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Lensless, holographic X-ray microscopy is a non-invasive imaging technique 
that provides resolution on the nanometer scale. Therefore, a divergent, co-

herent and especially clean wave front impinging on the sample is needed. Yet, 
focusing X-rays by even the most advanced X-ray mirrors causes so called fi gure 
errors of high spatial frequency content. The results are strongly deteriorated 
intensity profi les that are often even more pronounced than the holographic im-
age of the sample itself.

A common strategy to compensate these fi gure errors is to divide the hologram 
by the pure intensity profi le of the beam (the so called fl at fi eld). However, this 
division is only valid in the limiting case of an illumination focused down to a 
point source. In reality, as a consequence of a fi nite spot size, one has to accept a 
loss in resolution when performing the fl at fi eld correction. An approach different 
from the described straightforward procedure is necessary. Here, the simultane-
ous reconstruction of object and probe is proposed using holograms which were 
not fl at fi eld corrected before phase retrieval.

To this end, a method has been developed that allows simultaneously recon-
structing object and probe in amplitude and phase from holographic intensity 
recordings. The experimental way of proceeding was mainly inspired by well-es-
tablished holographic full-fi eld X-ray imaging techniques that require holograms 
defocused to different degrees. Consequently, the conclusion seems reasonable 
that diversity in the optical near-fi eld arises mainly from variation of the propa-
gation distance of light. This so called longitudinal diversity is used to properly 
phase the transmission function of the sample of interest. The algorithmic strat-
egy of simultaneous phase retrieval for object and probe draws on far-fi eld pty-
chography where lateral translations of the sample create diverse diffraction pat-
terns. In view of the need for longitudinal diversity realized by shifts of the sample 
along the optical axis, ptychography has been generalized and adapted for the 
optical near-fi eld. Hence, translations of the sample in all three dimensions of 
space need to be exploited to collect enough information about object and probe 
such that both can be reconstructed simultaneously in amplitude and phase. 
Concepts have been put into practice by simulations as well as by experiments 
with coherent visible light and hard X-rays from synchrotron sources.

The presented approach offers the opportunity to perform high resolution im-
aging, to be extended to tomography and to be adapted to super-resolution 
experiments.
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Preface to the present volume 

Unknown object and unknown wave field – asking for the reconstruction of both 
complex-valued functions from the same experimental recordings seems like asking 
for too much. Even ptychographic algorithms could previously not provide phase 
retrieval for extended illumination wave fronts. 

Now, the present monograph teaches us how the simultaneous recovery of object and 
wave front can be accomplished by the combination of suitable transverse and 
longitudinal translations. An important step to further emancipate the optical scientist 
from the dictate of ideal wave assumptions … 

 
Prof. Dr. Tim Salditt 
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1 Introduction
X-ray microscopy is a non-invasive imaging technique that provides insight into
structural details on the nanometer-scale. Since the discovery of X-rays by Wil-
helm Conrad Röntgen in 1895, the use of this radiation opened up the opportunity
to access details undetectable with visible light. Today, apart from electron mi-
croscopy, X-ray structural analysis is the principal tool to resolve materials at
atomic resolution. Until the late 20th century, this high resolution imaging tech-
nique was basically restricted to crystalline samples which due to their structure
amplify the scattered signal. With the development of bright and coherent X-ray
sources, nowadays, far-field diffraction patterns of non-crystalline samples can be
measured. Furthermore, X-ray imaging is not limited to the optical far-field. Mag-
nified, holograms of the sample can be recorded by using highly curved wave fronts.

An analysis of the far- or near-field intensity distributions is necessary to obtain a
sharp and directly accessible image of the object of interest which reveals its fine
details in the familiar way of visible light microscopy.

Efficient focusing devices such as lenses exist for light in the spectral range per-
ceivable by the human eye. Lenses provide a magnified image of the sample which
is straightforward to interpret. However, X-ray optics are much less performing
and usually do not achieve a simple and direct recording of a sharp and highly
resolved image. Instead here, the task of lenses is delegated to the software side:
Algorithmic tools are necessary to invert the scattered intensity and to reconstruct
a complex valued, focused image of the sample.

A common approach is to use iterative optimization tools that minimize the dif-
ference between the recorded intensity distribution and the current iterate of the
reconstructed structure. The purpose of these algorithms is to refine the recon-
struction further and further such that it finally mimics the sample.

However, highly resolved images of the object of interest can only be obtained,
if there is an appropriate strategy at hand to separate the illumination from the
information of the sample itself. It is intuitively clear that if there is no possibility
to distinguish between features of the object and features of the illumination, no
reliable image can be reconstructed.

There exist different tools to correct for artifacts resulting from the illumination.
They range from straightforward but erroneous division of the recorded hologram
by the measured, pure intensity distribution of the X-ray microscope (flat-field
correction) to more elaborated techniques which independently or simultaneously
(ptychography) reconstruct object and illumination from multiple far-field diffrac-
tion patterns of a sample illuminated at different lateral positions.
So far, in the optical near-field the simultaneous reconstruction of object and (un-
perturbed) illumination has not yet been achieved.



2 Introduction

The purpose of this thesis is to establish a method similar to the technique of
far-field ptychography which allows simultaneously retrieving object and probe
in the optical near-field without the conventional flat-field correction. Primary
experimental inspiration is taken from full-field holographic X-ray imaging tech-
niques rather than from methods using far-field diffraction patterns recorded with
a confined illumination. Yet, primary inspiration for the algorithm of simultane-
ous phase retrieval of object and illumination is taken from far-field ptychography.
Seen from a near-field imaging point of view, it is clear that lateral scanning of
the sample (as used in far-field ptychography) does not provide enough diversity
to the data. In contrast, here variations of the distance between sample and de-
tector cause holograms which differ much more than holograms which are only
distinguishable by lateral displacement. Therefore, a full data set for near-field
ptychography which allows reconstructing object and probe needs to consist of
holograms obtained from displacement of the sample in all three dimensions of
space. In contrast to far-field ptychography, it is not sufficient to translate the
sample only perpendicular to the illumination at a fixed defocus position.

The thesis is organized in four main parts. In chapter two, topics of Fourier-
optics are addressed which concern the physical background of X-ray microscopy,
coherence, propagation of electromagnetic waves in free space and in matter, as
well as resolution and the phase problem in coherent imaging.
Chapter three presents an introduction to the algorithmic tools of near-field propa-
gation and optimization procedures. Selected mathematical aspects of iterative
projection algorithms are presented without the claim of completeness. In the
remaining of chapter three, the connection to phase retrieval is established. Prop-
erties of phase retrieval projection operators are explored. The Gerchberg-Saxton
and the error reduction algorithm are briefly introduced. They are both based
on the method of alternating projections. Next, more difficult techniques like the
(extended) ptychographical engine and the difference map based ptychography are
reviewed. With this in mind, the importance of lateral diversity in far-field imag-
ing is explained.
Chapter four expands in depth on the background and development of near-field
ptychography with lateral and longitudinal diversity. A detailed explanation of
the implementation in parallel and cone beam geometry, as well as a first study
based on simulations is presented.
Chapter five shows experimental realizations of near-field ptychography. Experi-
ments with coherent, visible light and hard X-rays of synchrotron sources are
presented. Parallel beam geometry as well as a magnifying cone beam microscopy
setting was used. A comparison of near-field ptychography with holographic image
reconstruction based on the contrast transfer function is provided.
Near-field ptychography is not only a high resolution imaging technique with low
noise, but also a method to characterize extended wave fronts.
In chapter six, the thesis is concluded by a summary and an outlook.



2 X-ray microscopy and the phase problem
This chapter is dedicated to give a historic and a conceptual overview of X-ray
optics. Without the claim of completeness, the development of coherent X-ray
imaging techniques is briefly reviewed. Necessarily, these techniques are strongly
influenced by and intertwined with methods designed for visible light optics and
electron microscopy. After a historic excursion, selected aspects of coherent optics
are addressed. Topics concerning technical and conceptual ingredients of lens-
less X-ray microscopy such as coherence, propagation in free space and in matter,
different imaging regimes, maximum achievable resolution, as well as the phase
problem for non-crystalline samples are discussed.

2.1 From Gabor holography to lensless X-ray microscopy
Driven by the motivation to see atoms with electron microscopy, D. Gabor faced
the problem that in 1948 the best producible electron lenses could “be compared
in optical perfection to a raindrop rather than to a microscope objective” [1]. He
came up with the ingenious idea to completely leave out the objective lens of the
electron microscope and instead to record the (near-field) diffraction pattern of
the electron beam [2] on a photographic plate. In his Nobel Lecture (1971), he
details:
“After pondering this problem for a long time, a solution suddenly dawned on me,
one fine day at Easter 1947 [...]. Why not take a bad electron picture, but one
which contains the whole information, and correct it by optical means? It was
clear to me for some time that this could be done, if at all, only with coherent
electron beams, with electron waves which have a definite phase. But an ordinary
photograph loses the phase completely, it records only the intensities. No wonder
we lose the phase, if there is nothing to compare it with! Let us see what happens
if we add a standard to it, a “coherent background” ” [1].
When using a coherent illumination, this blurred image on the photographic plate,
which D. Gabor called hologram, is an interference pattern of the primary wave
transmitting the sample and the secondary waves scattered by the sample. Hence,
it encodes the phase information of the sample. Regions of maximum intensity on
the photographic plate correspond to regions where the transmitting and emitting
waves had the same phase. An inverse mask of the photographic plate can now
be created. If this mask is illuminated by a beam with the same properties of
the previously used illumination of the sample, the photons will be diffracted such
that they resemble the wave field which once was recorded on the photographic
plate:
“The interference of the object wave and of the coherent background or “reference
wave” will then produce interference fringes. There will be maxima wherever the
phases of the two waves were identical. Let us make a hard positive record, so that
it transmits only at the maxima, and illuminate it with the reference source alone.
Now the phases are of course right for the reference source A [see Fig. 2.1 taken
from [1]], but as at the slits the phases are identical, they must be right also for B
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[see Fig. 2.1]; therefore the wave of B must also appear, reconstructed” [1].

Figure 2.1: Principle of holography. Figure taken from [1].

Since in 1948 lasers as a source of coherent light had not yet been available,
D. Gabor used a high pressure mercury lamp combined with a small pinhole in
order to have enough intensity and coherence for recording sufficiently structured
holograms. As the mercury lamp had a small coherence length of around 0.1 mm,
D. Gabor and his assistant I. Williams arranged the whole optical setup on one axis
(inline holography); the necessary exposure times were in the order of minutes [1].
Because of these cumbersome experimental conditions, holography found broad
application in science only after the development of lasers in 1963 which provide
a long coherence length and high flux.
In early electron microscopy appropriate lenses were not disposable. This was
the motivation for D. Gabor to invent a lensless microscopy technique. Similar
challenges are encountered in modern X-ray optics. The basic idea of D. Gabor
works for X-ray microscopy as well: Leave out the lenses in a microscope setup and
instead use image processing techniques. Indeed, D. Gabor’s work was inspired
by W. L. Bragg, who recorded the diffraction patterns of crystals with X-rays
and afterwards drilled holes in the photographic plates at the positions of the
diffraction spots. An image of the crystal structure can be observed when placing
such a mask in an appropriate optical setup [3, 4].
A very prominent and early application of X-rays was in the field of crystallog-
raphy, where the intensity scattered by crystalline samples is recorded. In 1980,
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D. Sayre proposed to adapt soft X-ray diffraction techniques for non-crystalline
materials such as single biological cells and their organelles [5, 6]. Hence, resolu-
tion would not be limited by the available physical lenses, but the largest angle of
diffraction measurable by the detector [7]. The idea of X-ray coherent diffractive
imaging (CDI) illustrated in Fig. 2.2(a) was born: An X-ray beam of high flux
and coherence hits a non-crystalline sample. The scattered beam is recorded in the
optical far-field while the still very bright primary beam is blocked by a beam stop
to protect the detector. Since highly coherent X-rays and algorithmic tools to in-
terpret these diffraction data were necessary, it still lasted twenty more years until
D. Sayre’s hypothesis could be successfully demonstrated and analyzed in experi-
ment by J. Miao. The latter combined X-ray diffraction from a non-crystalline
sample with an iterative scheme of data analysis originally developed for electron
microscopy [8].

