,

such that (x̃, p̃) must be the limit of
(
xl(k)−1, pl(k)−1

)
k∈N as well. Consequently, (x̃, p̃) obeys

Equation (4.8) and thus (x̃,−p̃) is a solution to the saddle point problem (S). Now it
remains to show that the whole sequence convergences to this point. For this purpose we
substitute (x, y∗) = (x̃, p̃) in (4.16) and sum again from k = l(k) to some N − 1 greater or
equal to l(k):

4l(k)(x̃, p̃) ≥ 4N(x̃, p̃) +

1 − ‖T‖σ 1
2 τ

1
2

CY∗

 N∑
k=l(k)+1

BY∗ (pk, pk−1)
σ

+
BX (xN , xN−1)

τ

−
BX

(
xl(k), xl(k)−1

)
τ

+

1 − ‖T‖σ 1
2 τ

1
2

CX

 N−1∑
k=l(k)

BX (xk, xk−1)
τ

+ 〈T (xN − xN−1) , pN − p̃〉Y −
〈
T

(
xl(k) − xl(k)−1

)
, pl(k) − p̃

〉
Y ,

where we used
[
< T xk+1, p̃ >Y −g∗( p̃) + f (xk+1)

]
−
[
〈T x̃, pk+1〉Y − g∗(pk+1) + f (x̃)

]
≥ 0 for

all k ∈ N. By taking the limit l(k),N → ∞ immediately the convergence of the sequence
(xk, pk)k∈N with respect to the Bregman divergence and hence the strong convergence
(xk, pk)→ (x̃, p̃) for k → ∞ follows. �

Remark 4.2.2. This generalization CP-BS 1 covers also the preconditioned version of
CP 1 introduced in [62]: There X and Y are of the form X = Υ

1
2 HX equipped with

‖x‖X = ‖Υ−
1
2 x‖HX and Y = Σ−

1
2 HY equipped with ‖y‖Y = ‖Σ

1
2 x‖HY , where HX ,HY are

Hilbert spaces and Υ,Σ symmetric, positive definite matrices. Considering the dual spaces
X∗ = Υ−

1
2 HX and Y∗ = Σ

1
2 HY with respect to the scalar product on the corresponding

Hilbert spaces, the duality mappings read as

JX(x) = Υ−1x, JY∗(y) = Σ−1 y.

Due to their linearity line (4.9) and (4.10) take the form of update rule (4) in [62]:

pk+1 = (σkΣ ∂g∗ + I)−1 (pk + σk ΣT x̂k) ,

xk+1 = (τkΥ ∂ f + I)−1 (xk − τk ΥT ∗pk+1) .
(4.20)
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The convergence proof of the extended algorithm (4.20) (proposed in [62]) relies on the
idea ( [37]) to reformulate the update rule as the proximal point algorithm:〈(

x − xk+1
p − pk+1

)
,K(xk+1, pk+1) + M

(
xk+1 − xk

pk+1 − pk

)〉
X×Y∗

≥ 0, M B
(
Υ−1 −T ∗

−θT Σ−1

)
for all (x, p) ∈ X × Y∗ where K : X × Y∗ → X∗ × Y is given by Equation (4.5) and the
matrix M is symmetric and positive definite for θ = 1 ( [62, Lemma 1]). We also like
to rewrite our method CP-BS in this form: Setting p1 = p0 and hence starting with the
update of xk in line (4.10) it follows that(

0
0

)
=

(
∂ f (xk+1) + T ∗pk+1 − T ∗pk+1 + T ∗pk + 1

τk
(JX(xk+1) − JX(xk))

∂g∗(pk+1) − T xk+1 − θk T xk+1 + θk T xk + 1
σk

(JY∗ (pk+1) − JY∗ (pk))

)
= K (xk+1, pk+1) +

( 1
τk

(JX(xk+1) − JX(xk))
1
σk

(JY∗ (pk+1) − JY∗ (pk))

)
+

(
T ∗(pk − pk+1)
θk T (xk − xk+1)

)
.

So, our algorithm 2 takes the structure of a PPA with a nonlinear proximal term in some
way. Although there exist generalizations of PPAs with nonlinear proximal terms (cf.
e.g. [4]) to the best of the author’s knowledge non of these is of this special form (with
a Banach space setting). On the other hand, one finds generalizations of PPA to Banach
spaces that include a similar update rule for un+1 = (xn+1, pk+1) as one step in their iter-
ation (see [20, 50] ). The update un+1 is then used to define two sets Hk,Wk ⊆ X × Y∗

such that K−1(0) ⊆ Hk ∩Wk. There the projection (with respect to the Bregman distance)
of the initial guess u0 = (x0, p0) to the intersection Hk ∩Wk gives the new iterate. These
additional projection steps are required in order to achieve strong convergence (cf. [71]).
Compared to the proposed method CP-BS the generalized PPAs in [20, 50] have the ad-
vantage that less restrictive conditions on the Banach spaces X, Y are needed to assure
strong convergence but the disadvantage that the necessary computation of the projection
with respect to the Bregman distance might be too complicated in practice.

Next we want to also generalize the accelerated forms CP 2,CP 3 of the CP -algorithm
which base on the assumption that f and/or g∗ satisfy condition (4.7). For this purpose
we extended this property to Banach spaces:

Definition 4.2.3. On a Banach space Z, let h : Z → R be a proper, convex function. We
say that h satisfy a Bregman midconvex property with modulus γ > 0 if for any u, z ∈ Z
and any z∗ ∈ ∂h(z) the following inequality holds true:

h(u) − h(z) ≥ 〈u − z, z∗〉Z + γ BZ(u, z). (4.21)

Now, we can formulate a convergence result that uses the assumption that f satisfies this
Bregman midconvex property. The case that (4.21) holds true for g∗ instead of f follows
analogously.

Theorem 4.2.4. Under the assumptions of Problem 3.3.4 suppose that f satisfies the
Bregman midconvex property (4.21) with modulus γ > 0. Moreover, let (x̄,−p̄) ∈ X × Y∗

be a solution to (S). We obtain a generalized version CP-BS 2 of CP 2 by choosing the
parameters (σk, τk)k∈N , (θk)k∈N in algorithm 2 as follows:
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•
√
σ0
√
τ0 ‖T‖ ≤ min {CX ,CY∗ } , (where τ0, σ0 > 0)

• θk B (1 + γ τk)−
1
2 , τk+1 B θk τk, σk+1 B θ−1

k σk.

Then the sequence (xk, pk)k∈N we receive from CP-BS 2 satisfies the following error bound:
For any ε > 0 there exists an N0 ∈ N such that

BX (x̄, xN) ≤
4 + 4 ε

N2

BX (x̄, x0)
γ2 τ2

0

+
BY∗ (p̄, p0)
γ2 σ0 τ0

 , (4.22)

for all N ≥ N0 and hence (xk)k∈N convergences strongly to the solution x̄ of (P).

Proof. We go back to the estimate (4.15) and set (x, y∗) B (x̄, p̄). For u = x̄, z = xk+1
and x∗ B 1/τk (JX(xk) − JX (xk+1)) − T ∗ pk+1 ∈ ∂ f (xk+1) the Bregman midconvex property
(4.21) of f gives:

f (x̄) − f (xk+1) ≥
〈
x̄ − xk+1,

JX(xk) − JX (xk+1)
τk

〉
X
− 〈T (x̄ − xk+1) , pk+1〉X

+ γBX (x̄, xk+1) .
(4.23)

Thus, replacing (4.14) by (4.23) and applying (4.19) to the right hand side of (4.15) leads
to the inequality:

4k (x̄, p̄) ≥
(
γ +

1
τk

)
BX (x̄, xk+1) +

BY∗ (p̄, pk+1)
σk

+
BY∗ (pk+1, pk)

σk

+
BX (xk+1, xk)

τk
+ 〈T (xk+1 − x̂k), pk+1 − p̄〉Y .

(4.24)

Now we use Proposition 3.3.11 with α = CX
‖T‖σk τk

−θk−1 〈T (xk − xk−1) , pk+1 − pk〉Y ≥ −
BY∗ (pk+1, pk)

σk
−
θ2

k−1 ‖T‖
2 τk−1 σk

CX CY∗

BX (xk, xk−1)
τk−1

,

insert the over-relaxation step (4.11) such that we end up with

4k (x̄, p̄) ≥ (1 + γ τk)
τk+1

τk

BX (x̄, xk+1)
τk+1

+
σk+1

σk

BY∗ ( p̄, pk+1)
σk+1

+
BX (xk+1, xk)

τk
−
θ2

k−1 ‖T‖
2 τk−1 σk

CX CY∗

BX (xk, xk−1)
τk−1

+ 〈T (xk+1 − xk), pk+1 − p̄〉Y − θk−1 〈T (xk − xk−1), pk − p̄〉Y .

The choice of the parameters ensures that

(1 + γ τk)
τk+1

τk
= θ−1

k ≥ 1,
σk+1

σk
= θ−1

k ≥ 1, and
τk

τk+1
= θ−1

k ≥ 1 for all k ∈ N.
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Moreover, because of min (CX ,CY∗ ) ≥ ‖T‖ τ
1
2
0σ

1
2
0 = ‖T‖ τ

1
2
k σ

1
2
k for all k ∈ N we have

1
τk

θ2
k−1 ‖T‖

2 τk−1 σk

CX CY∗
=

1
τk−1

‖T‖2 τk σk

CX CY∗
≤

1
τk−1

, k ∈ N.

Therefore,

4k (x̄, p̄)
τk

≥
4k+1 (x̄, p̄)

τk+1
+
BX (xk+1, xk)

τ2
k

−
BX (xk, xk−1)

τ2
k−1

+
1
τk
〈T (xk+1 − xk), pk+1 − p̄〉Y −

1
τk−1

〈T (xk − xk−1), pk − p̄〉Y

holds true. Now, summing these inequalities from k = 0 to N − 1 for some N > 0 with
x−1 B x0 and applying (4.17) with τ = τN−1 yields

40 (x̄, p̄)
τ0

≥
4N (x̄, p̄)

τN
+
BX (xN , xN−1)

τ2
N−1

+
1

τN−1
〈T (xN − xN−1), pN − p̄〉Y

≥
4N (x̄, p̄)

τN
−
‖T‖2

CX CY∗
BY∗ (p̄, pN) .

By multiplying by τ2
N and using the identity τN σN = τ0 σ0 we obtain the following error

bound:

τ2
N

τ0 σ0

(
1 −

||T ||2

CX CY∗
τ0 σ0

)
BY∗ ( p̄, pN) + BX (x̄, xN) ≤ τ2

N

BY∗ ( p̄, p0)
σ0 τ0

+
BX (x̄, x0)

τ2
0

 .
Substituting γ by γ

2 in Lemma 1-2 and Corollary 1 in [21] shows that for any ε > 0 there
exists a N0 ∈ N (depending on ε and γ τ0) with τ2

N ≤ 4(1 + ε)(N γ)−2 for all N ≥ N0. This
completes the proof. �

Note that compared to the error estimate in Theorem 4.1.4 (ii) the error bound for the
generalized version CP-BS 2 is 4-times larger. That is due to the fact that in the Hilbert
space case the positive term (4.19) was estimated with the help of the extremal relation
−T ∗ p̄ ∈ ∂ f (x̄) and property (4.21) as:[
− 〈T xk+1,−p̄〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x̄, pk+1〉Y − g∗(pk+1) + f (x̄)

]
≥
γ

2
‖xk+1 − x̄‖2X .

Then this inequality gives the larger coefficient 2γ + 1
τk

of BX(x̄, xk+1) = 1
2‖xk+1 − x̄‖2X

in estimate (4.24), which cause the smaller error bound. Although we obtain a similar
inequality[
− 〈T xk+1,−p̄〉Y − g∗(y∗) + f (xk+1)

]
−

[
〈T x̄, pk+1〉Y − g∗(pk+1) + f (x̄)

]
≥ γBX(xk+1, x̄)

in the Banach space setting, its application would just cause an additional summand at the
right hand side of (4.24) as the Bregman distance is not symmetric.

Finally, we generalize CP 3 to Banach spaces where we assume that also g∗ satisfies the
Bregman midconvex property (4.21) with some modulus δ > 0. This gives a method with
linear convergence:
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Theorem 4.2.5. Under the assumptions of Problem 3.3.4, we assume both f and g∗ to
satisfy the Bregman midconvex property (4.21) with modulus γ > 0 and δ > 0, respec-
tively. Moreover, let (x̄,−p̄) ∈ X × Y∗ denote a solution to (S). Choosing the parameters
σk = σ, τk = τ, and θk = θ in Algorithm 2 constant for any k ∈ N such that

• µ ≤
√
γ δmin{CX ,CY∗ }

‖T‖

• σ =
µ
δ
, τ =

µ
γ

• θ ∈
[

1
1+µ

, 1
]

we obtain a generalized version CP-BS 3 of CP 3. Then the sequence (xk, pk)k∈N we re-
ceive from CP-BS 3 satisfies the following error bound:

(1 − ω) δBY∗ ( p̄, pN) + γBX (x̄, xN) ≤ ωN (δBY∗ ( p̄, p0) + γBX (x̄, x0)) N ∈ N, (4.25)

with ω < 1 is given by (4.28). Hence, the sequence (xk)k∈N converges (with respect to
‖ · ‖X) in O

(
ω

k
2

)
to the solution x̄ of (P).

Proof. In analogy to the proof of Theorem 4.2.4, we obtain from the property (4.21) of
f and g∗ a sharper estimate for (4.15) where we set (x, y∗) = (x̄, ȳ). For this purpose, we
replace (4.14) by (4.23) and (4.13) by

g∗ (p̄)−g∗ (pk+1) ≥
〈

JY∗ (pk) − JY∗ (pk+1)
σ

, p̄ − pk+1

〉
Y

+〈T x̂k, p̄ − pk+1〉Y +δBY∗ ( p̄, pk+1) .

This, together with (4.19), leads to

4k (x̄, p̄) ≥
(
δ +

1
σ

)
BY∗ (p̄, pk+1) +

(
γ +

1
τ

)
BX (x̄, xk+1) +

BY∗ (pk+1, pk)
σ

+
BX (xk+1, xk)

τ
+ 〈T (xk+1 − x̂k), pk+1 − p̄〉Y .

(4.26)

Using (4.11) as well as (3.20) with some constant α > 0 we can estimate the last term in
the following way:

〈T (xk+1 − x̂k), pk+1 − p̄〉Y = 〈T (xk+1 − xk) , pk+1 − p̄〉Y − ω 〈T (xk − xk−1) , pk − p̄〉Y
− ω 〈T (xk − xk−1) , pk+1 − pk〉Y

− (θ − ω) 〈T (xk − xk−1) , pk+1 − p̄〉Y
≥ 〈T (xk+1 − xk) , pk+1 − p̄〉Y − ω 〈T (xk − xk−1) , pk − p̄〉Y

− ω ‖T‖
BY∗ (pk+1, pk)

CY∗ α
− θ ‖T‖α

BX (xk, xk−1)
CX

− (θ − ω) ‖T‖
BY∗ (p̄, pk+1)

CY∗ α
,
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for any ω ∈ [(1 + µ)−1, θ]. Now we set α = ω
(
γ
δ

) 1
2 such that ‖T‖ µωCY∗ α

≤ δ =
µ
σ

and
µ ‖T‖α

CX
≤ ωγ and multiply inequality (4.26) by µ:

µ4k (x̄, p̄) ≥
(
1 + µ −

1
ω

)
µ4k+1 (x̄, p̄) +

µ

ω
4k+1 (x̄, p̄) −

(θ − ω) δ
ω

BY∗ ( p̄, pk+1)

+ µ 〈T (xk+1 − xk) , pk+1 − p̄〉Y − µω 〈T (xk − xk−1) , pk − p̄〉Y
+ γBX (xk+1, xk) − θ ω γ BX (xk, xk−1) .

(4.27)

As in Theorem 4.1.4 we choose

ω B
1 + θ

2 + µ
≥

1 + θ

2 +
√
γ δmin{CX ,CY∗ }

‖T‖

, (4.28)

in order to ensure that(
1 + µ −

1
ω

)
µ4k+1 (x̄, p̄) −

(θ − ω) δ
ω

BY∗ ( p̄, pk+1) ≥ 0.

Thus, multiplying (4.27) with ω−k and summing from k = 0 to N − 1 for some N > 0
(where we set x−1 = x0) leads to

µ40 (x̄, p̄) ≥ ω−Nµ4N (x̄, p̄) + ω−N+1 γ BX (xN , xN−1)

+ ω−N+1 µ 〈T (xN − xN−1) , pN − p̄〉Y .

Finally, by using Proposition 3.3.11 with α = (γ/δ)
1
2 as well as ‖T‖ µα ≤ γmin {CX ,CY∗ }

and ‖T‖ µ/α ≤ δ min {CX ,CY∗ }, we obtain the inequality:

µ40 (x̄, p̄) ≥ ω−Nµ4N (x̄, p̄) − ω−N+1 δ BY∗ ( p̄, pN) .

Now the assertion follows from relation (3.18). �

Note that letting σk, τk → ∞ in lines (4.9) and (4.10) the algorithm CP-BS becomes
an iteration of the extremal relations (4.1), while setting σk = τk = 0 eliminates the
dependence on (4.1). Consequently, the parameters σk, τk, k ∈ N should be chosen as
large as possible. This advice was also confirmed by our numerical experiments, where
we relaxed the upper bound of the product τk σk given by the theory in the following way:
Remark 4.2.6. Due to the application of Proposition 3.3.11 in the proofs of Theorems
4.2.1, 4.2.4 and 4.2.5 the proposed parameter choice rules of the versions CP-BS 1-3
depend on the constants CX and CY∗ given by (3.18). Obviously, if X and Y are Hilbert
spaces we have CX = CY∗ = 1. Also in the Banach space case for u = 0 the inequality

BX(x, u) =
1
2
‖x‖2X ≥

CX

2
‖x − u‖2X x ∈ X

is sharp for CX = 1. Accordingly, for a specific application we might only require estimate
(3.20) on bounded domains where the constants CX and CY∗ are not optimal. In fact,
numerical experiments indicate that we obtain faster convergence of CP-BS 1-3 if we
relax the parameter choice of σ and τ by replacing the minimum min {CX , CY∗ } by a value
C ∈ [CX CY∗ , 1) close to 1. However, the condition C < 1, or equivalently τ0 σ0 ‖T‖2 < 1,
seems to be required in order to obtain convergence to the solution (x̄,− p̄).
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4.3 Generalized resolvents

4.3.1 Use of resolvents

In this section we discuss the special generalization of the resolvent in our algorithm with
the focus on its evaluation complexity. Recall from Section 3.3 that on a reflexive Banach
space Z the generalized resolvent (τ∂h + JZ)−1 : Z∗ → Z of h ∈ Γ(Z) and τ > 0 is well-
defined and single-valued. Moreover, if we assume that there is at least one point in Z
where h is finite and continuous, then Equation (3.24):

(τ∂h + JZ)−1(u) = argmin
z∈Z

τ h(z) + BZ(z, JZ∗ (u))

holds true. Setting F = JZ the resolvent (∂h + JZ)−1 is obviously closely related but not
identical to the F-resolvents (A + F)−1F of maximal monotone operators A as used in
the generalized PPA of [50] and studied in [10]. Rewriting the corresponding resolvent
(τ∂h + JZ)−1JZ : Z → Z as a minimization problem (under the assumption that h ∈ Γ(Z)
is finite and continuous at some point):

(τ∂h + JZ)−1JZ(u) = argmin
z∈Z

τ h(z) + BZ(z, u)

we see that it is another generalization with respect to the Bregman distance.

On a Hilbert space Y Moreau’s decomposition (e.g. [66, Theorem 31.5])

(σ∂g∗ + I)−1 (y) = y − σ (∂g + σI)−1 (y) , y ∈ Y,

defines the resolvent of g∗ by the resolvent of g. The following generalization gives us
the opportunity to also calculate the generalized resolvent (σk g∗ + JY∗ )−1 in line (4.9)
without knowledge of g∗. Moreover, it connects our generalization of the resolvent to the
generalization

y 7→ ȳ = argmin
w∈Y

σ g(w) +
1
2
‖w − y‖2Y

which is common in the literature (cf. Section 3.2.2). By Theorem (3.2.7) as well as [23,
Theorem 3.4] which states the surjectivity of (σ JY ◦ ∂g + I) : Y → Y we obtain for any
g ∈ Γ(Y) that is continuous at one point, any σ > 0 and any y ∈ Y the characterization

argmin
w∈Y

σ g(w) +
1
2
‖w − y‖2Y = ȳ = (σ JY∗ ◦ ∂g + I)−1 (y).

Lemma 4.3.1. Suppose that Y is a reflexive Banach space and g ∈ Γ(Y) is finite and
continuous at at least one point. Then for any σ > 0 the following identity holds true:

(σ∂g∗ + JY∗ )
−1 (y) = JY

(
y − σ (JY∗ ◦ ∂g + σI)−1 (y)

)
, y ∈ Y. (4.29)

Proof. For y ∈ Y let p̄ ∈ Y∗ be a solution to the minimization problem

p̄ = argmin
p∈Y∗

(
σg∗(p) − 〈y, p〉Y + h2,Y∗ (p)

)
= argmax

p∈Y∗

(
−g∗(p) +

〈 y
σ
, p

〉
Y
−

1
σ

h2,Y∗ (p)
)
,

(4.30)
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where h2,Y∗ (p) B 1
2 ‖p‖

2
Y∗ . Then p̄ can be rewritten as p̄ = (∂σg∗ + JY∗ )−1 (y), cf. Equa-

tion (3.24). From Example 3.2.12 we conclude
(

1
σ

h2,Y∗
)∗

(y) = σ h2,Y (y). Therefore ȳ ∈ Y
given by

ȳ = (JY∗ ◦ ∂g + σ I)−1 (y) = argminz∈Y

(
σh2,Y

(
z −

y
σ

)
+ g(z)

)
,

is the solution ȳ ∈ Y to the Fenchel dual problem corresponding to the primal prob-
lem (4.30) (cf. problems (3.12), (3.8)). Now the extremal relations (3.9) imply that
−p̄ ∈ σ∂h2,Y

(
ȳ − y

σ

)
= σJY

(
ȳ − y

σ

)
. Thus, we end up with

− (∂σg∗ + JY∗ )
−1 (y) = −p̄ = σJY

(
(JY∗ ◦ ∂g + σI)−1 (y) −

y
σ

)
.

�

For the application of CP-BS to the inner minimization problems of the IRNM (3.3),
where g(y) = S (yδ; y + T (xn) − T ′[xn](xn)), we are interested in the generalized resolvent
(σ∂g̃∗ + JY∗ )−1 of shifted functions g̃ = g(· + y0) ∈ Γ(Y) with y0 ∈ Y . Due to

(JY∗ ◦ ∂g̃ + σI)−1 (y) = (JY∗ ◦ ∂g + σI)−1 (y + σy0) − y0, ∀y ∈ Y

the last corollary gives the relation

(σ∂g̃∗ + JY∗ )
−1 (y) = JY

(
y + σy0 − σ (JY∗ ◦ ∂g + σI)−1 (y + σ y0)

)
= (σ∂g∗ + JY∗ )

−1 (y + σ y0), y ∈ Y.
(4.31)

Calculating the generalized resolvent (τ∂ f +JX)−1 of shifted penalty terms f = αR(x−x0)
with x0 ∈ X becomes more complicated as we will discuss later on.

Next, we want to study some standard examples for f and g in (P). First of all, under
assumption of Problem 3.12 let us consider the case that f and g are given by the squares
of the corresponding Banach space norms:

f (x) B
1
2
‖x‖2X , g(y) =

1
2
‖y − y0‖

2
Y , (4.32)

where y0 ∈ Y is again a shift vector. As already mentioned, in inverse Problems it is quite
natural to minimize a (shifted) Banach norm monomial on the corresponding Banach
space. If X and Y are Hilbert spaces the resolvents corresponding to (4.32) reduce to
scalar multiplications

(τ∂ f + I)−1 (x∗) =
1

1 + τ
x∗, (σ∂g∗ + I)−1 (y) = y −

σ

1 + σ

(
y +

1
σ

y0

)
=

y − σy0

1 + σ

for any τ, σ > 0 and any x∗ ∈ X, y ∈ Y . Here we used Moreau’s decomposition in order
to calculate the resolvent of g∗. And also property (4.7) is satisfied by f : x 7→ 1

2 ‖x‖
2
X and

g∗ : y∗ 7→ 1
2

(
‖y∗‖2Y∗ + 〈y0, y∗〉Y

)
(cf. Example 3.2.12 and Corollary 4.1.3). So let us check
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if also in our Banach space setting the choice (4.32) is predestined for the application of
the generalized algorithm CP-BS : Applying the Theorem of Asplund as well as the gen-
eralization of Moreau’s decomposition (4.29), we deduce that the generalized resolvents
of f and g∗ are given by corresponding duality mappings:

(τ∂ f + JX)−1 (x∗) = (τJX + JX)−1 (x∗) =
1

τ + 1
JX∗ (x∗) (4.33)

(σ∂g∗ + JY∗ )
−1 (y) = JY

(
y − σ (JY JY∗ (· − y0) + σI)−1 (y)

)
= JY

(y − σ y0

σ + 1

)
. (4.34)

This, for instance, guarantees a closed form of the operators (τ∂ f + JX)−1 : X∗ → X
and (σ∂g∗ + JY∗ )−1 : Y → Y∗ with g, f defined by Equation (4.32) for any Banach space
X,Y ∈

{
lrW | r ∈ (1,∞),W positive weight

}
. However, if we consider f and g to be given as

f (x) B 1
2‖x‖

2
Z and g(y) = 1

2‖y− y0‖
2
Z for a Banach norm ‖ · ‖Z in the original Hilbert space

setting of CP , where X , Z and Y , Z, typically a whole system of nonlinear equations
has to be solved in order to calculate the resolvents (τJX + I)−1 and (σ(JY∗ + y0) + I)−1.
So the generalization CP-BS is efficiently applicable to a wider class of functions f and g
than CP . Moreover, for any u, x ∈ X, x∗ ∈ ∂ f (x) = JX(x) and any y∗, p ∈ Y∗, y = ∂JY∗ (p)
we have

f (u) − f (x) − 〈u − x, x∗〉X = BX(u, x), g∗ (p) − g∗(y∗) − 〈y, p − y∗〉Y = BY (y∗, p).

Thus, we conclude:

Corollary 4.3.2. f and g∗, defined by (4.32), satisfy the Bregman midconvex property
(4.21) for any modulus γ ∈ (0, 1].

So the case (4.32) not only provides sufficiently simple generalized resolvents but also
allows the application of the accelerated versions CP-BS 2 and CP-BS 3. More general,
the following Corollary shows that if the evaluation of the duality mappings JX and JY is
sufficiently cheap, then for any arbitrary exponent r ∈ (1,∞) the generalized resolvents of

f (x) B
1
r
‖x‖rX , g(y) B

1
r
‖y − y0‖

r
Y , where y0 ∈ Y (4.35)

become rather simple:

Corollary 4.3.3. For σ, τ > 0 and f , g given by (4.35), we have

(τ∂ f + JX)−1 (x∗) =
1

τ αr−2 + 1
JX∗ (x∗), x∗ ∈ X (4.36)

(σ∂g∗ + JY∗ )
−1 (y) =

1
βr−2 + σ

JY (y − σ y0) , y ∈ Y, (4.37)

where α ≥ 0 is the maximal solution of τ αr−1 +α = ‖x∗‖X∗ and β ≥ 0 the maximal solution
of βr−1 + σβ = ‖y − σ y0‖Y .
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Proof. We set x B (τ∂ f + JX)−1 (x∗). Then the identity ∂ f (x) = Jr,X(x) = ‖x‖r−2
X JX(x)

implies that
(
τ ‖x‖r−2

X + 1
)

JX(x) = x∗. Applying the norm to both sides of this equation
we conclude α = ‖x‖X = ‖JX(x)‖X∗ ≥ 0. Then inserting α gives the first assertion. In
order to prove Equation (4.37) we set ỹ B (JY∗ ◦ ∂g + σI)−1 (y). Due to the identity
∂g(x) = Jr,X(x) = ‖x‖r−2

X JX(x) we have

y − σy0 = JY∗ ◦ ∂g(ỹ) + σ(ỹ − y0) =
(
‖ỹ − y0‖

r−2
Y + σ

)
(ỹ − y0) .