(a)

object

detector

incident,
coherent  light

detector

scattered wave

beam
 stop

(b)

object

detectordetector

scattered wave

incident, focused
coherent  light

Figure 2.2: (a) Setup for coherent diffractive imaging. The sample S is illuminated by
a coherent, parallel X-ray beam. The scattered intensity is recorded in the optical
far-field. In order to protect the detector from radiation damage, a beam stop has
to be used to block the primary beam. (b) Setup for Fresnel near-field imaging. A
coherent, focused X-ray beam produces curved wave fronts impinging on a sample S.
The interference between transmitted and scattered beam is recorded in the Fresnel
near-field regime. No beam stop is needed.

Despite this success, CDI has two main disadvantages essentially resulting from
the same observation [9]. First, due to the low probability for a non-crystalline
sample to scatter X-rays under considerably wide angles, the sample has to be
exposed to a sufficiently large number of incident photons. This leads to radiation
damage of the object of interest. Second, a beam stop is needed to protect the
X-ray detector, because most of the photons transmit the sample without being
scattered at all. Yet, the regions covered by the beam stop contain important
information such as the small angle scattering signal, which encodes among others
the overall shape of the sample. This information is lost and has to be acquired
by other means, like additional images recorded with a lower number of incident
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photons and without a beam stop or by other microscopy techniques (see [8]). In
addition, it is possible to construct an estimate of the small angle scattering signal
by iterative phase retrieval techniques which are left unconstrained in the regions
of missing data [9]. Another drawback of CDI is its insensitivity to translations of
the sample in the plane perpendicular to the optical axis. Finally, a high degree
of spatial coherence covering at least the dimensions of the sample is required in
order to successfully interpret the measured data [9].
While CDI is a technique to record far-field diffraction patterns, different imaging
methods for the optical near-field were developed as well. They are much more
related to the original idea of holography proposed by D. Gabor. Important ex-
amples are the holographic reconstruction algorithms designed by P. Cloetens et
al. at the end of the 20th century. These algorithms are based on numerical back-
propagation of full-field holograms and on the inversion of the contrast transfer
function [10,11]. High resolution can be obtained by illuminating the sample with
a divergent cone beam (i.e. a beam with considerable phase curvature) [10,12,13].
Thus, it is possible to record a magnified Fresnel hologram (see Fig. 2.2(b)).
In the year 2003, K. A. Nugent et al. also proposed to illuminate a non-crystalline
specimen by a highly divergent beam [14]. The difference from the just described
holographic near-field techniques is that the decay of the illumination is recorded
as well. Whereas in the center of the diffraction pattern, a magnified Fresnel
hologram can be seen, higher angle scattering of the specimen is imaged at the
outer regions of the field of view. This method became known as Fresnel CDI. In
the year 2006, it was demonstrated in experiment by G. J. Williams et al. [15].
Full field holographic imaging has several advantages compared to CDI. Due to a
highly divergent illumination, the whole detector is more or less homogeneously
illuminated. No wide angle scattering signal needs to be collected, a fact that
considerably reduces the required dose. As a consequence, radiation damage of
sample and detector (no beam stop is necessary) is reduced. Furthermore the
demand on spatial coherence of the illumination is less stringent [9, 16].

2.2 Coherence - a short overview
In the last section it was emphasized that an essential ingredient of coherent imag-
ing techniques is the use of a coherent illumination. Coherence describes the ability
of two wave fields to interact (interfere) and thereby – depending on their rela-
tive phases – either enhance or diminish their summed intensity. These intensity
modulations are denoted as fringes.
A different point of view is to regard coherence as a property of the statistical
nature of an optical field Ψ(r, t) – namely as correlations between any two space-
time points of Ψ(r, t). This will lead to the definition of the complex degree of
coherence γ(r1, r2, τ), which is a measure for the strength of the mentioned space-
time correlations, and to a generalized law of interference.
Correlations in space can be considered independently of correlations in time. The
loss of spatial coherence with increasing separation of two points r1 = (x1, y1) and
r2 = (x2, y2) is given by the transversal coherence length. Similarly, the loss of
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temporal correlations due to the lack of monochromaticity is given by the coher-
ence time and the longitudinal coherence length.

Because of thermal and quantum-mechanical effects, an X-ray wave field Ψ(r, t)
undergoes random fluctuations, both in space and time. Consequently, X-ray
fields are stochastic processes. Correlations between any two space-time points
(r1, t1) and (r2, t2) of such a field are described by the mutual coherence function
Γ(r1, r2, τ) [17]

Γ(r1, r2, τ) = 〈Ψ(r1, t+ τ)Ψ∗(r2, t)〉 , (2.1)

where τ is the time difference t2 − t1. The angular brackets denote the ensemble
average. It can be replaced by the time average when considering ergodic systems
[9, 17]:

Γ(r1, r2, τ) = lim
T→∞

1

T

∫ T

0

Ψ(r1, t+ τ)Ψ∗(r2, t) dt . (2.2)

Similarly, the self-correlation of Ψ(r, t) is defined as the time average over all
instances of its squared modulus |Ψ(r, t)|2 = Ψ(r, t)Ψ∗(r, t)

Γ(r1, r1, τ = 0) = 〈Ψ(r1, t)Ψ
∗(r1, t)〉 , (2.3)

Γ(r2, r2, τ = 0) = 〈Ψ(r2, t)Ψ
∗(r2, t)〉 . (2.4)

The self-correlations described by equations 2.3 and 2.4 are called intensity or
irradiance I(r) of the field Ψ(r, t) [9]. Normalization of the mutual coherence
function by the self-correlations Γ(r1, r1, τ = 0) and Γ(r2, r2, τ = 0) results in the
definition of the complex degree of coherence [17]

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r1, r1, τ = 0)Γ(r2, r2, τ = 0)
. (2.5)

To illustrate the meaning of the complex degree of coherence and how it reflects
statistical properties of Ψ(r, t), the intensity of two superimposed wave fields at
a point rP emanating from two small holes of a pierced screen at positions r1

and r2 at some distance with respect to rP shall be calculated. The situation is
sketched in Fig. 2.3. The distance between ri and rP is denoted as ∆i,P with
i = 1, 2. Following the argumentation of the textbooks by D. Paganin [17] and
E. Hecht [18], the wave field at rP at time t can be described as

Ψ(rP , t) = K1Ψ

(
r1, t−

∆1,P

c

)
+K2Ψ

(
r2, t−

∆2,P

c

)
. (2.6)

Due to the finite speed of light, the fields arriving at rP at time t are retarded,
i.e. they result from fields at ri which had been emitted at a time t′ = t − ∆i,P

c
earlier than t. The parameters K1 and K2 are propagators, which depend on
the size of the pinholes, their relative location with respect to rP and the phase
difference of the secondary waves emanating at r1 and r2 with respect to the
wave incident on the pierced screen. They are purely imaginary [18] and of equal
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Figure 2.3: Light emitted by a source S is illuminating a pierced screen placed at
distance ∆S,A with respect to S. Behind the screen the interference of the two waves
emitting the pinholes at positions r1 and r2 is recorded at a distance ∆A,P with
respect to the screen.

sign, such that the product K1K
∗
2 = K∗1K2 = |K1| |K2| is positive and real [18].

Inserting equation 2.2 in the self-correlation function given in equation 2.3 results
in the intensity of Ψ(rP , t)

I(rp) = 〈Ψ (rP , t) Ψ∗ (rP , t)〉
= I1(rP ) + I2(rP ) +

2|K1| |K2|Re
[〈

Ψ

(
r1, t−

∆1,P

c

)
Ψ∗
(
r2, t−

∆2,P

c

)〉]
, (2.7)

where Ii(rP ) are the intensities at rP resulting from KiΨ(ri, t − ∆i,P

c ) in the
absence of the pinhole at rj with j 6= i. Shifting the origin of time1 by

t→ t+
∆2,P

c
(2.8)

and defining the time difference τ

τ =
∆2,P

c
− ∆1,P

c
, (2.9)

results in
I(rp) = I1(rP ) + I2(rP ) + 2|K1K

∗
2 | Re [Γ(r1, r2, τ)] . (2.10)

With

I1(rp) = |K1|2
〈

Ψ

(
r1, t−

∆1,P

c

)
Ψ∗
(
r1, t−

∆1,P

c

)〉
= |K1|2 〈Ψ (r1, t) Ψ∗ (r1, t)〉
= |K1|2 Γ(r1, r1, τ = 0) , (2.11)

1 This is justified, as Ψ is assumed to be statistically stationary [17].
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and with
I2(rp) = |K2|2 Γ(r2, r2, τ = 0) , (2.12)

we find that

|K1| |K2| =
√
I1(rP )I2(rp)√

Γ(r1, r1, 0)Γ(r2, r2, 0)
. (2.13)

Hence, with the definition of the complex degree of coherence given in equation
2.5, equation 2.10 becomes

I(rp) = I1(rP ) + I2(rP ) + 2
√
I1(rP )I2(rP ) Re [γ(r1, r2, τ)]︸ ︷︷ ︸

interference term

. (2.14)

This equation is known as the generalized interference law. In the limiting case of
a completely incoherent field, correlations between any two space-time points do
not exist. Consequently, γ(r1, r2, τ) = 0 and the intensity at rP given by equation
2.14 is just the sum of the intensities I1(rP ) and I2(rP ). In case that the fields
Ψ(ri, t) emitting the pinholes are perfectly monochromatic with frequency ω, i.e.