Now the application of the norm ‖ · ‖Y yields β = ‖ỹ − y0‖Y and ỹ =
y+βr−2 y0
βr−2+σ

. By Lemma
4.3.1 the assertion follows:

(σ∂g∗ + JY∗ )
−1 (y) = JY (y − σỹ) = JY

(
y − σ y0

βr−2 + σ

)
.

�

As mentioned in Section 3.3 there exist closed or sufficiently simple resolvents also for
other interesting, not necessary differentiable functions g∗ and f . The next example shows
that under the assumption that the evaluation of JX (or JZ) is sufficiently cheap, this also
applies for the generalized resolvents.

Example 4.3.4. (i) Suppose that X is an N-dimensional reflexive Banach space. Then,
by analogy to Example 3.2.10, we obtain that the generalized resolvent of the norm
f (x) = ‖x‖l1 and τ > 0 is given by

(τ∂ f + JX)−1
i (x∗) = JX∗

(
max

{
|x∗i | − τ, 0

}
sign(x∗i )

)
x∗ ∈ X∗, i ∈ {1, . . . ,N} .

So here the generalized resolvent differs from the resolvent just by the duality map-
ping.

(ii) For any N ∈ N and any positive weight W = (wi)i=1,...,N the weighted sequence
space Y = l2W ({1, . . . ,N}) is a Hilbert space. The corresponding the inner product is
given by 〈y, y∗〉 =

∑
wi yi y∗i . But with respect to the inner product

〈
yi, y∗i

〉
=

∑
yi y∗i

the space Y = l2W ({1, . . . ,N}) has the interpretation of a Banach space with l2W−1 as
its dual. In the sense of this second view let us determine the generalized resolvent
(σ∂g∗ + JY∗ )−1 of g = klN(yδ; ·) : l2W (4N)→ R, where the definitions are identical to
those in Example 3.2.10. In analogy to Example 3.2.10 we obtain by Jl2W

(y) = W y
the identity

((
Jl2

W−1
◦ ∂kl(yδ; ·) + σI

)−1
(y)

)
i
=

yi − w−1
i

2σ
+

√(
yi − w−1

i

)2
+ 4σ w−1

i yδi
2σ

for any y ∈ l2W (4N) and any i ∈ 4N. Hence, we obtain the generalized resolvent of
kl(yδ; ·)∗ by Lemma 4.3.1:

((
σ∂kl(yδ; ·)∗ + Jl2

W−1

)−1
(y)

)
i
=

wi yi + 1
2

+
wi

√(
yi − w−1

i

)2
+ 4σ w−1

i yδi
2

.
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(iii) On a reflexive Banach space X we consider the indicator function χC ∈ Γ(X), given
by 3.4, of a convex set C ⊂ X including an open subset. Then we obtain for any
x∗ ∈ X∗ and any positive τ

(τ ∂ιC + JX)−1 (x∗) = argmin
z∈X

(
τ χC(z) − 〈z, x∗〉X +

1
2
‖z‖2X

)
= argmin

z∈C

(
1
2
‖JX∗ (x∗)‖2X − 〈z, JX (JX∗ (x∗))〉X +

1
2
‖z‖2X

)
= πC(x∗)

where πC : X∗ → C, πC(x∗) B argmin
z∈C

BX(z, JX∗ (x∗)) denotes the generalized

projection introduced by Alber [2].

In inverse problems one frequently also wants to minimize Tikhonov-type functionals
(3.1) which incorporates a shift vector x0 , 0 in the penalty term R:

xα = argmin
x∈X

S (yδ; T x) + α R(x − x0).

This approach, for example, allows to take an initial guess x0 , 0 for the solution into ac-
count. For a Hilbert space X a closed form of the resolvent (τ ∂αR + I)−1 directly provides
a closed form of the resolvent of the shifted penalty term f B αR(· − x0):

(τ ∂ f + I)−1 (x∗) = (τ ∂αR + I)−1 (x∗ − x0) + x0, x∗ ∈ X∗ = X.

However, that is not the case in the more general Banach space setting where the dual-
ity mappings JX are nonlinear. One way to overcome this drawback, is to consider the
equivalent minimization problem

xα = argmin
u∈X

S̃ (yδ; Tu) + α R(u).

with shifted data fidelity functional S̃ (yδ; y) = S (yδ; y + T x0). Then the generalized re-
solvent

(
σ S̃ ∗(yδ; ·) + JY∗

)−1
can be evaluated with the help of Equation (4.31). Another

possibility to deal with this problem is to redefine the Banach space X. Although this
approach is more complicated, we want to study it in detail because it characterizes the
preimage space X as a powerful tool for modeling conditions on the solution. So, instead
of X let us consider the “shifted” space Z = {[x] = x + x0 |x ∈ X} = X + x0, with addition
⊕ : Z2 → Z and scalar multiplication � : C × Z → Z given by

[x1] ⊕ [x2] B [x1 + x2] = (x1 + x2) + x0, λ � [x] B [λ x] = λx + x0.

Equipped with the norm ||[x]||Z B ||x||X it becomes a Banach space. The dual space with
respect to the scalar product

〈[x], [x∗]∗〉Z = 〈x, x∗〉X

is Z∗ = X∗/ {JX(x0)} = {[x]∗ = x∗ + JX(x0) |x∗ ∈ X∗} where the corresponding norm reads
as

‖[x∗]∗‖Z∗ = sup
‖[x]‖Z≤1

| 〈[x], [x∗]∗〉Z | = sup
‖x‖X≤1

| 〈x, x∗〉X | = ‖x
∗‖X∗ .
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Obviously, the map π : X → Z, x 7→ x + x0 = [x] is an isometric isomorphism with
adjoint π∗ : Z∗ → X∗, π∗([x∗]∗) = x∗ and inverse π−1([x]) = x. Therefore we have

JZ([x]) = (π∗)−1 ◦ JX ◦ π
−1([x]) = JX(x) + JX(x0), [x] = x + x0 ∈ Z

as well as

JZ∗ ([x∗]∗) = π ◦ JX∗ ◦ π
∗([x∗]∗) = JX∗ (x∗) + x0 [x∗]∗ = x∗ + JX(x0) ∈ Z∗.

Suppose that X satisfies the assumptions of Problem 3.12, i.e. X is reflexive, 2-convex
and smooth. Then one can easily check that this also applies for Z. By the next corollary
we translate the update rule of Algorithm 2 given on the space Z into terms of the original
space X:

Corollary 4.3.5. Under the assumptions of Problem 3.12, consider the space Z = X + x0
introduced above. Let fZ ∈ Γ(Z), gZ ∈ Γ(Y) denote the functions given by fZ([x]) = f (x)
and gZ(y) = g(y + T (x0)), respectively. By the definition TZ([x]) B T (π−1([x])) = T (x) for
all [x] ∈ Z the linear operator T : X → Y determines a linear operator TZ on Z. Applying
algorithm CP-BS to the problem

[x̄] = argmin
[x]∈Z

gZ(TZ[x]) + fZ([x]) = argmin
[x]∈Z

g(T [x]) + f ([x] − x0).

the update rule becomes:

pk+1 =
(
σk ∂g∗Z + JY∗

)−1 (JY∗ (pk) + σk TZ [x̂k+1])

= (σk ∂g∗ + JY∗ )
−1 (JY∗ (pk) + σk T [x̂k+1])

[xk+1] = (τ � ∂ f ⊕ JZ)−1 (
JZ([xk]) 	 τ � T ∗Z pk+1

)
= (τ ∂ f + JX)−1 (JZ([xk]) − τT ∗pk+1 − JX(x0)) + x0

[x̂k+1] = [xk+1] ⊕ θk � ([xk+1] 	 [xk]) = [xk+1] − θk ([xk+1] − [xk])

Proof. The linearity of TZ directly follows from the identity

TZ(λ � ([u] ⊕ [x])) = TZ([λ(u + x)])) = T (λ(u + z)) [u], [x] ∈ Z, λ ∈ R.

Rewriting

JY∗ (pk) + σk TZ [x̂k+1] =
(
σk ∂g∗Z + JY∗

)
pk+1 = (σk ∂g∗ + JY∗ ) pk+1 − σkT x0

together with TZ [x̂k+1]+T x0 = T [x̂k+1] yields the update of the dual variable pk. One can
easily check the expression for the update of the over-relaxation step. Thus, it remains to
verify the update rule for the primal variable xk defined in line (4.10). For this purpose
we consider the subdifferential of fZ at [x] ∈ Z:

∂ fZ([x]) = {[x∗]∗ ∈ Z∗ | 〈[u] 	 [x], [x∗]∗〉Z ≤ fZ([u]) − fZ([x]) = f (u) − f (x),∀u ∈ X}

= {x∗ + JX(x0) ∈ X∗ | 〈u − x + x0 − x0, x∗〉X ≤ f (u) − f (x),∀u ∈ X}

= ∂ f (x) + JX(x0) = [∂ f (x)]∗.
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Consequently, the generalized resolvent [x] B (τ � ∂ fZ ⊕ JZ)−1 ([x∗]∗) at [x∗]∗ ∈ Z∗

satisfies

[x∗]∗ = [τ ∂ f (x)]∗ ⊕ [JX(x)]∗ = [τ ∂ f (x) + JX(x)]∗,

and hence it can be rewritten as

(τ � ∂ fZ ⊕ JZ)−1 ([x∗]∗) = (τ ∂ f + JX)−1 ([x∗]∗ − JX(x0)) + x0.

Now the assertion follows from

JZ([xk]) 	 τ � T ∗Z pk+1 = [JX(xk)]∗ 	 τ � [T ∗pk+1]∗ = [JZ(xk) − τT ∗pk+1]∗
= JZ([xk]) − τT ∗pk+1. �

So, this reformulation of CP-BS allows to incorporate a shift vector x0 , 0 without
increasing the algorithm’s complexity compared to x0 = 0. Note that if T : X → Y is the
Fréchet derivative of an operator F : X → Y at some point u ∈ X (cf. IRNM), the linear
operator TZ : Z → Y is the Fréchet derivative of FZ : Z → Y, FZ(z) B F(z) at [u− x0] = u.

4.3.2 Duality mapping of Sobolev spaces

For the aim of solving phase retrieval problems by the IRNM, we also consider X to be
given by the discretization of the Sobolev spaces W1,r (Ω) B

{
φ : Ω→ R | φ,∇φ ∈ Lr

}
,

r ∈ (1,∞), on an open interval Ω = (−rX , rX) ⊂ R2. Recall from Example 3.3.2 that,
associated with the norm

‖φ‖W1,r(Ω) =
(
‖φ‖rLr(Ω) + ‖∇φ‖rLr(Ω)

) 1
r ,

W1,r (Ω) is a separable, reflexive, max {r, 2}-convex, and min {r, 2}-smooth Banach space.
One opportunity to obtain a corresponding duality mapping is to use the well-known sub-
space W1,r

0 (Ω) B
{
φ : Ω→ R | φ,∇φ ∈ Lr, φ|∂Ω = 0

}
with homogeneous boundary condi-

tion. By equipping W1,r
0 (Ω) with the equivalent norm ‖∇φ‖Lr(Ω), the normalized duality

mapping JW1,r
0 (Ω) : W1,r

0 (Ω)→ W−1,r∗ (Ω) with respect to the L2(Ω)-scalar product reads
as (see [28])〈

JW1,r
0 (Ω)(φ), ϕ

〉
W1,r

0 (Ω)
= ‖φ‖2−r

W1,r
0

〈
Jr,W1,r

0 (Ω)(φ), ϕ
〉

W1,r
0 (Ω)

= −‖φ‖2−r
W1,r

0

∫
Ω

(|∇φ|r−2∇φ)∇ϕ.

In order to avoid the considerable effort of evaluating this duality mapping, we use the
characterization W s,r(Ω) = Hs,r(Ω), s ∈ N, r ∈ (1,∞) by fractional Sobolev spaces
Hs,r(Ω) (also known as Liouville spaces or Bessel potential spaces (see e.g. [1, pp. 252],
and [77, pp. 208]), which we consider on Ω = (−rX , rX) with periodic boundary condi-
tions: To define these spaces we introduce the Bessel potential operators Λs := (I − ∆)s

by

Λs φ (x′) B
∑
k∈Z2

(
1 +

∣∣∣∣∣πk
rX

∣∣∣∣∣2)s/2

ck
(
φ2 rX

)
exp

(
πi

k
rX
· x′

)
, s ∈ R,
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a-priori for φ ∈ C∞(Ω) where ck
(
φrX

)
B (rX,1 rX,2)−2

∫
Ω

exp(−πi k
rX
· x′) φ(x′) dx′ denote the

Fourier coefficients of the 2rX-periodization φ2rX (see Equations (A.5), (A.6)). Note that
Λ0 = I and ΛsΛt = Λs+t for all s, t ∈ R. For s ≥ 0 and r ∈ (1,∞) the operators Λ−s have
continuous extensions to Lr(Ω), and so the Sobolev spaces

Hs,r(Ω) := Λ−s Lr(Ω) with norms ‖φ‖Hs,r(Ω) := ‖Λs φ‖Lr(Ω)

are well defined. Actually, this definition also makes sense for s < 0, and (with respect to
the L2(Ω)-inner product) we have the duality relation

(Hs,r(Ω))∗ = H−s,r∗ (Ω)

for 1/r + 1/r∗ = 1 (see e.g. [72, §13.6]). The normalized duality mapping

JHs,r(Ω) : Hs,r(Ω)→ H−s,r∗ (Ω)

has a sufficiently simple form

JHs,r(Ω) = Λ−s JLr Λs.

Hs,r (Ω) is a separable, reflexive, max {r, 2}-convex and min {r, 2}-smooth Banach space
(cf. [1]). In order to define the discrete counterpart hs,r(4(rX)) of Hs,r(Ω) we discretize
the rectangle Ω = [−rX , rX] ⊂ P0 by the grid (cf. Appendix A.2)

∆(rX) B
{

rX •
2j
N
B

(
rX,1

2 j1
N1

, rX,2
2 j2
N2

) ∣∣∣∣∣∣ j ∈ ∆N

}
, (4.38)

with
∆N B

{
−

N1

2
,−

N1

2
+ 1, . . . ,

N1

2
− 1

}
×

{
−

N2

2
,−

N2

2
+ 1, . . . ,

N2

2
− 1

}
and a sufficiently large number of sample points N B (N1,N2) ∈ N2.Here • again denotes
the pointwise multiplication. Then sampling φ ∈ Hs,r(Ω), r ∈ (1,∞), s ∈ R on this grid
we obtain φ

rX
∈ hs,r(4(rX)) and Λs becomes

Λs φrX
= F −1

N

[(
1 +

∣∣∣ξj
∣∣∣2) s

2

j∈4N

• FN

(
φ

rX

)]
, ξj B

rξ • 2j
N

∈ 4(rξ)

where rξ = π
2

(
N2
rX,1
, N2

rX,2

)
. Accordingly we define

Jhs,r(4(rX )) = Λ−s Jlr(4(rX )) Λs,

as well as ‖φ
rX
‖hs,r(4(rX )) = ‖Λs φrX

‖lr(4(rX )), for any φ
rX
∈ hs,r(4(rX)), r ∈ (1,∞), s ∈ R. So,

the duality mapping Jhs,r(4(rX )) and the forward operators TFresnel, TFrau associated with the
phase retrieval problems in x-ray imaging, are of comparable complexity.



5 Numerical examples: Solving phase retrieval problems
by CP-BS

In this section, we test the performance of the proposed algorithm 2 (CP-BS ). As moti-
vated above, we apply our method to the regularization functionals (3.1) and (3.3) with
the aim of solving linear or nonlinear inverse problems T x = y in Banach spaces. For
this purpose the linear convolution problem introduced by Example 3.1.1 poses a good
test problem since Tikhonov-type regularization (3.1), unlike the IRNM (3.3), involves
no outer method. The reconstruction of the phase information φ in phase retrieval prob-
lems occurring in coherent x-ray imaging (cf. Section 1.1) will be the topic of Section 5.3.
Most of these examples have been already described in [45]. As a last example, we con-
sider in Section 5.4 a medium scattering problem as defined in Section 1.2. But, first let
us summarize some properties and results which are required for the implementation.

5.1 Preliminaries

In most examples, the preimage and image space of the operator T : X → Y will be (finite
dimensional) weighted sequence spaces

lrW (I) B

x = (xi)i∈I ∈ R
#I

∣∣∣∣∣∣∣∣ ‖x‖lrW =

∑
i∈I

wi|xi|
r


1
r

< ∞

 ,
with r ∈ (1,∞), finite index set I, and positive weight W = (wi)i∈I (cf. Example 3.3.2
(ii)). In these cases the operator norm which is required for the parameter choice of
CP-BS 1 - CP-BS 3 can be efficiently calculated by the power method of Boyd [17]. To
be more precise, the iterative method computes the operator norm ‖A‖ of nonnegative
matrices A : lr(IX)→ ls(IY ) defined on unweighted finite dimensional sequence spaces
lr(IX), ls(IY ), r, s ∈ (1,∞) and the relative norm ‖Au0‖ls(IY ), where

u0 = argmax
u∈lr(IX )

{
‖Au‖ls(IY )

‖u‖ls(IY )
| ‖u‖lr(IX ) = 1

}
if A has negative entries as well. So, in order to apply this method to X = lrW (IX) and
Y = ls

V (IY ), with weights W, V different from 1, we redefine the operator T : X → Y as a
mapping on the unweighted spaces A : lr(IX)→ ls(IY ), A B V

1
s • T •W−

1
r such that

‖A‖ = max
u∈lr(IX )

{
‖Au‖ls(IY ) | ‖u‖lr(IX ) = 1

}
= max

x∈lrW (IX )

{
‖T x‖ls

V (IY ) | ‖x‖lrW (IX ) = 1
}
.

For the aim of modeling blocky structured solution, we will also choose discrete Sobolev
spaces hs,r(4(rX)), s ∈ R, r ∈ (1,∞) given on some grid 4(rX) as preimage spaces X
(see Section 4.3.2). Again, the operator norm ‖T‖ of a nonnegative linear mapping
T : hs,r(4(rX))→ ls

V (IY ) can be computed by the power method proposed in [17]: Set-
ting A = V

1
s • T Λ−s : lr(4(rX))→ ls

V (IY ), we have

‖A‖ = max
φ∈hs,r(4(rX ))

{
‖Tφ‖ls

V (IY ) | ‖Λs φ‖lr(4(rX )) = 1
}

= ‖T‖.
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Figure 5.1: Convergence plot for CP-BS 1 applied to the sparse convolution problem of Figure 3.1.
For different choices of X the error ‖xk − xα‖l1 between an element of the sequence (xk)k∈N and
the true minimizer xα of (3.1) is shown as function of the iteration step k. The parameters τ and
σ are optimally chosen (according to Remark 4.2.6).

Based on this preliminary work, we are now able to study the performance of CP-BS 1-3
applied to different Tikhonov-type functionals. For all versions of the algorithm we relax
the parameter choice of σ and τ according to Remark 4.2.6.

5.2 Convolution problem

Let us start the numerical examination of the generalized algorithm CP-BS with the con-
volution problem introduced in Example 3.1.1. In order to test the intuition that a problem
adapted choice of X and Y will have positive effects on the algorithm’s performance, we
consider again the special sparse convolution problem of Figure 3.1 and apply CP-BS 1
to the corresponding Tikhonov-type regularization

x̄ = x̄α = argmin
x∈X

1
2
‖yδ − T x‖2l2(IY ) + 5‖x‖l1(IY ),

with different - more or less problem adapted - preimage spaces X = lr (IX) where
r = 2, 1.75, 1.5, 1.25. Here IX =

{
− 1

2 ,−
1
2 + 1

N−1 , ...,
1
2

}
denotes the discretization of

[
1
2 ,

1
2

]
with N = 501 sample points and IY =

{
−1,−1 + 1

N−1 , ..., 1
}

the one of [−1, 1]. Then the
operator T : X → Y becomes the discrete convolution which can be rewritten in terms of
discrete Fourier transforms as

T (x)( j) =
(
F −1

2N−1

(
k̂ • F2N−1 x̃

))
j
, j ∈ IY , x ∈ X,
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σ 0.007 (τ) 0.0023 (τ) 0.00075 (τ)
X = l2(IX) 76476 (0.0915) 22368 (0.279) 39418 (0.854)
X = l1.25(IX) 26271 (1.7) 16575 (4.8) 38710 (14.66)

Table 5.1: According to Figure 5.1, the table compares the performance of CP 1 with X = l2(IX)
and CP-BS 1 with X = l1.25(IX) for different choices of σ. It shows the necessary number of
iterations until the error ‖xα − xk‖l1 is less than 10−5, averaged over 100 experiments.

where x̃ = {x̃i | x̃i B x(i) for i ∈ Ix, x̃i B 0 for i ∈ IY\IX} is the vector x = (xi)i∈IX
padded

with N − 1 zeros and k̂ is discrete Fourier transform F2N−1 k̃ of the zero-padded kernel
k. The generalized resolvents of g(y) = 1

2 ‖y
δ − y‖2l2(IY ) and f (x) = 5‖x‖l1(IY ) are given

by Equation (4.34) and Example 4.3.4. Their closed forms ensure that the algorithm
CP-BS is efficiently applicable. Inspired by the optimality condition T x̄ ∈ ∂g∗( p̄), where
g∗(p) = 1

2 ‖p‖
2
l2(IY ) +

〈
yδ, p

〉
l2

, we choose

T x0 ∈ ∂g∗(p0) = p0 + yδ ⇔ p0 = T x0 − yδ (5.1)

and x0 = 0 as an initial guess.

Figure 5.1 and Table 5.1 show that a problem adapted choice of X, which in this case
means X = lr (IX) with r ≈ 1, actually accelerates the convergence of CP-BS : The
original algorithm CP 1 applied to the Hilbert space l2(IX) needs at least≈ 29581 iterations
to converge, while for its generalization CP-BS 1 applied to X = l1.25(IX) only ≈ 15534
iterations are necessary (cf. Figure 5.1). Moreover, we note that the optimal choice of
σ, which also defines τ via τ = Cσ−1‖T‖−2 ≈ σ−1‖T‖−2 for some C . 1, is not so
different for the various Banach spaces. This makes sense in so far that, in the right
hand side of Equation (4.12), the parameter σ weights the initial distance BY∗ (p̄, p0) in
the dual variable p, which is the same for any X, while τ weights BX(x̄, x0), where we
have Bl1.25 (x̄, x0) ≈ 3.6Bl2 (x̄, x0) (in this particular setting). Accordingly, we found that
the optimal parameter choice also depends (to a smaller extent) on the concrete given
data yδ. However, it seems that the optimal parameter choice is not only determined by
the term 40(x̄, p̄) together with the (relaxed) condition

√
σ
√
τ ‖T‖ . 1: Although, for

X = l1.25, the BY∗ ( p̄, p0) = 25418 is ≈ 11 times greater than BX(x̄, x0) = 2273, the
quotient 0.0038

3.1 ≈ 0.0012 of the corresponding optimal parameters σ and τ is much less
than 1. Also, BY∗ (p̄,p0)

‖T‖2BX (x̄,x0) ≈ 0.14 does not give the right relation σ
τ

. In practice, of course,
an optimal parameter choice is normally not known. However, Table 5.1 illustrates that
also for any other (reasonable) choice of σ the version CP-BS 1 with X = l1.25(IX) is
preferable to CP 1 with X = l2(IX). Here we chose τ ∈ (σ−1‖T‖−2 − 2−6, σ−1‖T‖−2) for
the Hilbert space case X = l2(IX) and τ ∈

[
σ−1‖T‖−2C1, σ

−1‖T‖−2C2

]
with C1 = 0.89 and

C2 = 0.96 ∈ [0.25, 1] for the Banach space case X = l1.25(IX) (cf. Remark 4.2.6).

By considering the generalized resolvent (τ∂ f + JX)−1 of f = ‖ · ‖l1 , Figure 5.2 presents
an explanation of this acceleration: Rewriting (cf. Example 4.3.4 (i))

(τ∂ f + JX)−1 = JX∗ ◦ (τ∂ f + I)−1 ,
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Figure 5.2: Influence of the different Banach spaces X = lr, r = 2, 1.75, 1.5, 1.25 (Figure (a)-(d)),
onto the generalized resolvent (τ∂ f + JX)−1 of f = ‖ · ‖l1 and τ = 1. For any point x∗ ∈ X∗ in
the rectangle [−4, 4]2 the figures show the l1-norm of the generalized resolvent at this point, i.e.
‖(τ∂ f + JX)−1(x∗)‖l1 .

we see that this generalization of the resolvent (τ∂ f + I)−1 : l2(IX) → l2(IX) leads to a
further adaption of the resolvent’s image to the corresponding Banach space X. So, the
generalized resolvent on X = lr (IX) with r ≈ 1 implements the sparsity constraint better
than the l2-resolvent does. In general, the formulation (see Equation (3.24))

(τ∂ f + JX)−1 (u) = argmin
x∈X

τ f + BX(x, JX∗ (u)), u ∈ X∗,

implies that, by using a Bregman distance BX that reflects the problem properties best,
step (4.10) also gives the most likely iterate xk+1 = (τ∂ f + JX)−1 (JX(xk) − τk T ∗pk+1).
Likewise, we can expect that adjusting the image space Y improves the convergence rate
of CP-BS .