Ψ(ri, t) =
√
I(ri) exp [i(ϕ(ri)− ωt)] , (2.15)

the complex degree of coherence is

γ(r1, r2, τ) = exp [i(ϕ(r1)− ϕ(r2)− ωτ)] . (2.16)

It is of unit modulus and hence the interference term can adopt the maximum and
minimum values of ±2

√
I1(rP )I2(rP ). In practice, a completely monochromatic

field is very unlikely. Instead of considering strict monochromaticity, it is more
realistic to deal with quasi monochromatic fields [17]. These fields have a limited
spectral range ω − 1

2∆ω ≤ ω ≤ ω + 1
2∆ω around a mean frequency ω. In analogy

to the argumentation given later in section 2.3.1, a quasi monochromatic field can
be decomposed into its monochromatic components

Ψ(r, t) =
1√
2π

∫ ω+ 1
2 ∆ω

ω− 1
2 ∆ω

ψω(r) exp(−iωt) dω. (2.17)

Replacement of ω by ω = ω + δω where δω is the difference of ω with respect to
the mean frequency ω leads to

Ψ(r, t) = exp(−iωt) 1√
2π

∫ + 1
2 ∆ω

− 1
2 ∆ω

ψω+δω(r) exp(−i(δω)t) d(δω)︸ ︷︷ ︸
:=A(r,t)

. (2.18)

Equation 2.18 describes a monochromatic field of frequency ω modulated by a
complex envelope A(r, t) that varies with frequencies δω. For the reason that δω
is much smaller than ω, the variations caused by the complex envelope are much



10 X-ray microscopy and the phase problem

slower than those caused by the monochromatic field exp(−iωt). The complex
degree of coherence is then

γ(r1, r2, τ) = exp(−iωτ)
〈A (r1, t+ τ)A∗ (r2, t)〉√
〈|A(r1, t)|2〉 〈|A(r2, t)|2〉

. (2.19)

It can be shown that for a quasi monochromatic field the absolute value of the
degree of coherence is between zero and one (see for example [17])

0 ≤ |γ(r1, r2, τ)| ≤ 1 , (2.20)

where the limit of zero correlations corresponds to a completely incoherent field
and the limit of full correlations describes a fully coherent field. Intermediate
states are attributed to partial coherence.

2.2.1 Temporal coherence

The mutual intensity Γ(r1, r2, τ) is an eight dimensional function (six spatial and
two temporal coordinates). However, it is easier to consider spatial and temporal
correlations independently from each other.
Temporal coherence describes the ability of a beam of light to interfere with a
delayed version of itself which has not been shifted in space [19]. In this case the
mutual intensity Γ(r1, r2, τ) reduces to the self-correlation of the field Ψ:

Γ(r, r, τ) = lim
T→∞

1

T

∫ T

0

Ψ(r, t+ τ)Ψ∗(r, t) dt . (2.21)

Monochromatic light is temporally coherent. Consider two monochromatic waves
where one of them is delayed by the time τ with respect to the other one. These
waves will keep a fixed phase relation governed by τ for infinite time. If Ψ is not
strictly monochromatic, i.e. it contains frequencies ν − 1

2∆ν ≤ ν ≤ ν + 1
2∆ν with

ν = ω/(2π) and it is described by equation 2.18, the delayed copy Ψ(r, t + τ)
will loose its correlation with Ψ(r, t) over time. As the complex amplitude A(r, t)
of such a field changes on time scales 1

∆ν , waves delayed by τc ≈ 1
∆ν loose their

correlation with respect to the non-delayed wave [19]. The time difference τc is
called coherence time.
The coherence time τc is related to the temporal or longitudinal coherence length,
which is defined as the (spatial) length after which two waves with slightly dif-
ferent wavelength are in phase opposition [20]. If the first wave at wavelength λ
has oscillated N times, the second wave must have oscillated N − 1/2 times at
wavelength λ + ∆λ in order to be in phase opposition with the first wave (see
Fig. 2.4(a)). Therefore one finds

Nλ =

(
N − 1

2

)
(λ+ ∆λ) (2.22)

⇒ N ≈ 1

2

λ

∆λ
. (2.23)
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Figure 2.4: (a) Illustration of the temporal coherence length lc as the the length at
which two propagating waves of slightly different frequency are in anti-phase [20].
(b) Illustration of the spatial coherence length as the distance D of two pinholes, for
which overlapping fringes resulting from interference patterns caused by the central
element and one border element of the source extinguish each other [20]

.

Multiplication of equation 2.23 by the wavelength λ results in the longitudinal or
temporal coherence length lc:

lc ≈
1

2

λ2

∆λ
. (2.24)

The exact prefactor of lc depends on the power spectral density of the source [19].
The longitudinal coherence length can also be deduced by multiplication of τc with
the wavelength [21] and by using the approximation

∆λ

λ
≈ ∆ν

ν
. (2.25)

The expression ∆λ
λ is called bandwidth. For third generation synchrotrons using

the (111) reflection of a Si-crystal monochromator, ∆λ
λ ≈ 1.3 · 10�4 [20]. For

λ ≈ 0.1 nm this results in a longitudinal coherence length of

lc ≈ 0.4 µm . (2.26)

The Wiener-Khintchine theorem
The Wiener-Khintchine theorem connects the spectral composition of a source of
light with the temporal coherence. It can be shown that the Fourier-transform
of the self-correlation function �(r, r, τ) given in equation 2.21 is proportional
to the power spectrum of the optical field which monitors to the spectral energy
distribution of the light [22]. Hence, a measure of the temporal coherence length
can be obtained by the 1/e-decay of the power spectrum of the source.

2.2.2 Spatial coherence

In contrast to temporal coherence, spatial coherence describes the ability of a wave
field to interfere with a spatially shifted, but not delayed copy of itself [19].
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To quantify spatial correlations, two quasi monochromatic waves with wavelength
λ and time delay τ = 0 are considered. Similar to the longitudinal coherence
length lc one can define a transverse coherence length lx,y. It is the distance D
between two apertures at which interference fringes from the central element of
the source are extinguished by interference fringes resulting from a border element
of the source [20]. The situation is sketched in Fig. 2.4(b). Interference fringes of
maximal intensity produced by the central part of the source appear at angles m λ

D

with m ∈ Z. They are spaced by the distance d ≈ sin
(
λ
D

)
∆A,P ≈ λ

D∆A,P on the
screen at distance ∆A,P . Interference maxima caused by a border element of the
source appear at shifted angles m λ

D + a
2∆S,A

. Hence, the central maxima of the

first and the second interference fringes are spaced by the distance dP,Q =
a∆A,P

2∆S,A
.

If the maxima of the first interference pattern should coincide with minima of the
second interference pattern, then

dP,Q =
1

2
d =

1

2

λ

D
∆A,P =

a∆A,P

2∆S,A
. (2.27)

Solving for the slit separation D results in

D =
λ∆S,A

a
. (2.28)

The distance D defined by equation 2.28 is called transversal coherence length lx.
For a two dimensional source, it is

lx =
λ∆S,A

ax
and ly =

λ∆S,A

ay
, (2.29)

where ax is the extension of the source in the horizontal direction and ay the
extension in the vertical direction. Typically, synchrotron beamlines optimized for
coherent imaging have source sizes of 20(h)×200(v) µm2 [23]. Assuming a source-
sample distance of 20 m and a wavelength of 0.1 nm, the coherently illuminated
area is

lx × ly = 100× 10 µm2 . (2.30)

The Van-Citter-Zernike theorem
The Van-Citter-Zernike theorem is the complement of the Wiener-Khintchine theo-
rem. It states that the complex degree of spatial coherence is proportional to the
Fourier transform of the intensity distribution of the source of light [22]. Hence,
a measure of the transversal coherence length can equivalently be obtained by de-
termining the 1/e decay of the Frauenhofer diffraction pattern of the source.

Finally, a rule of thumb for CDI-techniques is that the lateral extent of the sample
must fit in the coherently illuminated area and the maximum path length dif-
ference of two rays diffracted by the sample must be less than the longitudinal
coherence length [20,23].
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2.3 Physics of light propagation
A difference between the two lensless X-ray microscopy techniques (CDI and Fres-
nel CDI) introduced in the previous section is the optical regime where the scat-
tered radiation is recorded. It is determined by the propagation distance of light.
In this section, aspects of the physics of propagation of electromagnetic fields are
presented. Among several ways to derive propagation of light, here the angular
spectrum method is used. The argumentation basically follows the textbook of
D. Paganin [17]. After that, different imaging regimes are explored which de-
scribe Fresnel and Frauenhofer diffraction. The Fresnel scaling theorem used for
propagation of paraxial, spherical waves is introduced.

2.3.1 Free space propagation

Maxwell’s equations for free space give insight into the behavior and properties
of the electromagnetic field in vacuum. These equations can be combined to the
wave equations for the electric and magnetic fields [17]:(

1

c2
∂2

∂t2
−∇2

)
E(x, y, z, t) = 0 , (2.31)(

1

c2
∂2

∂t2
−∇2

)
B(x, y, z, t) = 0 , (2.32)

where c is the speed of light, E and B are the electric and magnetic field, x, y, z
are spatial coordinates and t is time. For hard X-rays, it is justified to use a scalar
representation of the vector equations 2.31 and 2.32:(

1

c2
∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0 , (2.33)

where Ψ(x, y, z, t) represents one component of Ex, Ey, Ez, Bx, By, or Bz. In gen-
eral, Ψ(x, y, z, t) is polychromatic, i.e. it is a superposition of different monochro-
matic ψω with frequency ω = 2πν and with ν = c

λ . Each ν represents a single color
of the spectrum of Ψ. The field Ψ can be decomposed into monochromatic compo-
nents ψω(x, y, z) with the time dependent, oscillating parts exp (−iωt) separated
off:

Ψ(x, y, z, t) =
1√
2π

∫ ∞
0

ψω(x, y, z)︸ ︷︷ ︸
monochromatic components

exp (−iωt) dω . (2.34)

Inserting equation 2.34 into 2.33 leads to the Helmholtz equation describing the
evolution of the monochromatic and time independent ψω:(

∇2 + k2
)
ψω(x, y, z) = 0 , (2.35)

where k = ω
c = 2π

λ . Particularly simple solutions of the Helmholtz equation are
plane waves:

ψPW
ω (x, y, z) = exp (ikr) , (2.36)
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with k = (qx, qy, qz) and |k| = k =
√
q2
x + q2

y + q2
z = 2π

λ is the wave vector pointing
in the direction of propagation and r = (x, y, z) the vector pointing at (x, y, z).
Equation 2.36 can be reformulated into a plane wave at z = 0 and an additional
complex exponential function denoted as free space propagator:

ψPW
ω (x, y, z = ∆) = exp [i(qxx+ qyy)]︸ ︷︷ ︸

=ψPWω (x,y,0)

· exp
[
i
√
k2 − q2

x − q2
y ∆
]

︸ ︷︷ ︸
free space propagator

. (2.37)

This equation describes the propagation of a plane wave in free space from z =
0 to z = ∆ by multiplication of the plane wave at z = 0 with the free space
propagator exp

[
i
√
k2 − q2

x − q2
y ∆
]
that includes the propagation distance z = ∆.

To propagate arbitrary wave fields, it is necessary to define the Fourier transform
F and its inverse F−1:

f̃(qx, qy) = F [f(x, y)] =

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp [−i(qxx+ qyy)] dx dy , (2.38)

f(x, y) = F−1
[
f̃(qx, qy)

]
=

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f̃(qx, qy) exp [i(qxx+ qyy)] dqx dqy . (2.39)

An arbitrary, monochromatic wave field ψω(x, y, z = 0) in real space is related
to the wave field ψ̃ω(qx, qy, qz = 0) in reciprocal space by the inverse Fourier
transform F−1:

ψω(x, y, z = 0) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ψ̃ω(qx, qy, z = 0) exp [i(qxx+ qyy)] dqx dqy .

(2.40)
This expression states that a wave field ψω(x, y, 0) can be written as a superposi-
tion of plane waves exp [i(qxx+ qyy)] with complex amplitudes ψ̃ω(qx, qy, z = 0)
which are propagating under different angles with respect to the optical axis. The
amplitudes ψ̃ω(qx, qy, z = 0) are denoted as angular spectrum. Each of these single
plane waves can be propagated by application of the free space propagator

ψω(x, y, z = ∆) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ψ̃ω(qx, qy, z = 0) exp
[
i
√
k2 − q2

x − q2
y ∆
]

exp [i(qxx+ qyy)] dqx dqy . (2.41)

Equation 2.41 can be expressed in a compact way by the Fourier transform operator
notation

ψω(x, y, z = ∆) = F−1
[
F [ψω(x, y, 0)] · exp

[
i
√
k2 − q2

x − q2
y ∆
]]

. (2.42)



X-ray microscopy and the phase problem 15

In the following, the free space propagator is approximated for waves propagating
under small angles with respect to the optical axis (paraxial approximation or
Fresnel diffraction). For this purpose, the square root in the exponent of the
propagator is expanded into a binomial series up to first order in δ = (q2

x+q2
y) [17]

√
k2 − δ ≈ k − δ

2k
= k −

q2
x + q2

y

2k
. (2.43)

Hence, equation 2.42 reads in paraxial approximation as

ψω(x, y, z = ∆) ≈ exp (ik∆)

F−1

[
F [ψω(x, y, z = 0)] exp

{
−i∆(q2

x + q2
y)

2k

}]
. (2.44)

After separating the constant phase offset exp (ik∆), this is the free space propa-
gation D∆ for Fresnel diffraction or near-field propagation of ψω used throughout
this thesis

D∆[ψω] := F−1

[
F [ψω] · exp

{
− i∆

2k
· (q2

x + q2
y)

}]
. (2.45)

2.3.2 Fresnel and Frauenhofer regime

The exponential chirp function exp
[
ik
2∆ (x′2 + y′2)

]
defined in the starting plane of

propagation with coordinates (x′, y′) determines the imaging regime. In case that
this chirp can be neglected, the imaging regime is called far-field or Frauenhofer
regime, otherwise it is called short distance- or Fresnel near-field regime. To
illustrate how this exponential chirp affects propagation, equation 2.44 needs be
reformulated into a real space convolution. Following the convolution theorem
[17], a real space convolution of two functions f(x, y) and g(x, y) is related to a
multiplication in Fourier space2:

f(x, y)⊗ g(x, y) :=

∫ ∞
−∞

f(ξ)f(x− ξ) dξ

= 2πF−1 [F [f(x, y)] · F [g(x, y)]] . (2.46)

We reformulate equation 2.44

ψω(x, y, z = ∆) ≈ exp (ik∆)F−1

[
F [ψω(x, y, z = 0)] exp

{
−i∆(q2

x + q2
y)

2k

}]
= 2πF−1 [F [ψω(x, y, z = 0)]F [h(x, y,∆)]] , (2.47)

2 A proof of the convolution theorem can be found in [24].
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where the impulse response h∆(x, y) is defined as

h∆(x, y) := F−1 [H∆(qx, qy)] and

H∆(qx, qy) :=
exp (ik∆)

2π
exp

{
−i∆(q2

x + q2
y)

2k

}
. (2.48)

The function H∆(qx, qy) is called transfer function. With the transfer function, the
impulse response h∆(x, y) can be calculated analytically (for an explicit derivation
see for example [17]):

h∆(x, y) = − ik

2π∆
exp (ik∆) exp

[
ik(x2 + y2)

2∆

]
. (2.49)

Application of the convolution theorem given in equation 2.46 transforms equation
2.47 into

ψω(x, y,∆) = ψω(x, y, 0)⊗ h∆(x, y)

= − ik

2π∆
exp (ik∆)

∫ ∞
−∞

∫ ∞
−∞

ψω(x′, y′, 0) ·

exp

[
ik[(x− x′)2 + (y − y′)2]

2∆

]
dx′dy′

=
k

i2π∆
exp (ik∆) exp

[
ik

2∆
(x2 + y2)

] ∫ ∞
−∞

∫ ∞
−∞

ψω(x′, y′, 0) ·

exp

[
ik

2∆
(x′2 + y′2)

]
exp

[
−ik
∆

(xx′ + yy′)

]
dx′dy′. (2.50)

This is the Fresnel-Kirchhoff diffraction integral. The original field ψω(x′, y′, 0)
is decorated with the chirp exp

[
ik
2∆ (x′2 + y′2)

]
, which contains the propagation

distance ∆. After that, this decorated field is Fourier transformed. The result is
multiplied by a complex prefactor, that contains an exponential function with a
quadratic phase and depends on the propagation distance.
It is useful to define the Fresnel number F

F :=
a2

λ∆
, (2.51)

where a is the diameter of the region within which ψω(x′, y′, 0) is not negligible.
For F � 1, i.e. propagation distances much larger than the wavelength λ, such
that λ·∆� a2, the Fresnel-Kirchhoff integral (equation 2.50) can be approximated
by

ψω(x, y,∆) =
k

i2π∆
exp (ik∆) exp

[
ik

2∆
(x2 + y2)

]
·
∫ ∞
−∞

∫ ∞
−∞

ψω(x′, y′, 0) exp

[
−ik
∆

(xx′ + yy′)
]
dx′dy′

=
k

i2π∆
exp (ik∆) exp

[
ik

2∆
(x2 + y2)

]
F [ψω(x′, y′, 0)] . (2.52)
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Equation 2.52 is the Frauenhofer diffraction integral for far-field propagation. For
large distances the optical field in the destination plane is the Fourier transform of
the field in the starting plane multiplied by a complex amplitude and a paraxial,
spherical wave exp (ik∆) exp

[
ik
2∆ (x2 + y2)

]
.

2.3.3 The Fresnel scaling theorem

zeff

plane 1focus

Δ
1,2

Δ f,1

plane 2

z

z=0

Figure 2.5: The Fresnel scaling theorem allows propagating a cone beam like a plane
wave when considering an effective coordinate system.

As introduced the section 2.3.1, the Fresnel-Kirchhoff integral describes free space
propagation of an arbitrary wave field ψ(x′, y′, 0) over a distance ∆1,2, resulting
in the wave field ψ(x, y,∆1,2) (for the notation of distances see Fig. 2.5). In order
to keep the notation simple, the index ω used to indicate monochromatic waves is
skipped, but monochromaticity is assumed in the following as well. The complex
prefactor of the Fresnel-Kirchhoff integral without the quadratic phase factor is

A(∆1,2) =
k

i2π∆1,2
exp (ik∆1,2) . (2.53)

Recall the Fresnel-Kirchhoff integral:

ψ(x, y,∆1,2) = A(∆1,2) exp

[
ik

2∆1,2
(x2 + y2)

]
∫ ∞
�∞

∫ ∞
�∞

ψ(x′, y′, 0) · exp

[
ik

2∆1,2
·
�
x′2 + y′2

)]
· exp

[
�ik
∆1,2

· (x′x+ y′y)

]
dx′dy′. (2.54)

If ψ(x′, y′,∆f,1) is a plane wave at distance ∆f,1 and with k parallel to the optical
axis, it can be expressed as

ψPW(x′, y′,∆f,1) = exp (ik∆f,1) , (2.55)

whereas a spherical wave ψSW = exp(ikr) in paraxial approximation

r =
√

∆2
f,1 + x2 + y2 ≈ ∆f,1 +

1

2∆f,1
(x2 + y2) (2.56)
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with defocus distance ∆f,1 is

ψSW(x′, y′, 0) ≈ exp
(
ik
√

∆2
f,1 + x′2 + y′2

)
≈ exp (ik∆f,1)︸ ︷︷ ︸

=ψPW

exp

[
ik

2∆f,1

(
x′2 + y′2

)]
. (2.57)

Inserting the point source illumination into the Fresnel-Kirchhoff-integral leads to

ψSW(x, y,∆1,2) = A(∆1,2) exp

[
ik

2∆1,2
(x2 + y2)

]
·
∫ ∞
−∞

∫ ∞
−∞

ψPW(x′, y′, 0) exp

[
ik

2∆f,1

(
x′2 + y′2

)]
· exp

[
ik

2∆1,2
·
(
x′2 + y′2

)]
exp

[
−ik
∆1,2

· (x′x+ y′y)

]
dx′dy′. (2.58)

With the help of Fig. 2.5 the geometrical magnification of the image of an object
with respect to its original size can be determined to:

M =
∆f,1 + ∆1,2

∆f,1
. (2.59)

With equation (2.59), the amplitude of ψSW(x, y,∆1,2) is

∣∣ψSW(x, y,∆1,2)
∣∣ =
|A(zeff)|
M

∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

ψPW(x′, y′, 0) exp

[
ik

2zeff
·
(
x′2 + y′2

)]
· exp

[
−ik
zeff
·
(
x′ · x

M
+ y′ · y

M

)]
dx′dy′

∣∣∣, (2.60)

where zeff =
∆1,2

M . For comparision, the amplitude of a plane wave propagated
over a distance zeff and calculated at coordinates (x/M, y/M) is

∣∣ψPW(x/M, y/M, zeff)
∣∣ = |A(zeff)|

∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

ψPW(x′, y′, 0) exp

[
ik

2zeff
·
(
x′2 + y′2

)]
· exp

[
−ik
zeff
·
(
x′ · x

M
+ y′ · y

M

)]
dx′dy′

∣∣∣, (2.61)

Hence, one obtains [17]∣∣ψSW(x, y,∆1,2)
∣∣ =

1

M

∣∣ψPW(x/M, y/M, zeff)
∣∣ . (2.62)

Reconstruction and propagation techniques used for a parallel beam geometry can
directly be applied to intensities recorded in a magnifing cone beam setting. But
it is necessary to introduce an effective coordinate system.
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2.3.4 Interaction between light and matter: The projection approxi-
mation

Propagation of electromagnetic waves in linear, isotropic, static, non magnetic
materials with no current and no charge densities and an electron density that
is slowly varying compared to the wavelength of the electromagnetic radiation is
described by the scalar wave equation in materials [17]:[

ε(x, y, z)µ0
∂2

∂t2
−∇2

]
Ψ(x, y, z, t) = 0 , (2.63)

where ε is the electric permittivity and µ0 is the magnetic permeability in vacuum.
Since the assumptions concerning the underlying materials are essential to derive
equation 2.63, they shall be explained in the following.
Linear materials respond in a linear way to electromagnetic fields, i.e. the electric
displacement is D = εE with the electric permittivity ε, similarly the magnetic in-
duction is B = µH with the magnetic permeability µ. Assuming linear response
to electromagnetic fields excludes all ferroelectric and ferromagnetic materials,
because they depend on the history of the material. In addition, all effects of
non-linear optics are excluded. Isotropic materials respond in the same way to
electromagnetic fields no matter from which direction they are exposed to the
fields; ε and µ are scalars. The assumption of isotropy excludes materials such as
non-cubic crystals. For static materials, the electric permittivity and the magnetic
permeability are independent of time. Non magnetic materials have zero magnetic
permeability µ = 0. Materials with no current and charge densities are neutral
and without internal electric currents. Slowly varying materials are described by
a permeability and a permittivity which are constant over length scales of the
wavelength.
Equation 2.63 has a similar structure as equation 2.33 for electromagnetic waves in
free space. Both equations differ in the prefactor of the second order time deriva-
tive that contains the speed of light which is either c = 1√

ε0µ0
in vacuum with

permeability µ0 and vacuum permittivity ε0 or c′ = 1√
εµ in material.