Next, we want to reconstruct the piecewise differentiable function x̄, shown in Figure 5.3
(a), from noisy data yδ which are again given by the exact data T x̄ (Figure 5.3 (b)) to
which 5% normal distributed noise was been added. For this purpose Tikhonov-type
regularization of the form

xα = argmin
x∈X

1
2
‖T x − yδ‖2Y +

α

2
‖x‖2X , (5.2)

with X = l1.5(IX)-penalty term, α = 1, and Y = l2(IX), seems to be an appropriate choice.
Since f (y) = 1

2‖T x − yδ‖2Y as well as g(x) = α
2 ‖x‖

2
X satisfy the Bregman midconvex
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Figure 5.3: Convolution problem with exact solution given by (a) and exact data (d). For data
perturbed by 5% normal distributed noise, (b) and (c) show the minimizer of the Tikhonov-type
functionals 5.2 and 5.3, respectively. (e) and (f) are the reconstructed data corresponding to (b)
and (c).

property (4.21), all introduced versions CP-BS 1 - 3 of our Algorithm 2 can be used for
the computation of xα. As above, we set x0 B 0 and p0 B T x0 − yδ = −yδ. Tuning
the corresponding parameters in an optimal way, we obtain superimposable convergence
curves for all three variants which almost coincide with the valid blue curve in Figure 5.4.
Experimentally, we found the following parameter choice to be optimal:

• CP-BS 1: τ ≈ 0.06 and σ = C
τ ‖T‖2 ≈ 0.06, where C = 0.96

• CP-BS 2: τ0 ≈ 0.06 and σ0 = C
τ0 ‖T‖2

≈ 0.06, where C = 0.96, and γ ≈ 0.025

• CP-BS 3: µ =
C
√
γ δ

‖T‖ , where C = 0.98, γ = δ ∈ (0, 1] and θ ∈
[

1
1+µ

, 1
]

By “≈” we indicate that small deviations (in the range of ± 0.01) from τ, τ0, (changing
σ and σ0 as well), and γ give almost the same result. So, in comparison to CP-BS 1
and CP-BS 2, here the use of variant CP-BS 3 does not accelerate the convergence as one
might expect from the theory but provides for a whole set of parameters the optimal error
decay. This last aspect of CP-BS 3 is quite obvious as the multiplication of γ and δ with
the same constant does not change the values of τ and σ in CP-BS 3 and for a sufficiently
large operator norm ‖T‖ (≈ 16.32 in this example) also the influence on θ is rather small.
Moreover, the parameters of CP-BS 1 and CP-BS 3 can be chosen identically. Letting
δ → 0, the parameter choice rule of CP-BS 2 becomes identically to the one of CP-BS 1.
Therefore, in the following we focus on CP-BS 2 with a reasonable large modulus γ or δ,
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Figure 5.4: Convergence plot for the algorithms CP-BS 1 and CP-BS 2 (interchanging the roles of
τ and δ) with X = lr(IX), r B 1.5 and the algorithms CP 1 and CP 2 with X = l2(IX) applied
to the minimization Problem 5.3. The figure shows the error ‖xk − xα‖lr between an element of
the corresponding sequence (xk)k∈N and the true minimizer xα of (3.1) per iteration step k. The
parameters τ, σ, and δ ( reasonable large) are optimally chosen.

respectively. In comparison to the first sparse example, where more than 15000 iterations
were necessary in order to reach the solution, here we only need 558 iterations. This is
probably due to the more regular penalty term.

On the other hand, also the Tikhonov-type regularization

xα = argmin
x∈X

1
2
‖T x − yδ‖2Y +

α

r
‖x‖rl1.5(IX ), (5.3)

with r = 1.5 and α = 22.5 appears to be appropriate for this reconstruction task (cf.
Figure 5.3). For X = l1.5(IX) Equation (4.36) assures that the generalized resolvent of
the corresponding penalty function f (x) = α

r ‖x‖
r
l1.5(IX ) is sufficiently simple as well. So,

versions CP-BS 1 and CP-BS 2 (now for g∗ satisfying the Bregman midconvex property
with some modulus δ) can be applied for computing the minimizer xα. Moreover, in
this special, case also the resolvent (τ ∂ f + I)−1 on the Hilbert space X = l2(IX) can be
efficiently evaluated: For any point u ∈ X∗ = l2(IX) the image x B (τ ∂ f + I)−1 (u) solves

u − x = τ Jr,lr(IX )(x) = τ |x|
1
2 sign(x) = τ |x|

1
2 sign(u) ⇔ 0 = |x|2 − τ2 |x| − 2|u||x| + |u|2,

and hence for any index i ∈ IX there are only 2 candidates for xi:

xi = sign(xi) |xi| ∈
{
sign(ui)

(
2 |ui| + τ2 ± τ

√
4|ui| + τ2

)
/2

}
.

This gives us another opportunity to compare the original versions CP 1 and CP 2 with
an appropriate Hilbert space setting X = l2(IX) and Y = l2(IY ) to their generalizations
CP-BS 1 and CP-BS 2 combined with the more natural choice X = l1.5(IX). Figure 5.4
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shows that CP-BS 1 with an optimal parameter choice (solid blue curve) converges clearly
faster than all the other versions (under the condition to choose δ too small). Although
the improvement by the generalization is not that pronounced in the case of CP-BS 2,
which requires even more iterations than CP 2 to converge, this example again demon-
strates the positive effect of a problem adapted choice of the space X onto the algorithm’s
performance.

5.3 Phase retrieval problem in wavefront reconstructions

Now, let us consider phase retrieval problems in coherent x-ray imaging, as described
in Section 1.1, which were our main motivation for generalizing the Chambolle-Pock
algorithm to Banach spaces. For this purpose we need numerical approximations of the
forward operators TFresnel and TFrau which are given by the Fresnel and Fraunhofer approx-
imations, respectively (cf. Equations (1.21), (1.23), and (1.16)). Then the discretization
of the Fréchet derivatives T ′Fresnel[φ],T ′Frau[φ] and their adjoints follows analogously. In
particular the L2-adjoint of T ′Fresnel[φ] given in Section 1.1.4 reads

(T ′Fresnel[φ])∗(g)
(
x′

)
=

2 κ2

Γ2 <

(
χ κ M

Γ
(x′) i κ ei κ φ(x′) F −1

(
F

(
χ κ M

Γ
O(φ)

) ( κ
Γ
·

)
g
)

(x′)
)
,

for all g ∈ X∗, x′ ∈ R2.

5.3.1 Numerical approximation of the Fresnel approximation

The numerical implementation of the Fresnel and Fraunhofer approximation basically
relies on the discrete Fourier transform (A.11), providing a good approximation of its
continuous counterpart, as studied in Appendix A.2. Making use of Assumption 1.1.9 (as
well as the projection approximation) that implies

supp u0 ⊂ [−rX , rX] B {x′ = (x1, x2) ∈ R2 | |x1| ≤ rX,1, |x2| ≤ rX,2},

we again discretize the corresponding rectangle [−rX , rX] ⊂ P0 by the grid

∆(rX) B
{

rX •
2j
N
B

(
rX,1

2 j1
N1

, rX,2
2 j2
N2

) ∣∣∣∣∣∣ j ∈ ∆N

}
,

defined by Equation (4.38) with sample points N B (N1,N2) ∈ N2. In order to use
the well-established fast implementations of FN and F −1

N , which have a complexity of
O(N1 N2 log2 N1 N2), it is favorable to choose N j, j = 1, 2, as a power of two. Then,
introducing the notation u0rX ,j

= u0

(
2rX•j

N

)
, j ∈ ∆N, for the sampled function u0 with

supp u0 ⊆ [−rX , rX], the discrete Fourier transform 2rX,1 rX,2

π
√

N1,N2
FNu0rX

approximates F u0 on
the grid

∆(rξ) =

{
−rξ,1,−rξ,1 +

2 rξ,1
N1

, . . . , rξ,1 −
2 rξ,1
N1

}
×

{
−rξ,2, rξ,2 +

2 rξ,2
N2

, . . . , rξ,2 −
2 rξ,2
N2

}
,
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with rξ B π
2

(
N1
rX,1
, N2

rX,2

)
by Equation (A.13): 2rX,1 rX,2

π
√

N1N2

(
FNu0rX

)
j
≈ F u0rξ ,j

. Accordingly, for

the Fourier transform û0 B F u0, we obtain from (A.14)

2rξ,1 rξ,2
π
√

N1N2

(
F −1

N û0rξ

)
j
≈ F −1û0rX ,j

.

Note from Appendix A.2 that ∆(rξ) is sampled with the Nyquist sampling rate of π
rX

. Since
F u0(ξ) ≈ 0 at any point ξ ∈ R2\[−rξ, rξ], we can assume u0 to have a bandwidth smaller
or equal to rξ. Then the discrete far field representation of the Fresnel approximation is
given by:

DΓu0

(
πΓ j
rX

)
= DΓu0

(
Γ

κ

2rξ • j
N

)
≈
−i κ 2 rx,1rx,2

πΓ
√

N1N2
eiκΓ χ κ

Γ

(
Γ

κ

2rξ • j
N

) (
FN

(
χ

κ
Γ
,rX
• u0rX

))
j
, j ∈ ∆N,

(5.4)

while the discrete near field representation reads as:

DΓu0

(
2rX • j

N

)
≈ ei κ Γ

(
F −1

N

(
χ
− Γ
κ ,rξ
• FNu0rX

))
j
, j ∈ ∆N .

Here we set

χ
κ
Γ
,rX ,j

= e
i
2

(
f1

∣∣∣∣ 2 j1
N1

∣∣∣∣2+f2

∣∣∣∣ 2 j2
N2

∣∣∣∣2) and χ
− Γ
κ ,rξ ,j

= e
−i
2

(
f−1
1

π2 N2
1

4

∣∣∣∣ 2 j1
N1

∣∣∣∣2+f−1
2

π2 N2
2

4

∣∣∣∣ 2 j2
N2

∣∣∣∣2)
,

which explicates the influence of the Fresnel number f to the chirp functions oscillations.
On the other hand, we discretize the near field formula (1.23) given the effective geometry
by:

|DΓu0|
2
(

M 2 rX • j
N

)
≈

1
M2

∣∣∣∣∣F −1
N

(
χ
− Γ

M κ ,rξ
• FNu0rX

)∣∣∣∣∣2
j
, j ∈ ∆N . (5.5)

The numerical approximation of the Fraunhofer diffraction formula (1.15) follows directly
from (5.4) by neglecting the chirp function χ

κ
Γ
,rX

.

5.3.2 CP-BS as inner solver in the IRNM

Recall that our aim consists in applying the IRNM

φ̄n+1 = argmin
φ∈X

kl
(
yδ; T (φ̄n) + T ′[φ̄n](φ − φ̄n)

)
+
αn

2
‖φ‖2X (5.6)

not only with the noise adapted data misfit term kl given by Equation (1.26) but also on
an appropriate Banach space X corresponding to the penalty term φ 7→ R(φ) = 1

2‖φ‖
2
X .

Here, we simplified the notation by writing φ instead of φ
rX

for the discretized phase
information given on the grid 4(rX). Moreover, we introduced an overbar in order to
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distinguish the iterates φ̄n+1 of the outer IRNM-solver from those, denoted as φk, of the
inner CP-BS -solvers (given by the primal variable). As stressed in Section 4.3, it is due
to the generalization to Banach spaces that the algorithm CP becomes efficiently appli-
cable for this Banach norm penalty R with X ∈

{
lr(4(rX)), h1,r (4(rX)) |r ∈ (1, 2)

}
. To be

more precise, the generalized resolvent of R is up to a constant factor the duality mapping
(cf. Equation (4.33)) which ensures a closed form in these cases but also implies greater
computational cost for the application of CP-BS in case of X = h1,r (4(rX)) than for
X = lr(4(rX)). Example 4.3.4 together with Equation (4.31) gives the generalized resol-
vent of y 7→ kl

(
yδ; T (y + φ̄n) − T ′[φ̄n](φ̄n)

)
on the weighted Hilbert space Yn = l2Wn

(4N)

(treated as a Banach space if Wn , 1 ) with Wn ∈
{(

T (φ̄n) + ε
)−1

, 1
}

(cf. Section 1.1.4).
As initial guesses φ0 = x0 and p0 for the inner solver CP-BS we take the previous iterates
φ0 = φ̄n and p0 = p̄n, starting with the second iteration n + 1 = 2.

Figure 5.5 illustrates the influence of the choice of

X ∈
{
l2(4(rX)), l1.5(4(rX)), h1,1.25 (4(rX))

}
with the associated penalty term to the reconstruction in a far field regime. Here, the Fres-
nel number f is set to zero, and hence the forward operator T = TFrau : X → Y B l2(4N)
is based on the Fraunhofer approximation. Moreover, in order to obtain intensity data in
a realistic range, TFrau is multiplied by the factor such that total intensity ‖yδ‖l1 is 106.
For the reconstruction, we also multiply the regularization parameters αk, k ∈ N by 106,
which corresponds to a normalization of the data. As exact solution φ̄ ∈ X, we take an
example from [34]: The piecewise constant phase φ̄ (Figure 5.5 (a)) of the simulated ob-
ject function O(φ̄) = ei φ̄ belongs to two unstained biological cells. In practice, the region
Ω = [−rX , rX] including the support of the sample can be marked by putting a further con-
stant phase shifting object into the beam. This is also simulated here by adding the charac-
teristic function χΩ of a 174×188 pixel rectangle Ω to the true phase φ̄ (256 × 256 pixels).
In order to incorporate this additional information into the IRNM, we redefine the penalty
term as R(φ) = 1

2‖φ − 1‖2X , or equivalently consider the space X + 1, given on 4(rX), in-
stead of X ∈

{
l2(4(rX)), l1.5(4(rX)), h1,1.25 (4(rX))

}
(cf. Corollary 4.3.5). Accordingly, in

the first iteration, φ̄0 = 1 serves as the initial guess for the primal variable x of CP-BS
which also defines p0 via Equation (5.1). For experimental chosen regularization param-
eters αk, the IRNM was stopped when the l1.5-error %(n + 1) B ‖φn+1 − φ̄‖l1.5 between the
reconstruction φn and the true solution φ̄ reached a minimum. In Figure 5.5, this error
%(N) for the selected reconstruction φN ((d)-(f)) is %(N) ≈ 142 in (d), %(N) ≈ 119 in (e),
and %(N) ≈ 117 in (f). We also see that choosing an l1.5- space and penalty term ((e), (h))
gives a slightly better reconstruction than in the l2-setting ((d), (g)). A bit more obvious
is the improvement in (f), where a Sobolev norm space and penalty is used. However, in
this ill-posed setting, it remains questionable whether the rather small benefit of choosing
X = h1,1.25(4(rX))/ {1} justifies the larger effort of evaluating the corresponding general-
ized resolvent of R. A compromise would be to start the IRNM with X = l1.5(4(rX))/ {1}
and to set X = h1,1.25(4(rX))/ {1} only for the last iterations, with a possible adaption of
the regularization parameter choice rule.
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Figure 5.5: Reconstruction of a pure phase shifting cell test pattern (a) (taken from [34]) from far
field data (c), where M f = 0, for different choices of X. In order to stress the region Ω, its
indicator function χΩ is added to the phase. We have: (a) sum of true phase and χΩ , (b) log10

of the exact data, and (c) log10 of the given noisy data = (b) + Poisson noise. The reconstruc-
tions are performed by the IRNM (1.29) where the support information is incorporated in the
Banach space X by considering the space U + 1 of an appropriate Banach space U given on
Ω (cf. Corollary 4.3.5). Under the following setting, the reconstructed phase maps are given
in the middle row with corresponding data below : (d), (g) reconstruction for U = l2(4(rX))
with αn = 5−5 (2/3)n−1, after 9 iterations. (e), (h) reconstruction for U = l1.5(4(rX)) with
αn = 10−6 (2/3)n−1 after 8 iterations. (f), (i) reconstruction for U = h1,1.25(4(rX)) (discretized)
with αn = 5−7 (1/2)n−1 after 15 iterations. The inner minimization problem of the IRNM is
solved by the algorithm CP-BS 1 given by Theorem 4.2.1 with τ = 0.01, 0.05, 0.4 (from left to
right) and σ = ‖T ′(φ)‖−2τ−10.96.
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Figure 5.6: Reconstructions φ̄N by the IRNM where % attains its minimum (in both cases):
(a) True phase, where the frame shows the given support Ω̄ = [−rX , rX] (b) reconstruction
φ15 for X = l1.5(4(rX)) and αn = 20 2−n+1, (c) reconstruction φ37 for X = h1,1.1 (4(rX)) and
αn = 0.25 2−n+1, (d)-(e) corresponding data. As initial guess for the first iteration we used
φ̄0 = 0 as well as Equation (5.1) defining p0. The inner minimization problems were solved
by the CP-BS 1 with τ = 0.2 in (b),(e) and τ = 24 in (c),(f) choosing σ = 0.96 ‖T ′[φ̄n]‖−2

X τ
−1

for the n + 1-th iteration step. Surprisingly, in (c), the IRNM seems to convergence, i.e. the
reconstruction φN and also the error %(N) barely changes after 20 iterations.