Similar to the derivation of free space propagation, the next step is to decompose
Ψ(x, y, z, t) into its monochromatic, time independent components ψω(x, y, z) (see
equation 2.34) and insert this decomposition into equation 2.63. Using the defini-
tion of the frequency dependent refractive index nω

nω = c
√
εω(x, y, z)µ0 =

√
εω(x, y, z)

ε0
, (2.64)

with frequency dependent permittivity εω(x, y, z), this results in the inhomoge-
neous Helmholtz equation [17](

∇2 + n2
ω(x, y, z)k2

)
ψω(x, y, z) = 0 . (2.65)

Equation 2.65 can be further simplified for a beam like wave, i.e. a wave that
propagates essentially in the direction of z. The main variations of beam like



20 X-ray microscopy and the phase problem

waves are perpendicular to the optical axis, whereas variations in the direction of
propagation can be neglected. While transmitting a material, this wave is only
scattered under small angles with respect to the direction z and hence can be
regarded as a perturbed plane wave with envelope ψ′ω(x, y, z) [17]

ψω(x, y, z) = ψ′ω(x, y, z) exp(ikz) . (2.66)

Inserting equation 2.66 into 2.65 and neglecting second order derivatives with
respect to z leads to a wave equation for ψ′ω(x, y, z)(

2ik
∂

∂z
+∇2

⊥ + k2(n2
ω(x, y, z)− 1)

)
ψ′ω(x, y, z) = 0 , (2.67)

where

∇2
⊥ :=

∂2

∂x2
+

∂2

∂y2
. (2.68)

Equation 2.67 is known as the inhomogeneous, paraxial or parabolic wave equation.
Furthermore, it is assumed, that the perturbation ψ′ω(x, y, z) is weak enough that
light scattered along neighboring trajectories does not interact. Therefore, the
second order derivative ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 of ψ′ω(x, y, z) can be set to zero as well.
The inhomogeneous, paraxial equation becomes

∂

∂z
ψ′ω(x, y, z) ≈ ik

2
(1− n2

ω(x, y, z))ψ′ω(x, y, z) , (2.69)

with solutions

ψ′ω(x, y, z1) = exp

[
k

2i

∫ z1

z0

(n2
ω(x, y, z)− 1) dz

]
ψ′ω(x, y, z0) . (2.70)

In the X-ray regime, the refractive index nω is close to unity and often written
as [17]

nω(x, y, z) = 1− δω(x, y, z) + iβω(x, y, z) . (2.71)

The parameter δω is proportional to the number density of electrons ρ(x, y, z) ≈
1/Å3, the scattering amplitude per electron r0 = 2.82 · 10−5 Å and the quadratic
wavelength λ. Thus, it describes the scattering properties of the medium and
is [25]

δω =
λ2

2π
r0ρ . (2.72)

With a wavelength of λ = 1Å, δω is of the order of 10−6 to 10−5. The parameter
βω describes the absorption properties of the medium and in general is about one
order of magnitude lower than δω. Hence, both δω and βω are small compared to
one, such that in the expression 1−n2

ω(x, y, z) second order components in δω and
βω can be set to zero

1− n2
ω(x, y, z) ≈ 2(δω − iβω) . (2.73)
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Inserting this approximation in equation 2.70 leads to

ψ′ω(x, y, z1) ≈ exp

[
−ik

∫ z1

z0

δω(x, y, z)dz

]
exp

[
−k
∫ z1

z0

βω(x, y, z)dz

]
ψ′ω(x, y, z0) .

(2.74)
The first exponential function is the accumulated phase shift along the stream-
lines of propagation through a material. For a homogeneous material δω does not
depend on z, nor does it depend on x or y, such that the overall phase shift ∆ϕ
of a material with thickness ∆z = z1 − z0 is

∆ϕ = −kδω∆z . (2.75)

The second exponential function with βω > 0 describes the absorption accumulated
along the beam path. Both parts together are denoted as the object’s complex
valued transmission function

o(x, y) = exp

[
−ik

∫ z1

z0

(δω(x, y, z)− iβω(x, y, z)) dz

]
, (2.76)

that modulates the incoming wave ψ′ω(x, y, z0).
Equation 2.74 states that the wave field ψ′ω(x, y, z1) can be approximated by a
product of the object’s transmission function and the probe ψ′ω(x, y, z0):

ψ′ω(x, y, z1) = o(x, y) · ψ′ω(x, y, z0) . (2.77)

This approximation is called projection approximation. The perturbed wave field
directly behind the object is denoted as exit surface wave or exit wave. The
projection approximation can be used for an object of thickness

∆z <
2(δx2 + δy2)

λ
, (2.78)

where
√
δx2 + δy2 is the smallest detail of the sample that should be resolved (see

e.g. [26]) and ∆z is the thickness of the object along the optical axis. It illustrates
that within an interval ∆z neighboring rays of light do not interact.

2.4 Resolution
The purpose of microscopy is to provide insight into small structures otherwise
invisible for the human eye. The smaller these visualized features are, the better
is the resolution of the microscope. Here, concepts of resolution are explained.
The Rayleigh criterion is introduced. The influence of the source size on the
achievable resolution will be discussed. After this theoretical introduction, two
practical methods to determine the resolution of an image are presented.
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2.4.1 Rayleigh resolution, resolution of a microscope and resolution in
CDI

There are two ways arrive at Frauenhofer diffraction [22]. (1) It is the Fourier
transform relationship between two field distributions in planes separated by a
long distance ∆. (2) It is the diffraction in the plane where an optical system
forms the image of the source of light which has passed through its components.
Since these components are lenses with apertures of finite extent, the width of the
beam transmitting the system is restricted. This causes a spreading of the image
in the observation plane.

R

r

θ

λ

f

d

Figure 2.6: A lens focusses light to spot which is spread by diffraction caused by the
finite aperture of the lens.

In case that the restricting aperture is a lens of circular geometry with radius R
and focal length f , an image of the source is observed in the focal plane. It is
described by a squared Bessel function J1 [27] (Airy pattern) which depends on
the angular coordinate θ and is symmetrical about the axis of symmetry of the
aperture (see Fig. 2.6)

I(θ) = I0 ·

(
2
J1

(
2πR
λ sin(θ)

)
2πR
λ sin(θ)

)2

. (2.79)

With the approximation that for small angles θ

sin(θ) ≈ r

f
, (2.80)

where r is a radial coordinate in the focal plane, one finds for the width d of the
central lobe [24]

d = 1.22
λf

R
. (2.81)

Light originating from a point source and passing through a lens is not focused to a
sharp point again, but to a spread pattern of radial symmetry (see Fig. 2.6). Hence,
Frauenhofer diffraction describes the spreading of light around an image (here the
image of the source). It can be used to define a measure for the resolving power of
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an optical system. By convenience, two points are denoted as just resolvable, when
the center of the Airy pattern surrounding the image of the first point source falls
exactly on the first zero of the Airy pattern surrounding the image of the second
point source [24]. This criterion is known as Rayleigh resolution3. The minimum
resolvable distance is

δ = 0.5 · d = 0.61
λf

R
. (2.82)

The resolving power of a microscope is also limited by diffraction. In an ideal
system described by ray optics, light that has been emitted/diffracted by an object
of size G placed at a distance g with respect to a lens L and has passed through
this lens forms an image at a distance b behind L. This image is not disturbed by
aberrations and is a scaled, inverted copy with size B of the original object. In
a real imaging system, diffraction leads to a convolution of the ideal magnified or
demagnified image with the Frauenhofer diffraction pattern of the lens pupil [24].
The result is a smoothed image showing less fine details than actually inherent in
the object.

bg

L

D

dΔx

object plane image planelens plane

Figure 2.7: Sketch to determine the minimum resolvable distance of a microscope,
figure adapted from [27].

With this in mind, one can see from Fig. 2.7 that the distance d between two
image points which are spread by diffraction has to be

d ≥ 1.22
λb

D
, (2.83)

where D is the diameter of the lens. With a lens, a (de-)magnified image of size
B of an object of size G is formed following the relation∣∣∣∣BG

∣∣∣∣ =
b

g
, (2.84)

where g is the distance between object and lens and b is the distance between
image and lens. Therefore, the minimum resolvable distance ∆xmin between two
object points is

∆xmin = dmin ·
g

b
= 1.22

λb

D
· g
b

= 1.22
λg

D
. (2.85)

3 Note that strictly speaking the Rayleigh criterion is only true for incoherent light in paraxial
approximation. For coherent light, interference between the diffracted light hast to be taken
into account as well.
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When the object is placed in the focal plane of the lens, i.e. g ≈ f , equation 2.85
results in

∆xmin = 1.22
λf

D
. (2.86)

The fraction D
f is twice the sine of the the angular semi-aperture θmax under which

light can be ‘collected’ by the lens [27]. Together with the refractive index of the
medium between object and lens, one can define the numerical aperture NA of the
system (see Fig. 2.8(a))

NA = n sin(θmax) . (2.87)

It is a dimensionless number that characterizes the the angular acceptance of the
setup, i.e. its ‘light gathering power’ [28]. With this definition we find for the
resolution of a microscope

∆xmin = 0.61
λ

NA
. (2.88)

This states that the used lenses determine the numerical aperture and hence to-
gether with the wavelength the maximum possible resolution.
Resolution can be increased by decreasing the wavelength and/or by increasing
the numerical aperture.

θ

(a) (b)

max
θmax

light scattered from
fine, not resolved structures

light scattered from 
resolvable structures

lens

d
e
te

cto
r

Figure 2.8: (a) Numerical aperture sin(θmax) for lens-based systems. (b) Numerical
aperture sin(θmax) for (Fresnel-) CDI. Figure adapted from [7].

In coherent diffractive imaging – lacking lenses – the maximum detectable angle
under which radiation is scattered, is defined by the lateral extent of the detecting
device [7]. Therefore, the numerical aperture is determined by the field of view of
the detector (see Fig. 2.8(b)). To arrive at a high numerical aperture, either the
diameter of the lenses (for visible-light optics) or the diameter of the detector (for
CDI) has to be increased.
X-ray wavelengths are between 0.1 nm and 10 nm, whereas visible light is found
at wavelengths between 380 nm and 640 nm. With a detector covering a field of
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view of approximately 10 cm in diameter and placed 5 m apart from the source of
light, using X-rays, structural details of

δ ≈ 0.61
1 · 10�10 m · 5 m

5 · 10�2 m
≈ 6 · 10�9 m (2.89)

can be resolved - a distance which is close to atomic distances of 1 · 10�10 m.

2.4.2 Resolution in Fresnel CDI

The resolution in Fresnel coherent diffractive imaging is mainly limited by the
numerical aperture and the pixel size of the detector, as well as by the source size
and the wavelength.
In section 2.3.3, it was shown that the propagation of a cone beam can be per-
formed in the same way as the propagation of a parallel beam by introducing an
effective coordinate system. An object placed at distance ∆f,1 in the defocus of
a point source causes a magnified hologram at distance ∆1,2. The corresponding
magnification is

M =
∆f,1 + ∆1,2

∆f,1
, (2.90)

which depends on both, the focus-to-sample distance ∆f,1, as well as the sample-
to-detector distance ∆1,2. The closer the sample is moved towards the focus, the
larger is the magnification. In contrast, shifting the sample towards the detector
reduces M (see Fig. 2.9(a)).