As a second example, we consider a less ill-posed phase retrieval problem in a near field
regime. (a) and (d) of Figure 5.6 show the true solution φ̄ and the given data yδ. Accord-
ingly, the operator T = TFresnel is formulated in the parallel beam geometry, i.e. we use
the representation (1.23) discretized by Equation (5.5). With N = (N1,N2) = (128, 128)
pixels in the detector and the object plane, the geometrical magnification M is 2 N1 and

the Fresnel number f is f1 B f2 =
2 π r2

X,2

λΓ
= 2 π > 1, yielding rather strong oscillations of

χ
− Γ

M κ ,rξ
. The given support [−rX , rX] is 106 × 106 pixels. Applying the IRNM (5.6) with

X ∈
{
l1.5(4(rX)), h1,1.1 (4(rX))

}
, we obtain an almost perfect reconstruction (Figure 5.6 (c))

in case of the Sobolev preimage space and penalty term, while in the l1.5-case some aber-
rations occur. Here, again we selected the approximation φ̄N with (alomost) the smallest
error % which corresponds to an optimal stopping rule. For ε = 0.1, the image space Yn

of TFresnel[φ̄n] is defined as Yn = l2Wn
(4N). Figure 5.7 (cyan curve) illustrates that, com-

pared to Yn = l2(4N), this more adapted choice accelerates the convergence of the inner
solver CP-BS . This observation is in accordance with the results in [62] where the spe-
cial version of CP-BS 1 for Hilbert spaces, preconditioned by a matrix, was introduced
(cf. Remark 4.2.2). However, in the far field regime of the first example, weighting l2(4N)
by Wn = (T (φ̄n) + ε)−1 or

(
max(T (φ̄n), ε)

)−1 for some ε > 0 leads to instabilities.
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Figure 5.7: IRNM (5.6) applied to the phase retrieval problem as shown in Figure 5.6 for
X = l1.5(4N) (top) and X = h1,1.1(4N) (bottom). For fixed n = 8, the figures show the error
‖φ̄9 − φk‖X of an element of the sequence (φk)k∈N which we obtain from the algorithms CP-BS 1
and CP-BS 2 and the true minimizer φ̄8 of (5.6) per iteration step k. For a given τ (or τ0), we set
σ = 0.96 ‖T ′[φ̄n]‖−2τ−1 (σ0 analogously). According to the theory, we observed that choosing
the value γ

α8
“sufficiently” small and τ0 = τ , σ0 = σ both versions CP-BS 1 and CP-BS 2 give

the same error curves. The solid blue curves (and also the cyan curve where Y = l2(4N)) present
the optimal parameter choices for CP-BS 1, which coincides with best error decay we obtained.

In the convergence plots in Figure 5.7 which are given for the n + 1 = 9-th iteration
step of the IRNM for both choices of X, we also compare the versions CP-BS 1 and
CP-BS 2. In both cases (top and bottom), we have again found no parameter choice for
CP-BS 2 such that the resulting error ‖φ̄N − φk‖X decays faster than the solid blue curves,
representing the optimal choices of σ and τ for CP-BS 1. We also observed that, if we
further decrease τ = τ0 and hence increase σ = σ0, CP-BS 1 achieves still a better
result than CP-BS 2 does with a “reasonably large modulus” γ (cf. red curves). If we
multiply the modulus γ that corresponds to the dashed blue curve in the case X = l1.5(4N)
by a factor 1

2 such that γ = 0.025α8, we again obtain the optimal error decay. This
illustrates our impression that CP-BS 2 reacts quite sensitively to changes of γ. On the
other hand, for τ = τ0 sufficiently large (see the green curves) and suitably chosen γ,
CP-BS 2 convergences much faster than CP-BS 1 does. So, for the considered problem
the version CP-BS 1 seems to be more favorable if τ = τ0 is not much lager than 100σ
in the l1.5-case and τ ≤ 2000σ in the Sobolev-case. If we pick τ = τ0 � σ, the method
CP-BS 2 with some γ not too small becomes the better choice. This is in accordance
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Figure 5.8: IRNM applied to the medium scattering problem: (a) Refractive index n2 given by the
true contrast ā via n2 = 1 + ā. (b) Reconstruction results for X = l1.5, R(a) = ‖a‖2X , αn = 8 2−n+1,

and inner solver CP-BS 3 with δ = γ = 0.5 and µ = 0.98
√
δ γ

‖T ′[an]‖ . (c) Reconstruction results
for X = l1.25, R(a) = ‖a‖2X , and αn = 10 2−n+1. Up to iteration n = 11 we chose same µ as
in (b) for inner solver CP-BS 3 with δ = γ = 0.5. For n = 12, 13 we took µ = 0.6

√
δ γ

‖T ′[an]‖ .

(d) Reconstruction results for X = l1.5, R(a) = ‖a‖l1 , α0 = 10 2
3

n−1
, and inner solver CP-BS 1

with τ = 8. The discrepancy principal (5.7) (with ν = 2 chose the reconstruction aN with index
N = 12 in (b), N = 14 in (c), and N = 15 in (d).

with the strategy suggested in [21], which requires a good approximation of the distance
BX(x̄, x0). Translating the advice in our Banach space setting, it states that, in order keep
the right hand side of Equation (4.22) small, one should choose γτ0 � BX(x̄, x0). In
Figure 5.7 we have: BX(φ̄9, φ0) = BX(φ̄9, φ̄8) ≈ 242 for (b), (e) and BX(φ̄9, φ0) ≈ 8 105

for (c), (f).

5.4 Phase retrieval in inverse medium scattering

We conclude our numerical investigation of the algorithm CP-BS by a nonlinear inverse
medium scattering problem with ’sparse’ contrast, as introduced in Section 1.2. The two-
dimensional example shown in Figure 5.8 basically adapts the setting of Figure 1 in [52],
while there the given data consist of point measurements of us on some surface: The
true real-valued contrast ā, with ā(x′) = 4 for x′ ∈ supp (ā), (shown in (a)) has a sparse
support which is loacted in a ball Bρ of radius ρ = 0.2. For j = 1, . . . 16 equidistantly sam-
pled directions d j = exp (2π i j/16) ∈ S1 and plane waves ui

j(x
′) = exp(−i κ x′ · d j) we calcu-

late the far field patterns u∞j (ϑk) at ϑk B exp
(
2π i k

32

)
, k = 1, . . . , 32. For the discretiza-

tion and efficient evaluation of the corresponding forward operators Fd j , j = 1, . . . 16,
the Fréchet derivatives, and their adjoints we refer to [41] (while do not use the two-
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grid method). Note that this implementation relies on the fast solution method for the
Lippmann-Schwinger equation suggested by Vainikko ( [79]). The ball B2ρ on which the
(4ρ-periodizations of the) functions Φ, ā, a, a u and a ui are considered is sampled by the

grid 4(2ρ) with N = (64, 64) grid points. The given data yδ =

(
u∞,δd j

(ϑk)
)

k, j
is the vector

of far field patterns u∞j (ϑk), k = 1, . . . , 32, j = 1, . . . 16 to which 8% normally distributed
noise has been added. Thus, we apply the IRNM (1.35) with l2-data misfit functional
S (y; yδ) = 1

2 ‖y − yδ‖2l2 and corresponding image space Y = l2. In order to model the
sparseness of supp a, the penalty term R is chosen to be either R = ‖ · ‖l1 (cf. the sparse
convolution problem 3.1 ) or R = 1

2‖·‖
2
X given on a Banach space X = lr with r = 1.25, 1.5.

We force the IRNM to generate a real-valued result by setting the imaginary part of the
reconstruction an+1 to zero after any iteration step n. As stopping criterion we use the
discrepancy principal, i.e. we stop the iteration for the first index n = N where

S (yδ; (Tui
j
(an+1)) j=1,...,J) ≤ ν 0.08, (5.7)

with ν = 2 > 1 and take the corresponding iterate aN , N = n + 1 as the result. In iter-
ation step n = 12 of the IRNM corresponding to Figure 5.8 (c), the inner minimization
problem defines an example where CP-BS 3 does not converge for the relaxed param-
eter choice µ = 0.98

√
δ γ

‖T ′[an]‖ (cf. Remark 4.2.6). This might be also due to a wrong
operator norm ‖T ′[an]‖ that is given by the power method of Boyd, since here it is not
clear whether the matrix corresponding to T ′[an] is nonnegative. However, if we replace
min {Cl1.25 ,Cl2 } = 0.25 by 0.6 in the parameter choice rule defined by Theorem 4.2.5 the
resulting sequence xk∈N convergences. Figure 5.8 shows that the l1-penalization gives a
slightly too sparse reconstruction (see (c)), while the choice R = 1

2‖ · ‖
2
X with X = l1.5

promotes a too expanded support. So, R = 1
2 ‖ · ‖

2
X with X = l1.25 turns out to be favorable.

Here we see the advantage of CP-BS ’s generality which easily allows an adaption of the
constraints (defined by R and X with respect to the solution properties and by S and Y
with respect to the data properties).



Summary

Within this work, we studied two different issues with regard to phase retrieval problems
in coherent x-ray imaging: The validity of the empty beam correction as well as an effi-
cient, problem adapted reconstruction method.

Our main result with respect to the empty beam correction is a parameter-dependent error
estimate (see Chapter 1). Moreover, we translated this result to the effective geometry
which is commonly used in near field imaging. The presented analysis not only explains
this data correction step in mathematical terms, and thus provides a deeper understanding,
but also allows us to formulate conditions on a setup that justifies this product approxi-
mation in the detector plane. In particular, our estimate shows that the error in the empty
beam correction is mainly influenced by two parameters: The source size (or equivalently
the wavefront smoothness) and the characteristic length scale in the sample. This pre-
diction was also verified by numerical simulations. Although usually not all quantities
of the proposed error bound are precisely known in practice, our analysis can be a help-
ful tool to design and evaluate physical experiments. On the other hand, it underlies the
need for efficient reconstruction methods not only for the object function but also for the
illumination function in order to achieve high resolution in case of an extended source.

A further main result of this thesis is the generalization (denoted as CP-BS ) of the
Chambolle-Pock algorithm CP from a Hilbert space to a Banach space setting. For this
purpose, we translated some concepts defined on Hilbert spaces to the considered Banach
space setting (cf. Section 3.2 and Chapter 4). In particular, the proposed algorithm CP-BS
includes a generalization of the resolvents as well as of a midconvex property. Moreover,
under certain conditions we showed strong convergence of the algorithm CP-BS , and
under additional regularity assumptions we also proved rates of convergence that are sim-
ilar to those of CP . This means, the version CP-BS 2 converges in O

(
1
k

)
and CP-BS 3

converges even linearly.

Then the generalized algorithm CP-BS allowed us the efficient application of a really
problem adapted method to phase retrieval problems in coherent x-ray imaging: The
IRNM with Kullback-Leibler data misfit functional KL and non-Hilbertian norm penalty
term (such as a Lr- or H1,r-penalty term with r ∈ (1, 2)) given on Banach spaces. Such
a combination of IRNM or Tikhonov-type regularization with CP-BS as inner solver de-
fines an attractive method for solving nonlinear respectively linear inverse problems in
Banach spaces, as we also illustrated by numerical examples.

There are two main advantages of the generalization CP-BS over CP : First of all, the
method becomes (efficiently) applicable to further interesting problems (P), such as prob-
lems with penalty functions f (x) = 1

2 ‖x‖
2
X that base on Banach space norms. Secondly, in

numerical simulations we obtained significantly faster convergence by adapting the Ba-
nach spaces to the problem properties. This performance improvement is for example
relevant for the crucial task of reconstructing sparse solutions.

There are some questions that could not be conclusively settled here. So, in numerical
examples, we compared the different versions of CP-BS to each other and showed that a
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good parameter choice yields faster convergence. However, providing precise parameter
choice rules is still a topic of interest in order to make this otherwise very simple method
more user-friendly. Another open question is the validity of inequality (3.22). Proving this
conjecture for q , 2 or a more general Banach space setting than we did in Proposition
3.3.11 would allow a further generalization of CP-BS .



A Appendix: Basics from Fourier theory

In this chapter we summarize some basics from Fourier analysis and distribution theory
and study the discrete Fourier transform as the numerical approximation of its continuous
counterpart. The definition and results of the following section can be found in the books
[31] and [81]. Section A.2 is based on [19] and the lecture notes on “Inverse Problems II”
by Thorsten Hohage [43].

A.1 Fourier analysis and tempered distributions

Let
F : L2(R2)→ L2(R2), (F ϕ)(ξ′) B

1
2π

∫
R2

e−iξ′·y′ϕ(y′) dy′

denote the two-dimensional (continuous, bijective) Fourier transform with its (continu-
ous) inverse

F −1 : L2(R2)→ L2(R2), (F ϕ)(x′) B
1

2π

∫
R2

eix′·y′ϕ(y′) dy′.

Here x′ ·y′ is the standard scalar product x1 y1 + x2 y2 of the two vectors x′ = (x1, x2) ∈ R2

and y′ = (y1, y2) ∈ R2. By the following theorem we summarize some properties of the
Fourier transform which are repeatedly used in this work:

Theorem A.1.1. The Fourier transform has the following properties:

(i) For any ϕ ∈ L2(R2) and any c ∈ R\ {0} we have:

F (ϕ(c·)) (ξ′) =
1
|c|2
F ϕ

(
ξ′

c

)
, ξ′ ∈ R2.

(ii) For any ϕ ∈ L2(R2) we have

FF ϕ(x′) = ϕ(−x′) x′ ∈ R2.

(iii) On the space L1(R2) the Fourier transform F : L1(R2) → C0(R2) exists as a con-
tinuous, linear, and bound operator with

‖F ϕ‖L∞ ≤
1

2π
‖ϕ‖L1(R2) ϕ ∈ L1(R2).

(iv) For any ϕ ∈ L1(R2) ∩ L2(R2) and ψ ∈ L1(R2) the convolution theorem holds true:

F (ϕ ∗ ψ) = 2π (F ϕ • Fψ).

(v) For any ϕ ∈ L2(R2) and ψ ∈ L2(R2) the convolution theorem holds true:

F (ϕ ∗ ψ) = 2π (F ϕ • Fψ).
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(vi) For any ϕ ∈ L2(R2) and ψ ∈ L2(R2) the Plancherel formula holds true:

〈F ϕ,Fψ〉L2(R2) = 〈ϕ, ψ〉L2(R2) .

Proof. The scaling property (i) is easy to check. (ii) follows directly from the identity
F −1ϕ(−ξ′) = F ϕ(ξ′) for all ϕ ∈ L2(R2) and all ξ′ ∈ R2 by applyingF . For the convolution
theorems (iv) and (v) we refer to [31, Theorem 8.1.3] and [81, VII.5.10] . The assertions
(iii) and (vi) can be found e.g. in [81, Satz V.2.2 and Equation (V.16)]. �

Now let us consider the Schwartz space

S
(
R2

)
B

{
φ ∈ C∞(R2)

∣∣∣∣∣∣ sup
x′∈R2

|x′αDβφ(x′)| ≤ ∞ for all α, β ∈ N2
0

}
where Dβφ =

∂β1+β2φ

∂xβ1
1 ∂xβ2

2

. We equip S
(
R2

)
with its usual topology generated by the semi-

norms
‖φ‖α,β B sup

x′∈R2
|x′αDβφ(x′)| α, β ∈ N2

0

and define its dual space S ′(R2), i.e. the space of tempered distributions. Since S
(
R2

)
is dense in Lr(R2) for any r ∈ [1,∞), and the introduced Fourier transform F can be
considered as the unique continuous extension of F : S

(
R2

)
→ S

(
R2

)
, the last theorem

also applies for ϕ, ψ ∈ S
(
R2

)
. For r ∈ [1, 2] and r∗ = r

r−1 assertion (iii) can be generalized
to the Hausdorff-Young inequality (cf. e.g. [81, Section V.2]):

‖F ϕ‖Lr∗ (R2) ≤
1

(2π)2(1/r−1/r∗) ‖ϕ‖Lr(R2) ϕ ∈ S
(
R2

)
.

Moreover, for α ∈ N2
0, ϕ ∈ S

(
R2

)
and ψ(x′) B x′αϕ(x′), we have (e.g. [81, Satz V.2.10]):

Dα(F ϕ) = (−i)|α| Fψ, and F (Dαϕ)(ξ′) = i|α| ξ′α(F ϕ)(ξ′). (A.1)

The Fourier transform of a tempered distribution T ∈ S ′
(
R2

)
is given by

(F T )(ϕ) = T (F ϕ), ϕ ∈ S
(
R2

)
,

which defines an isomorphism F : S ′
(
R2

)
→ S ′

(
R2

)
.

Example A.1.2. For a ∈ R2 let us introduce the delta-distribution δa ∈ S ′
(
R2

)
given by

δa(φ) B φ(a). Then we have

F δa(φ) = δa(F φ) = F φ(a) =
1

2π

∫
R2

e−ia·x′φ(x′) dx′ .

In particular, the Fourier transform of φ 7→ 2π φ(0) is the constant ”function” T1 ∈ S ′
(
R2

)
mapping φ ∈ S

(
R2

)
to

∫
R2 1(x′) φ(x′) dx′.
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Given a function ϕ ∈ Lr(R2) with r ∈ [1,∞] we denote by Tϕ ∈ S ′
(
R2

)
the regular

distribution
Tϕ(φ) =

∫
R2
ϕ(x) φ(x) dx φ ∈ S

(
R2

)
. (A.2)

Then the convolution with φ ∈ S
(
R2

)
is defined as Tϕ ∗ φ = Tϕ∗φ. With these definitions

Fourier’s convolution theorem generalizes to

F
(
Tϕ ∗ ψ

)
= 2π

(
F Tϕ • Fψ

)
(A.3)

for all ϕ ∈ Lr, r ∈ [1,∞] and ψ ∈ S
(
R2

)
(cf. [19]). More generally, let us consider the

space
E′ B

{
T ∈ S ′

(
R2

)
| supp T is compact

}
,

of (tempered) distributions with compact support where the support of a distribution
T ∈ S ′

(
R2

)
is defined as (cf. [31, Definition 1.4.1])

supp T B R2\
⋃{

U ⊆ R2 | T (φ) = 0 for all φ ∈ C∞(R2) with supp φ ⊂ U
}
.

E′ can also be identified with the dual of C∞(R2) (cf. [31, p. 35, 97]). For any E ∈ E′

we have ( [31, Theorem 8.4.1]) F E = T f where f (ξ′) = 〈KF (ξ′, ·), E〉S (R2) ∈ C
∞(R2)

and KF (ξ′, x′) B 1
2πe−iξ′·x′ . The convolution of E ∈ E′ and T ∈ S ′

(
R2

)
is a tempered

distribution given by

E ∗ T (φ) =
〈〈
φ(x′ + y′), E(x′)

〉
S (R2) ,T (y′)

〉
S (R2)

=
〈〈
φ(x′ + y′),T (x′)

〉
S (R2) , E(y′)

〉
S (R2)

for all φ ∈ S
(
R2

)
. Moreover, Fourier’s convolution theorem holds true ( [31, Theo-

rem 8.4.2]):
F (E ∗ T ) = 2π (F E • F T ) ∈ S ′

(
R2

)
. (A.4)

A.2 Discrete Fourier transform

The numerical implementation of the continuous Fourier transform is usually performed
by the discrete Fourier transform. In order to study this relationship and to estimate the
error of the approximation, we introduce for a given function ϕ ∈ L2(R2) and a period
T = (T1,T2) > 0 its T-periodization:

ϕT(x′) B
∑
l∈Z2

ϕ(x′ + T • l) x′ ∈ R2. (A.5)

Note that for ϕ ∈ L2([−a, a]) supported in a rectangle [−a, a] ⊂ R2 the 2a-periodization
ϕ2a ∈ L2(R) is given by

ϕ2a(x′ + 2a l) = ϕ(x′), x′ ∈ [−a, a], l ∈ Z2, a l = a • l

and hence extends ϕ 2a-periodically to R2.
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Lemma A.2.1. Let us assume that for a function ϕ ∈ L2(R2) the sum in (A.5) is uniformly
absolute convergent. Then we have

ck(ϕT) B
1

T1 T2

∫
[−T/2,T/2]

ϕT(x′) e−2πi k
T ·x

′

dx′ =
2π

T1 T2
F ϕ

(
2πk
T

)
(A.6)

where k
T =

(
k1
T1
, k2

T2

)
. If ϕ ∈ S

(
R2

)
, the Fourier series of the T-periodic function ϕT

ϕT(x′) =
∑
k∈Z2

ck(ϕT) e2πi k
T ·x

′

, x′ ∈ R2 (A.7)

convergences absolute and uniformly and hence, for x′ = 0 we end up with the Poisson
summation formula ∑

l∈Z2

ϕ(T l) =
2π

T1T2

∑
l∈Z2

F ϕ

(
2πl
T

)
.

Proof. Because of the uniform convergence, we can interchange the order of summation
and integration which leads to the first assertion

2π
T1T2

F ϕ

(
2πk
T

)
=

1
T1T2

∫
R2
ϕ(x′) e−

i 2πk·x′
T dx′

=
1

T1T2

∑
l∈Z2

∫
[− T

2 ,
T
2 ]2

ϕ(x′ + T • l) e−
i 2πk·x′

T dx′

=
1

T1T2

∫
[− T

2 ,
T
2 ]2

ϕT(x′) e−
i 2πk·x′

T dx′ = ck(ϕT).

Then, as F ϕ ∈ S
(
R2

)
, there is a constant C > 0 such that:

∑
k∈Z2

|ck(ϕT)| =
2π

T1T2

∑
k∈Z2

∣∣∣∣∣∣F ϕ
(

2πk
T

)∣∣∣∣∣∣ ≤ 2π
T1T2

∑
k∈Z2

C(
1 + 2π

∣∣∣ k
T

∣∣∣)4 < ∞.

So, the Fourier coefficients ck(ϕT) are in l1. This implies that the Fourier series of ϕT
converges absolutely and uniformly to a continuous function ϕ̃. ϕ̃ has the same Fourier
coefficients as ϕT. Thus, we have ϕ̃ = ϕT almost everywhere. As ϕT(x′) B

∑
l∈Z2 ϕ(x′+T l)

is a series of continuous functions, this series converges absolutely and uniformly on each
ball in R2 and therefore ϕT is continuous as well. This proves the identity ϕT(x′) = ϕ̃(x′)
for all x′ ∈ R. �

Corollary A.2.2. Let ϕ ∈ L2(R2) be a band limited function with bandwidth b ∈ R2
+,

i.e. supp F ϕ ∈ [−b,b]. Moreover, we assume the Fourier transform F ϕ ∈ L2(R2) to be
piecewise differentiable. Then F ϕ can be represented by its Fourier series

F ϕ
(
ξ′
)

=
π

2 b1 b2

∑
j∈Z2

ϕ

(
j π
b

)
e−i π j·ξ′

b , (A.8)
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at each point ξ′ ∈ [−b,b], where F ϕ is continuous. Vice versa a piecewise differentiable
function ϕ ∈ L2(R2) with compact support in a rectangle [−a, a] , ∅ is given by

ϕ
(
x′

)
=

π

2 a1 a2

∑
k∈Z2

F ϕ

(
k π
a

)
ei π k·x′

a (A.9)

at each point x′ ∈ [−a, a], where ϕ is continuous.

Proof. [cf. [19, p. 213] ] ForF ϕ ∈ L2(R2) supported in [−b,b] consider the 2b-periodiza-
tion (F ϕ)2b (ξ′) =

∑
l∈Z2 F ϕ(ξ′ + 2b • l). Due to Dirichlet, we obtain from the piecewise

differentiability of F ϕ that, at a point ξ′ ∈ R2 where (F ϕ)2b is continuous, the function
value (F ϕ)2b (ξ′) is equal to its Fourier series∑

j∈Z2

ĉj((F ϕ)2b) e−i π j·ξ′
b ,

with coefficients

ĉj((F ϕ)2b) B
π

2 b1 b2

∫
[−b,b]

(F ϕ(x′))2b e
i π j·x′

b dx′ =
π

2 b1 b2
ϕ

(
π j
b

)
.

Now restricting (F ϕ)2b to [−b,b], shows (A.8). The second assertion follows analogously
where the Fourier coefficients of the Fourier series of (ϕ)2a are given in Lemma A.2.1. �

Equation (A.9) shows that the discrete set of function values
{
F ϕ

(
x′k

)
, | x′k = k π

a , k ∈ Z2
}

completely determines a function ϕ ∈ L2(R2) that is compact supported in a rectangle
[−a, a]. So, in order to reconstruct ϕ from its Fourier transform F ϕ uniformly sampled
on a grid {ξk | k ∈ Z}, the sample rate ξ should be smaller or equal to the Nyquist sampling
rate π

a . Choosing N = (N1,N2) ∈ N2 we sample ϕ on a grid{
2a
N

j : j ∈ ∆N

}
=

{
−a1,−a1 +

2 a1

N1
, . . . , a1 −

2 a1

N1

}
×

{
−a2, a2 +

2 a2

N2
, . . . , a2 −

2 a2

N2

}
where

∆N B
{
−

N1

2
,−

N1

2
+ 1, . . . ,

N1

2
− 1

}
×

{
−

N2

2
,−

N2

2
+ 1, . . . ,

N2

2
− 1

}
,

and set ϕ
a

:=
(
ϕ
(

2 a1 j1
N1

, 2 a2 j2
N2

))
j∈∆N

. Then for b = πN
2a = π

2

(
N1
a1
, N2

a2

)
(and ξ = π

a ) we obtain
from Equation (A.9) that:

ϕ
a,j
B ϕ

(
2 a j
N

)
=

π

2 a1a2

∑
k∈Z2

F ϕ

(
πk
a

)
e2π i k·j

N =
2 b1b2

πN1N2

∑
k∈Z2

F ϕ

(
2b k

N

)
e2π i k·j

N .