S

increasing M decreasing M

Δ 1,2Δ f,1

increasing
M

decreasing
M

Δ1,2

Δ f,1

S

2z0

2W

(a) (b)

θ
0

Figure 2.9: (a) Cone beam holography allows to record magnified holograms compared
to parallel beam holography. The magnification depends on the relative positions
between focus and sample and between sample and detector. Shifting the sample
towards the source increases the magnification of the hologram recorded at a distance
∆f,1 + ∆1,2 with respect to the source. (b) An extended source size limits the maxi-
mum achievable magnification, because the sample has to be positioned at distances
∆f,1 longer than twice the Rayleigh length z0.

Once the sample is sufficiently close to the detector, i.e. the magnification M is
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approximately one, the resolution essentially depends on the pixel size of the de-
tector. Hence, when shifting the sample closer and closer towards the focus, the
resolution is basically limited by the wavelength and the extent of the detector.
Yet, this is only true for beams focused down to very small spot sizes. A con-
verging/diverging, paraxial beam can be modeled more realistically by a Gaussian
beam with focal spot size W0 and wavelength λ. The complex amplitude of a
Gaussian beam can be described by [21]

ψGB(x, y, z) = A0
W0

W (z)
exp

[
−x

2 + y2

W 2(z)

]
exp

[
−ikz − ik x

2 + y2

2R(z)
+ iζ(z)

]
,

(2.91)
where A0 is a complex constant, W (z) describes the width of the Gaussian beam.
The beam width W (z) depends on the focal spot of diameter 2W0

W (z) = W0

√
1 +

(
z

z0

)2

. (2.92)

The curvature of the Gaussian beam is related to the propagation distance z and
is described by R(z)

R(z) = z

[
1 +

(z0

z

)2
]
, (2.93)

where z0 is the Rayleigh length of the beam

z0 =
πW 2

0

λ
. (2.94)

Finally ζ(z) is called Gouy phase and is

ζ(z) = tan−1

(
z

z0

)
. (2.95)

The parameter of interest is the radius of curvature R(z). It describes how well
the phase fronts of a Gaussian beam match those of a spherical wave in paraxial
approximation

ψSW(x, y, z) = exp (−ikz) exp

[
− ik

2z

(
x2 + y2

)]
. (2.96)

For spherical waves, the radius of curvature is the distance of propagation z. For
Gaussian beams at large propagation distances the factor

(
z0
z

)2 can be neglected
andR(z)→ z. The radius of curvatureR(z) is minimal for z = z0, this corresponds
to a spherical wave at distance R(z) = 2z0. For distances smaller than z0 the radius
of wave front curvature rises again. Hence, a Gaussian beam can be approximated
by a spherical wave at propagation distances larger than twice the Rayleigh length
z0. For a fixed focus-to-detector distance this limits the achievable magnification
M : In order to record magnified holograms, the sample has to be placed at a
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distances ∆f,1 larger than R(z0) = 2z0 where the wave fronts of a Gaussian beam
can be approximated by those of a paraxial spherical wave (see Fig. 2.9(b)). Since
the Rayleigh length z0 =

πW 2
0

λ scales with the squared radius of the focal spot size,
we see that for a fixed focus-to-detector distance ∆f,2 the maximum achievable
magnification depends on the source size W0 and is

Mmax(W0) =
∆f,2λ

2πW 2
0

. (2.97)

Note that even though the magnification overcomes the strict dependence on the
pixel size of the detector, it does not overcome the limitations imposed by the
numerical aperture of the detector.

The analysis above shows that for high resolution imaging small spot sizes, i.e. fo-
cused beams are desirable. One can use Fresnel zone plates, compound refractive
lenses or mirrors for focusing an X-ray beam to a small spot size. All of these
optical elements are never aberration free. Focusing induces further challenges.
X-ray mirrors are commonly used focusing devices at synchrotrons, i.e. at the
GINIX-setup (Göttingen Instrument for Nano-Imaging with X-Rays) at DESY
(Deutsches Elektronen Synchrotron) and at imaging beamlines of ESRF (Euro-
pean Synchrotron Radiation Facility). Surface roughness of these mirrors, which
is of the order of nanometers, causes strong defocus interference fringes [29]. An
example is depicted in Fig. 2.10(a). It shows the defocus intensity profile of an
X-ray beam (flat field) which has been focused by two elliptical mirrors.

hologramflat field hologram/ flat field

(a) (b) (c)

Figure 2.10: (a) Flat field recorded at ESRF/ID16A. (b) Hologram of a sample of low
contrast. (c) Flat field corrected hologram of (b). Scale bars denote 2 µm.

When an illumination with such an intensity profile is used for holography, the
interference fringes caused by the mirror surface can dominate the interference
fringes caused by the sample which then are not visible anymore (see Fig. 2.10(b)
which is the magnified hologram of a nanometer sized sample and which is ba-
sically indistinguishable from Fig. 2.10(a)). The classical procedure to deal with
these kind of aberrations inherent the illumination is to divide the recorded holo-
gram (Fig. 2.10(b)) by the intensity profile of the empty beam (Fig. 2.10(a)). The
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result is depicted in Fig. 2.10(c). The interference fringes caused by the sample
become visible. However, one can also see that this method of image correction
does not fully eliminate all features resulting from the illumination (see magnified
region of Fig. 2.10(c)). Even worse, the flat field correction is only justified in case
that the following approximation holds:

D∆i,j
[o(x, y) · pi(x, y)] ≈ D∆i,j

[o(x, y)] · D∆i,j
[pi(x, y)]

= D∆i,j
[o(x, y)] · pj(x, y) , (2.98)

where D∆i,j
is the Fresnel propagation operator given in equation 2.45, o(x, y) is

the transmission function of the sample given in equation 2.76 and pi(x, y) is the
illumination at defocus distance i. For a more rigorous treatment of the validity
of the flat field correction, the reader is referred to [30,31].
Additionally, partial coherence limits the visibility of interference fringes between
scattered and transmitted beam and contributes to a loss of information. Last but
not least, resolution is always limited by the thermal and mechanical stability of
the optical setup.

2.4.3 Determination of resolution from an image

Since this work is focusing on image reconstruction, a definition of image resolu-
tion is necessary. Resolution can be determined in a lot of different ways. Here,
essentially two procedures of analysis were chosen: one in real space and one in
reciprocal space. They will be explained in the following with the help of the image
provided in Fig. 2.11(a). A first and intuitive method to estimate the resolution
of Fig. 2.11(a) is to study edges appearing in the image. The steepness of these
edges can serve as a measure of resolution. An edge Σ(x) can be described by an
error-function depending on the spatial coordinate x [32]

Σ(x) = c · erf
(
µ− x√

2σ

)
+ d (2.99)

where erf(y) =
2√
π

∫ y

0

exp(−τ2)dτ . (2.100)

The parameter c scales the height of the edge, d corrects for an offset and µ and
σ are related to shifts along the x axis and the steepness of the edge. An error-
function can be obtained from integration of a Gaussian function

g(x) =
1

σ
√

2π
exp

[
−
(
µ− x√

2σ

)2
]
. (2.101)

The full width at half maximum (FWHM) of a Gaussian function g(x) is essentially
determined by the parameter σ. It describes the steepness of the corresponding
error-function

FWHM [g(x)] = 2
√

2 ln 2 · σ. (2.102)
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Thus the resolution can be estimated by fitting an error-function to selected edges
and calculating 2

√
2 ln 2σ. An example is shown in Fig. 2.11(b). Here a selected

edge profile (blue line in Fig. 2.11(a)) is plotted. An error-function is adapted to
this profile. With a real space pixel size in horizontal and vertical direction of
δx = δy = 100 µm, the full width at half maximum of the corresponding Gaussian
function can be determined to 0.43 mm.
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Figure 2.11: Resolution determination demonstrated for the image shown in (a). (b)
An error function fitted to a selected region in (a). (c) Power spectral density of (a).
(d) Angular averaged power spectral density of (a).

However, this method has a considerable drawback: It is restricted to very lo-
calized parts of the image. Detecting all of the edges that occur in the image
and fitting error functions to these edges is laborious. For this reason, a different
strategy is required revealing more global properties of the image. One possibility
is to calculate the power spectral density4 PSD(qx, qy) of the image f(x, y) (see
Fig. 2.11(c)). It is defined by the normalized, absolute value squared of the two
dimensional Fourier transform F of f(x, y)

PSD[f(x, y)](qx, qy) =
1

max (|F [f(x, y)] |2)
|F [f(x, y)] |2. (2.103)

4 Note that before calculation of the power spectral density, the data is usually multiplied by a
window function. Here the window function is a Kaiser-Bessel window for β = 8 as defined
in [33,34].
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The coordinates qx and qy are spatial frequency coordinates. For an image with
N ×N discrete pixels, qx and qy adopt discrete values qx = mδqx and qy = mδqy
with

m =
1

2
· [−N,−(N − 1), ..., (N − 1), N ] ,

where the frequency step sizes are δqx = 1
N and δqy = 1

N . Spatial frequencies
|(qx, qy)| = 0.5 correspond to length scales of twice the pixel size of the image.
Hence, they encode the maximum achievable resolution at a given sampling rate:
namely edges that cover exactly two pixels. Frequencies |(qx, qy)| within ±0.5
encode edges that are spread over more than two pixels. Instead of calculating qx
and qy in units of inverse pixels, we can multiply qx and qy by a prefactors αx and
αy

αx =
lref
δx

, and αy =
lref
δy

, (2.104)

where lref is a reference length. The reference length can be set to typical length
scales occurring in the image. In the given example (Fig. 2.11), lref is set to 1 mm.
The coordinates (αxqx, αyqy) describe ‘periods per reference length’, i.e. one period
per reference length corresponds to an edge (one complete black-white transition)
spanned over the whole reference length (see red inlay of Fig. 2.11(d)); 2 periods per
reference length correspond to two complete black-white transitions per reference
length (green inlay of Fig. 2.11(d)).
To obtain a mean power spectrum independent of direction, an angular average of
the power spectral density can be calculated as shown in Fig. 2.11(d). When the
angular averaged power spectral density reaches a plateau, it indicates frequencies
contributing to noise in the image. Here, no distinct plateau can be distinguished.
However, when analyzing experimental data, this will be different.

2.5 The phase problem in coherent imaging
An optical field Ψ(x, y, z, t) as defined in section 2.3.1 oscillates at ≈ 1019 Hz in the
X-ray regime. No optical detection devices can follow such fast movements. De-
tectors measure intensities, i.e. the incoming field is integrated over time intervals
much longer than 10−15 s:

I(x, y) = 〈Ψ(x, y, z, t)Ψ∗(x, y, z, t)〉 , (2.105)

where 〈·〉 denotes the time average and ∗ is the complex conjugation5. As described
in section 2.2, I(x, y) is called intensity or irradiance. We are considering the ideal
case of a monochromatic field of frequency ω. A monochromatic field (at position
z = i along the optical axis) can be separated into its time and space dependent
components (see section 2.3.1):

Ψi,ω(x, y, t) = ψi,ω(x, y) exp [−iωt] . (2.106)

5 The following argumentation until equation 2.109 can be found in [35].
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In order to keep the notation simple, the index ω is skipped in the following; the
lower index i denotes the position of ψ along the optical axis. The intensity I(x, y)
becomes

I(x, y) = ψi(x, y)ψ∗i (x, y) . (2.107)

In general, ψi is complex valued and can be separated into a real valued amplitude
ai(x, y) and a complex exponential function including the phase φi(x, y):

ψi(x, y) = ai(x, y) exp (iφi(x, y)) . (2.108)

Inserting equation 2.108 into equation 2.105 results in the intensity of ψi(x, y)

I(x, y) = ψi(x, y)ψ∗i (x, y) = ai(x, y)2 . (2.109)

When I(x, y) is measured, the phase information φi(x, y) is lost.
The goal of phase retrieval techniques is to recover the missing phase information
from intensity measurements I(x′, y′) at position j along the optical axis

I(x′, y′) = ψj(x
′, y′)ψ∗j (x′, y′, )

= P∆i,j
[ψi(x, y)]P∗∆i,j

[ψi(x, y)] . (2.110)

The intensity I(x′, y′) results from a wave field ψi(x, y) at defocus position i that
has been propagated along the distance ∆i,j by an operator P∆i,j

which is either
the Fourier transform F or the Fresnel propagator D∆i,j . The field ψi(x, y) is the
exit wave behind the sample placed at defocus position i and can be written as a
product of the object’s transmission function o(x, y) and the illuminating beam or
probe pi(x, y) (see section 2.3.4)

ψi(x, y) = o(x, y) · pi(x, y) . (2.111)

Phase retrieval is only possible when the radiation that has transmitted an object
and the radiation that has been scattered by an object is able to interfere during
propagating along a distance ∆i,j . This is the case when the probe is sufficiently
coherent (see 2.2).

2.5.1 Non-uniqueness in coherent diffractive imaging

In CDI microscopy, the properties of the absolute value of the Fourier transform

I(qx, qy) = F [ψi(x, y)]F∗[ψi(x, y)] (2.112)

of a wave field ψi(x, y) at defocus position i cause three kinds of non-uniqueness [9].
First, the recorded intensity I(qx, qy) is insensitive to the absolute phase; only
relative phases can be encoded by I(qx, qy). Second, I(qx, qy) is insensitive to
absolute positions (x, y) of the sample. Third, I(qx, qy) = F [ψi(x, y)]F∗[ψi(x, y)]

is indistinguishable from Ĩ(qx, qy) = F [ψi(−x,−y)]F∗[ψ∗i (−x,−y)]. These types
of non-uniqueness shall be derived for the one dimensional ψi(x) and I(qx). The
extension to two dimensions is straightforward.
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Absolute phase offset
To show that I(qx) is not influenced by phase offsets exp(iα) with constant α,
consider

F [ψi(x) exp (iα)] =
1√
2π

∫ ∞
−∞

ψi(x) exp (iα) exp (−iqxx) dx

= exp(iα)
1√
2π

∫ ∞
−∞

ψi(x) exp (−iqxx) dx

= exp(iα)F [ψi(x)] . (2.113)

For this reason,

I(qx) = F [ψi(x) exp(iα)]F∗ [ψi(x) exp(iα)]

= exp(iα)F [ψi(x)] exp(−iα)F∗ [ψi(x)]

= F [ψi(x)]F∗ [ψi(x)] . (2.114)

Hence, intensities encode phase information up to a constant offset that cannot be
determined.

Shifts of the sample
Consider the Fourier transform of a spatially shifted wave field ψi(x− ξ):

F [ψi(x− ξ)] =
1√
2π

∫ ∞
−∞

ψi(x− ξ) exp (−iqxx) dx

x̃=x−ξ︷︸︸︷
=

1√
2π

∫ ∞
−∞

ψi(x̃) exp (−iqxx̃) exp (−iqxξ) dx̃

x̃→x︷︸︸︷
= exp (−iqxξ)F [ψi(x)] . (2.115)

Again, it follows that

I(qx) = F [ψi(x− ξ)]F∗ [ψi(x− ξ)]
= exp (−iξ)F [ψi(x)] · exp (iξ)F∗ [ψi(x)]

= F [ψi(x)] · F∗ [ψi(x)] . (2.116)

Hence, spatial shifts of the sample cannot be deduced from a single far-field inten-
sity measurement.

Twin image
The wave field ψ∗i (−x) is called the twin image or twin signal with respect to ψi(x).
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When only intensities are recorded, intensities of the twin signal equal intensities
of the signal. To see this, consider F∗ [ψi(x)]:

F∗ [ψi(x)] =
1√
2π

∫ ∞
−∞

ψ∗i (x) exp∗ (−iqxx) dx

=
1√
2π

∫ ∞
−∞

ψ∗i (x) exp (−iqx(−x)) dx

x̃=−x︷︸︸︷
= − 1√

2π

∫ −∞
∞

ψ∗i (−x̃) exp (−iqxx̃) dx̃

=
1√
2π

∫ ∞
−∞

ψ∗i (−x̃) exp (−iqxx̃) dx̃

x̃→x︷︸︸︷
=

1√
2π

∫ ∞
−∞

ψ∗i (−x) exp (−iqxx) dx = F [ψ∗i (−x)] . (2.117)

It follows that
F [ψi(x)] = (F∗ [ψi(x)])

∗
= F∗ [ψ∗i (−x)] . (2.118)

For this reason, the intensity is

I(qx) = F [ψi(x)]F∗ [ψi(x)] = F∗ [ψ∗i (−x)]F [ψ∗i (−x)] . (2.119)

Consequently, an intensity distribution I(qx) originates either from the signal ψi(x)
or the twin signal ψ∗i (−x).

2.5.2 Non-uniqueness in Fresnel coherent diffractive imaging

Holographic intensity distributions allow for less ambiguous interpretation. In par-
ticular, they are not insensitive to lateral shifts of the sample. However, absolute
phase offsets are not measurable as well. In addition, the twin image is different
from the twin image encountered in far-field CDI. The twin image problem in
near-field holography is one of the very ancient problems arising when performing
inline holography. It was already described in D. Gabor’s first publication about
holography [2]. Since the concept of the holographic twin image is important for
this thesis, it shall be described in the remaining of this section. The argumenta-
tion basically follows the explanations given by L. Onural and P. D. Scott [36].
Propagation of wave fields in paraxial approximation is carried out using the Fres-
nel near-field propagator (see also equation 2.45)

D∆i,j [ψi] = F−1

[
F [ψi] · exp

{
− i∆i,j

2k
· (q2

x + q2
y)

}]
. (2.120)

With the help of the convolution theorem [24]

f(x, y)⊗ g(x, y) = 2πF−1 [F [f(x, y)] · F [g(x, y)]] , (2.121)

equation 2.120 is
D∆i,j

[ψi] = ψi ⊗ h̃∆i,j
, (2.122)
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where h̃∆i,j
(x, y) is the impulse response h∆i,j

(x, y) given in equation 2.48 without
the constant phase factor exp(ik∆i,j).

h̃∆i,j
(x, y) = − ik

2π∆i,j
exp

[
ik(x2 + y2)

2∆i,j

]
. (2.123)

The Fourier transform of h̃∆i,j
(x, y) is the transfer function H̃∆i,j

(qx, qy) which
again is related to the transfer function H∆i,j

(equation 2.48) by separating the
constant phase offset exp(ik∆i,j):

H̃∆i,j (qx, qy) =
1

2π
exp

[
−
i∆i,j(q

2
x + q2

y)

2k

]
. (2.124)

The impulse response h̃∆i,j has several interesting properties.

Complex conjugation of the impulse response
The complex conjugation h̃∗∆i,j

(x, y) is the same as the non-conjugated h̃−∆i,j
(x, y)

with negative propagation distance:

h̃−∆i,j
(x, y) = − ik

2π(−∆i,j)
exp

[
ik(x2 + y2)

2(−∆i,j)

]
= h̃∗∆i,j

(x, y) . (2.125)

Propagation performed by several steps
The convolution of two impulse responses with different propagation distance is
the impulse response with the summed distance:

h̃∆i,j
⊗ h̃∆j,k

= 2πF−1
[
H̃∆i,j

(qx, qy)H̃∆j,k
(qx, qy)

]
= 2πF−1

[
1

4π2
exp

(
−i(∆i,j + ∆j,k)(q2

x + q2
y)

2k

)]
= F−1

[
H̃∆i,j+∆j,k

(qx, qy)
]

= h̃∆i,j+∆j,k
(x, y) = h̃∆i,k

. (2.126)

This illustrates that the propagation of light can be performed by either one single
step of size ∆i,k or by two (or several) successive steps ∆i,j and ∆j,k.

Convolution of the impulse response with its complex conjugated
The convolution h̃∆i,j (x, y)⊗ h̃∗∆i,j

is the Dirac delta distribution δ(x, y):

h̃∆i,j
(x, y)⊗ h̃∗∆i,j

= h̃∆i,j
(x, y)⊗ h̃−∆i,j

(x, y)

= 2πF−1
[
H̃∆i,j

(qx, qy)H̃−∆i,j
(qx, qy)

]
= 2πF−1

[
1

4π2

]
= F−1

[
1

2π

]
= δ(x, y) , (2.127)
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where δ(x, y) is

δx,y =

{
1 if x = y = 0
0 else , (2.128)

and with the Fourier relations [32]

F [I] = 2πδ(qx, qy) , (2.129)

F [δ(x, y)] =
1

2π
, (2.130)

where I is a two dimensional uniform function of amplitude one for all (x, y).
Propagation of a plane wave
Finally, one finds for the convolution of a plane wave I with constant phase set to
zero

I⊗ h̃∆i,j
(x, y) = 2πF−1

[
F [I] H̃∆i,j

(qx, qy)
]

= 2πF−1
[
2πδ(qx, qy)H̃∆i,j

(qx, qy)
]

= 2π
1

2π

∫ ∞
−∞

2πδ(qx, qy)H̃∆i,j
(qx, qy) exp (i(qxx+ qyy)) dqx dqy

= 2πH∆i,j
(0, 0)︸ ︷︷ ︸

= 1
2π

exp (i(0x+ 0y)) = I . (2.131)

The intensity of a hologram
The complex transmission function o(x, y) (see equation 2.76) of an object can be
expressed as o(x, y) = 1 − a(x, y) where a(x, y) is the complex opacity function,
i.e. a(x, y) is one where the object is fully absorbing (in this case o(x, y) is zero)
and a(x, y) is zero where the object is fully transparent (in this case o(x, y) is one).
If a thin object o(x, y) is positioned at defocus distance i, following the projection
approximation, the exit surface wave ψi(x, y) is

ψi(x, y) = o(x, y)pi(x, y) = [I− a(x, y)] pi(x, y) , (2.132)

where pi(x, y) is the illumination at defocus position i (i.e. at the position of the
object); for simplicity, pi(x, y) shall be a plane wave with uniform amplitude I and
zero phase. Propagation of the exit surface wave ψi(x, y) results in

D∆i,j
[ψi(x, y)] = D∆i,j

[I− a(x, y)]

= D∆i,j
[I]−D∆i,j

[a(x, y)]

= I⊗ h̃∆i,j
(x, y)− a(x, y)⊗ h∆i,j

(x, y)

= I− a(x, y)⊗ h̃∆i,j
(x, y) . (2.133)

The intensity I(x, y) = D∆i,j
[ψi(x, y)]D∗∆i,j

[ψi(x, y)] can be approximated up to
first order in the complex opacity function:

I(x, y) ≈ I− a(x, y)⊗ h̃∆i,j
(x, y)− a∗(x, y)⊗ h̃∗∆i,j

(x, y) . (2.134)
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The holographic twin image problem
Equation 2.134 describes the recording of a hologram. The hologram can be
recorded on a photographic plate or with a two dimensional pixel detector. The
straightforward analysis of such a hologram is to either illuminate the inverse pho-
tographic mask by the reference beam or to back propagate the digital image by
the Fresnel propagator

D−∆i,j [I(x, y)] = I⊗ h̃−∆i,j (x, y)

− a(x, y)⊗ h̃∆i,j (x, y)⊗ h̃−∆i,j (x, y)︸ ︷︷ ︸
=δ(x,y)

− a∗(x, y)⊗ h̃∗∆i,j
(x, y)⊗ h̃−∆i,j

(x, y)︸ ︷︷ ︸
=h̃−2∆i,j

=

= I︸︷︷︸
direct beam

− a(x, y)︸ ︷︷ ︸
image

− a∗(x, y)⊗ h̃−2∆i,j
(x, y)︸ ︷︷ ︸

defocused twin

. (2.135)

The simple Fresnel back-transform of an inline-hologram will not result in an
ideal image of the sample, but in a superposition of the direct beam, the focused
image and a defocused complex conjugated version of the image – the so called
twin image. The essential information used for phase retrieval is the measured
intensity. For this reason it is clear that a non trivial problem in phase retrieval
is to get rid of twin image components and to ideally reconstruct exclusively the
object’s transmission function.