If ϕ, . . . , ϕ(m) ∈ C and ϕ(m) is piecewise differentiable, the Fourier coefficients

F ϕ
b,k
B F ϕ

(
2b k

N

)
= F ϕ

(
k π
a

)
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satisfy the asymptotic F ϕ
b,k
∈ O

((
2
k

)m+1
)
. So, for a sufficiently large N = (N1,N2) ∈ N2,

we can assume that F ϕ vanishes outside of the square [−b,b]. This leads to the approxi-
mation:

ϕ
a,j

= ϕ

(
2 a j
N

)
≈

2 b1b2

πN1N2

∑
k∈∆N

F ϕ

(
2b k

N

)
e2π i k·j

N =
2 b1b2

π
√

N1N2

(
F −1

N F ϕb

)
j
. (A.10)

Here FN : CN1 ×CN2 → CN1 ×CN2 is the discrete Fourier transform and F −1
N is its inverse

which are given by

(FNψ)k B
1

√
N1N2

∑
j∈∆N

exp
(
−2πi

j
N
·k

)
ψ

j
, k ∈ ∆N , (A.11)

(F −1
N ψ)j B

1
√

N1N2

∑
k∈∆N

exp
(
2πi k·

j
N

)
ψ

k
, j ∈ ∆N . (A.12)

Applying FN to (A.10), we see that this approximation corresponds to

(F ϕ)
(

2 b j
N

)
≈

2 a1a2

π
√

N1N2

(
FNϕ a

)
j
. (A.13)

Analogously, for a function ϕ ∈ L2(R2) with bandwidth b ∈ R2 we conclude that

(F −1ϕ)
(

2 b j
N

)
≈

2 a1a2

π
√

N1N2

(
F −1

N ϕ
a

)
j
. (A.14)

In the following we will give an error estimate for the last approximations which are
crucial for numerical use of the Fourier transform.

Proposition A.2.3. Let ϕ ∈ C(R2) be a T-periodic function with absolutely convergent
Fourier series:

ϕ(x′) =
∑
k∈Z2

ck(ϕT) e
2πi
T k·x′ , where ck(ϕT) B

1
T1T2

∫ T2/2

−T2/2

∫ T1/2

−T1/2

ϕT(x′) e−
2πi
T k·x′ dx′.

Then for ϕ
T/2,j
B ϕ

(T j
N

)
, j ∈ 4N we have

1
√

N1N2

(
FNϕ T/2

)
k

=
∑
l∈Z2

ck+Nl (ϕ) . (A.15)

Proof. By inserting the Fourier series of ϕ at some point x′ = T
N l with l ∈ 4N, the right

hand side of (A.15) reads as:

1
√

N1N2

(
FNϕ T/2

)
k

=
1

N1N2

∑
j∈∆N

ϕ

(
Tk
N

)
e
(
−2πi j·k

N

)
=

1
N1N2

∑
l∈∆N

cl(ϕT)
∑
j∈∆N

e
(
2πi j·(l−k)

N

)
.
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Thus, showing that the series
∑

j∈∆N e
(
2πi j·(l−k)

N

)
is N1N2 for (l − k) mod N = 0 and vanishes

everywhere else, completes the proof. For this purpose we recall for N ∈ N the identity

N−1∑
j=0

exp
(
2πi

j m
N

)
=

N m mod N = 0
0 else.

This together with exp
(
2πi − j m

N

)
= exp

(
2πi (N− j) m

N

)
yields:

∑
j∈∆N

e
(
2πi j·(l−k)

N

)
=

N2−1∑
j2=0

N1−1∑
j1=0

e
(
2πi j1 ·(l1−k1 )

N1

)
e
(
2πi j2 ·(l2−k2 )

N2

)

=

N1N2 (l1 − k1) mod N1 = (l2 − k2) mod N2 = 0
0 else

. �

Note that for a function ϕ ∈ L2(R) with suppϕ ⊂
[
−T

2 ,
T
2

]
and uniform absolute conver-

gent 2πN
T -periodization (F ϕ) 2πN

T
of the Fourier transform we also obtain the identity (A.15)

from Lemma A.2.1:∑
l∈Z2

ck+Nl (ϕT) =
2π

T1T2

∑
l∈Z2

F ϕ

(
2π
T

(k + Nl)
)

=
2π

T1T2
(F ϕ) 2πN

T

(
2π
T

k
)

=
1

N1N2

∑
j∈∆N

ϕ

(
Tk
N

)
exp

(
−2πi

j
N
·k

)
=

1
√

N1N2

(
FNϕ T/2

)
k
.

Proposition A.2.4. Let us assume that ϕ ∈ C(R2) is a T-periodic function with absolutely
convergent Fourier series and weak derivatives ϕ(1), . . . ϕ(m) ∈ L1([−T/2, T/2]) up to order
m ∈ N, m > d. Then the error for the approximation of the continuous Fourier transform
by the discrete one is bounded by a measure of smoothness

µm(ϕ) B max


∥∥∥∥∥∥∂mϕ

∂xm
1

∥∥∥∥∥∥
L1(R2)

,

∥∥∥∥∥∥∂mϕ

∂xm
2

∥∥∥∥∥∥
L1(R2)


in such a way that∣∣∣∣∣∣ 1

√
N1N2

(
FNϕ T/2

)
k
− ck (ϕ)

∣∣∣∣∣∣ ≤ C
‖N‖ml2

µm(ϕ), k ∈ ∆N (A.16)

where C > 0 is a constant and N ∈ N2 is the number of sample points.

Proof. The identity

ck

(
∂mϕ

∂mx j

)
=

(
2πi
T j

k j

)m

ck (ϕ) , k ∈ ∆N, j = 1, 2
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together with |ck (ϕ) | ≤ ‖ϕ‖L1(R2) and Proposition (A.2.3) yields:∣∣∣∣∣∣ 1
√

N1N2

(
FNϕ T/2

)
k
− ck (ϕ)

∣∣∣∣∣∣ ≤ ∑
l∈Z2\{0}

|ck+Nl (ϕ)| ≤
∑

l∈Z2\{0}

(
‖T‖l∞

2π ‖k + Nl‖l∞

)m

µm(ϕ).

Now the assertion follows by∑
l∈Z2\{0}

(
‖T‖l∞

2π ‖k + Nl‖l∞

)m

≤
√

2
(
‖T‖l∞

2π

)m ∑
l∈Z2\{0}

‖k + Nl‖−m
l2

≤
√

2
(
‖T‖l∞

2π ‖N‖l2

)m ∑
l∈Z2\{0}

∥∥∥∥∥ k
N

+ l
∥∥∥∥∥−m

l2

≤

(
C ‖T‖l∞
2π‖N‖l2

)m ∫
‖x′‖L2>

‖T‖l∞
2

(x1 x2)−m dx′

=

(
C ‖T‖l∞
2π‖N‖l2

)m ∫ ∞

‖T‖l∞
2

(r)1−m dr

=

(
C

π‖N‖l2

)m
‖T‖2l∞

4(m − 2)
.
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[15] R. I. Boţ, E. R. Csetnek, and C. Hendrich. Recent developments on primal-dual
splitting methods with applications to convex minimization. In Mathematics Without
Boundaries, Surveys in Interdisciplinary Research, page 40. Springer, 2014.

[16] T. Bonesky, K. S. Kazimierski, P. Maass, F. Schöpfer, and T. Schuster. Minimization
of Tikhonov Functionals in Banach spaces. Abstract and Applied Analysis, 2008.

[17] D. W. Boyd. The Power Method for lp Norms. Linear Algebra and its Applications,
9:95–101, 1974.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization
and Statistical Learning via the Alternating Direction Method of Multipliers. Foun-
dations and Trends in Machine Learning, 3(1):1–122, 2011.

[19] R. Brigola. Fourieranalysis, Distributionen und Anwendungen. Vieweg-Lehrbuch
angewandte Mathematik. Vieweg, 1997.

[20] L. Ceng, G. Mastroeni, and J. Yao. An Inexact Proximal-Type Method for the
Generalized Variational Inequality in Banach Spaces. Journal of Inequalities and
Applications, 2007(078124), 2007.

[21] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Prob-
lems with Applications to Imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

[22] M. Cheney and D. Isaacson. Inverse problems for a perturbed dissipative half-space.
Inverse Problems, (11):856–88, 1995.

[23] I. Cioranescu. Geometry of Banach Spaces, Duality Mappings and Nonlinear Prob-
lems. Mathematics and Its Applications. Springer, 1990.

[24] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory,
volume 93. Springer, 2012.

[25] P. L. Combettes and J.-C. Pesquet. Proximal Splitting Methods in Signal Processing.
In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages
185–212. Springer, 2011.

[26] W. V. Combettes, P.L. Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4:1168–1200, 2005.

[27] V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin. Non-linear iterative phase retrieval
based on Frechet derivative. Opt. Express, 19(23):22809–22819, 2011.

[28] J. P. Dinca, G. and J. Mawhin. Variational and topological methods for Dirichlet
problems with p-Laplacian. Portugaliae Mathematica. Nova Série, 58(3):339–378,
2001.



References 109

[29] D. C. Dobson. Phase reconstruction via nonlinear least-squares. Inverse Problems,
8(4):541, 1992.

[30] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform.
Opt. Lett., 3(1):27–29, 1978.

[31] F. G. Friedlander. Introduction to the theory of distributions. Cambridge University
Press, 1982.

[32] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of
phase from image and diffraction plane pictures. Optik, 35:237–250, 1972.

[33] K. Giewekemeyer. A study on new approaches in coherent x-ray microscopy of
biological specimens. PhD thesis, Universität Göttingen, 2011.

[34] K. Giewekemeyer, S. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt.
X-ray propagation microscopy of biological cells using waveguides as a quasipoint
source. Physical Review A, 83(2):023804, 2011.

[35] J. Haber. Optimization of the Wafer Bondig Process for the Fabrication of Litho-
graphic X-Ray Waveguides. Master’s thesis, Universität Göttingen, 2013.

[36] J. Hagemann, A.-L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens,
H. Suhonen, and T. Salditt. Reconstruction of wave front and object for inline holog-
raphy from a set of detection planes. Opt. Express, 22(10):11552–11569, 2014.

[37] B. He and X. Yuan. Convergence Analysis of Primal-Dual Algorithms for a Saddle-
Point Problem: From Contraction Perspective. SIAM Journal on Imaging Sciences,
5(1):119–149, 2012.

[38] R. Hesse. Fixed Point Algorithms for Nonconvex Feasibility with Applications. PhD
thesis, Universität Göttingen, 2014.

[39] R. Hesse and D. Luke. Nonconvex Notions of Regularity and Convergence of
Fundamental Algorithms for Feasibility Problems. SIAM Journal on Optimization,
23(4):2397–2419, 2013.

[40] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence rates
result for Tikhonov regularization in Banach spaces with non-smooth operators. In-
verse Problems, 23(3):987, 2007.

[41] T. Hohage. On the numerical solution of a three-dimensional inverse medium scat-
tering problem. Inverse Problems, 17(6):1743, 2001.

[42] T. Hohage. Fast numerical solution of the electromagnetic medium scattering prob-
lem and applications to the inverse problem. Journal of Computational Physics,
214(1):224 – 238, 2006.

[43] T. Hohage. Inverse problems II. University Lecture, summer term 2012.



110 References

[44] T. Hohage, K. Giewekemeyer, and T. Salditt. Iterative reconstruction of a refrac-
tive index from x-ray or neutron reflectivity measurements. Physical Review E,
77(5):051604, 2008.

[45] T. Hohage and C. Homann. A Generalization of the Chambolle-Pock Algorithm to
Banach Spaces with Applications to Inverse Problems. arXiv:1412.0126, 2014.

[46] T. Hohage and S. Langer. Acceleration techniques for regularized Newton methods
applied to electromagnetic inverse medium scattering problems. Inverse Problems,
26(7):074011, 2010.

[47] T. Hohage and F. Werner. Iteratively regularized Newton-type methods with general
data misfit functionals and applications to Poisson data. Numerische Mathematik,
123(4):745–779, 2013.

[48] C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, and T. Salditt. On the validity
of the empty beam correction in near field imaging. Physical Review A. to appear.

[49] S. Kalbfleisch, H. Neubauer, S. P. Krüger, M. Bartels, M. Osterhoff, D. D. Mai,
K. Giewekemeyer, B. Hartmann, M. Sprung, and T. Salditt. The Göttingen Hologra-
phy Endstation of Beamline P10 at PETRA III/DESY. AIP Conference Proceedings,
1365(1):96–99, 2011.

[50] S. Kamimura and W. Takahashi. Strong Convergence of a Proximal-Type Algorithm
in a Banach Space. SIAM J. on Optimization, 13(3):938–945, 2002.

[51] M. V. Klibanov. On the recovery of a 2-D function from the modulus of its Fourier
transform. J. Math. Anal. Appl., 323(2):818–843, 2006.

[52] A. Lechleiter, K. S. Kazimierski, and M. Karamehmedović. Tikhonov regularization
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In phase retrieval problems that occur in imaging by coherent x-ray diffraction, 
one tries to reconstruct information about a sample of interest from possibly 

noisy intensity measurements of the wave fi eld traversing the sample. The math-
ematical formulation of these problems bases on some assumptions. Usually one 
of them is that the x-ray wave fi eld is generated by a point source. In order to 
address this very idealized assumption, it is common to perform a data prepro-
cessing step, the so-called empty beam correction. Within this work, we study the 
validity of this approach by presenting a quantitative error estimate. Moreover, 
in order to solve these phase retrieval problems, we want to incorporate a priori 
knowledge about the structure of the noise and the solution into the reconstruction 
process. For this reason, the application of a problem adapted iteratively regular-
ized Newton-type method becomes particularly attractive. This method includes 
the solution of a convex minimization problem in each iteration step. We present 
a method for solving general optimization problems of this form. Our method is a 
generalization of a commonly used algorithm which makes it effi ciently applicable 
to a wide class of problems. We also proof convergence results and show the per-
formance of our method by numerical examples.
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