Summary
This chapter had the main purpose to summarize the physical concepts needed in
this work. Holography and coherent, lensless X-ray microscopy techniques were
introduced. They rely on the use of coherent light. To this end, a brief outline
of coherence theory was provided. Further important ingredients for the analysis
of holographic or diffraction images are suitable descriptions of the propagation
of light – in free space, in matter, in different imaging regimes and geometries.
Furthermore, the notion of resolution is important to define. Resolution in lensless
X-ray imaging is mainly limited by the numerical aperture of the detector and by
the stability of the setup. Here, to analyze the resolution of an image, a real space
method that measures the steepness of edges and a corresponding Fourier space
technique that relies on the power spectral density are used. Lastly, different types
of non-uniqueness that are inherent in the recorded far- and near-field intensity
distributions are presented. These ambiguities will play an important role when it
comes to interpret and understand the performance of phase retrieval algorithms.



3 Algorithmic of near-field propagation and phase
retrieval

In this chapter different algorithmic techniques of near-field propagation and phase
retrieval are presented. The chapter starts with a summary of discrete propaga-
tion techniques relying on the fast Fourier transform: the discrete version of the
Fresnel-Kirchhoff integral (the so called single Fourier transform approach), the
transfer function and impulse response propagation as well as the Fresnel-Bluestein
ansatz.
The second part of this chapter is dedicated to iterative phase retrieval techniques.
Without the claim of completeness, a summary is provided describing the math-
ematical techniques and concepts of algorithms, based on projections onto sets of
functions fulfilling specific boundary conditions. The properties of the projection
operators depend on the geometry of the sets onto which they project. Projections
show useful characteristics when their underlying sets are closed and convex. These
properties allow formulating iterative algorithms which converge to a solution that
obeys all of the imposed boundary conditions simultaneously. Yet, it will be shown
that some essential constraint sets used for phase retrieval are non-convex: a rea-
son why convergence of the corresponding projection algorithms cannot be guaran-
teed.
Despite this mathematical obstacle, since the late 20th century phase retrieval tech-
niques have been successfully applied in X-ray microscopy. Two such methods – the
method of alternating projections and the difference map – shall be examined from
a theoretical and an application oriented perspective. They reveal the basic ideas
and problems of iterative algorithms. The reasons for the choice of these two algo-
rithms are the following: First, the method of alternating projections is introduced,
because it is broadly applied in X-ray imaging, here known as the Gerchberg-Saxton
and the error reduction algorithm. Furthermore, its basic elements can be found in
several more complicated projection algorithms. Second, the difference map algo-
rithm is chosen for the reason, that it is one of the algorithms used in ptychographic
coherent diffractive imaging.
Finally, in the remaining of this chapter, ptychographic phase retrieval is intro-
duced. Ptychographic data can be analyzed using conjugate gradient optimization,
a difference map formulation or an algorithm called (extended) ptychographical
engine. The mathematical concepts provided in the first part of this chapter are
connected to their application in ptychography. Last but not least, a motivation is
presented how ptychography overcomes basic kinds of non-uniqueness connected to
the far-field phase problem.

3.1 Propagation of discrete wave fields
Propagation of complex valued optical fields is both, challenging and essential
for computational wave optics. It is challenging because accurate propagation
simulation is accompanied by correct sampling of the phase chirp functions that are
inherent in the Fresnel transform operators [37]. It is essential, since it contains the
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fundamentals of wave optics necessary for digital holography. Here, four different
implementations of near-field propagation shall be introduced: the single Fourier
transform method [37, 38], the transfer function and the impulse response propa-
gation [37] as well as the Fresnel-Bluestein transform [39,40]. Extensive literature
and practical implementation techniques of Fresnel diffraction can be found in
the textbooks of D. G. Voelz [41] and J. D. Schmidt [42]. The section starts
with the definition of the discrete Fourier transform and different formulations of
the discrete Fresnel transform. Following the argumentation of [37, 41], sampling
conditions for Fresnel diffraction are discussed. After that, the presented propa-
gation algorithms are used to calculate the propagation of a plane wave passing
through a square aperture. Since for this special propagation problem an analytic
solution of the Fresnel propagation is available, the numeric results can be directly
verified. Finally, the section closes by illustrating the performance of the different
propagation techniques when used for holographic reconstruction.

3.1.1 Discrete near-field propagation

The Fresnel-Kirchhoff diffraction formula which has been introduced as a continu-
ous integral, needs to be re-formulated for discretely sampled source and diffraction
planes. To this end, also the continuous Fourier transform needs to be expressed
in a discrete way. For simplicity, the theoretical considerations presented here
are reduced to two spatial dimensions (one representing the lateral extend of the
complex valued field and the other one the direction of propagation). The gener-
alization to three dimensions is straightforward. Table 3.1 provides an overview
of the notation used throughout this section.

Relation between continuous and discrete Fourier transform

parameter continuous variable/ discrete version
operation

real space coordinate x mδx, n ∈ Z
reciprocal space coordinate q p δq, p ∈ Z
distance of propagation ∆ ∆

integration
∫∞
−∞ ... dx

∑n=N−1
n=0 ... δx

Fourier transform F and F−1 F and F−1

Table 3.1: Continuous and discrete variables/operators.

The continuous Fourier transform of a function f(x) and its inverse operation are
given by

F [f(x)] = F (q) =
1√
2π

∫ ∞
−∞

f(x) exp (−iqx) dx , (3.136)

F−1 [F (q)] = f(x) =
1√
2π

∫ ∞
−∞

F (q) exp (iqx) dq . (3.137)
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The discrete Fourier transform F is defined as

F [f(n δx)] = F (p δq) =
1√
N

N−1∑
n=0

f(n δx) exp

(
−i2π

N
pn

)
. (3.138)

The corresponding inverse, discrete Fourier transform is defined as6

F−1 [F (p δq)] =
1√
N

N−1∑
n=0

F (p δq) exp

(
i
2π

N
pn

)
. (3.139)

The exponential functions in the discrete and continuous Fourier transforms have
to agree:

exp (−iqx)︸ ︷︷ ︸
from continuous F

= exp (−ipδq nδx)
!
= exp

(
−i2π

N
pn

)
︸ ︷︷ ︸
from discrete F

. (3.140)

It follows that
pδq nδx

!
=

2π

N
pn . (3.141)

Hence, the relation between discrete samples δx in real space and discrete samples
δq in reciprocal space is

δq δx =
2π

N
, (3.142)

which is a consequence of the definition of the discrete Fourier transform given in
equation 3.1387.

Periodic property of Fourier transformed discrete functions
A discrete function f(nδx) can be obtained from a continuous function f(x) by
multiplication with a regularly spaced delta-comb IIIδx(x)

f(nδx) = f(x)
+∞∑

n=−∞
δ(x− nδx)︸ ︷︷ ︸

:=IIIδx(x)

. (3.143)

6 Note that when replacing the integral of the continuous Fourier transform by the Riemann sum
(see Table 3.1) for the discrete Fourier transform, the multiplicative factor δx is not included.
The reason is, that F is defined on a discrete grid without special scaling of the sampling
intervals [41]. Yet, when implementing propagation with the help of F and F−1, the scaling δx
(or δq) should not be neglected.

7 There exist several different variants for F. Here, a definition was chosen that equally dis-
tributes the prefactor 1

N
between F and F−1. This is analogous to the definition of the

continuous Fourier transform, where the prefactor 1
2π

was split between F and F−1 and both,
F and F−1 get a prefactor 1√

2π
. However, it is also possible to attribute the full prefactor 1

2π

to either F or F−1. Equivalently, one can combine the prefactor 1
N

with either F or F−1.
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The Fourier transform of a discrete function f(nδx) is

F [f(nδx)] = F [f(x) · IIIδx(x)]

=
1√
2π
F [f(x)]⊗F [IIIδx(x)] , (3.144)

where in the second step the (inverse) convolution theorem (equation 2.46) was
applied. The Fourier transform of IIIδx is (see for example [33])

F [IIIδx(x)] =

√
2π

δx
III 2π

δx
(q) . (3.145)

For this reason the Fourier transformed, sampled version of f(x) is

F [f(nδx)] =
1

δx
F [f(x)]⊗ III 2π

δx
(q) . (3.146)

A convolution of a function with a delta-comb produces periodic copies of this
function which are spaced by the period length of the delta-comb. Hence, when
Fourier transforming a discrete, real space function, one will obtain a periodized,
reciprocal space function. If f(x) is bandlimited, i.e. if its Fourier transform is
non-zero inside and zero outside a defined frequency region of size [−b, b], then the
periodic copies of F [f(x)] will not overlap if

π

δx
≥ b . (3.147)

If δx is smaller than π
b , the spacing between the periodic copies of F [f(x)] will be

larger than necessary. Furthermore, if equation 3.147 is fulfilled, one can recon-
struct the continuous f(x) from its sampled version F [f(nδx)], which is known
as the Whittaker-Shannon Theorem [24, 33]. Yet, choosing δx > π

b leads to a
superposition of the periodically repeated F [f(x)]. The signal is aliased.

Single Fourier transform method
The Fresnel-Kirchhoff integral (see equation 2.50) in one dimension is

ψ(x,∆) =
1√
iλ∆

exp

[
ik

2∆
x2

] ∫ ∞
−∞

ψ(x′, 0) exp

[
ik

2∆
x′2
]

exp

[
−ik
∆

xx′
]
dx′.

(3.148)
In this formulation, the constant phase prefactor exp (ik∆) has been separated.
For a discrete equivalent of equation 3.148, the integral has to be replaced by a
sum over discrete values as described in Table 3.1. In addition, the (real space)
coordinates x′ of the starting plane and the coordinates x of the destination plane
of propagation have to be replaced by their discrete counterparts

x′ → n δx′ , (3.149)
x→ mδx . (3.150)
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This leads to

ψ(mδx,∆) =
1√
iλ∆

exp

[
ik

2∆
m2δx2

]
N−1∑
n=0

ψ(n δx′,∆) exp

[
ik

2∆
n2δx′2

]
exp

[
−ik
∆

mδx n δx′
]
δx′ . (3.151)

Time consuming evaluation of the the summation in equation 3.151 can be avoided
by expressing 3.151 in terms of the discrete Fourier transform. For this purpose,
the last exponential function in equation 3.151 has to agree with the exponential
function in equation 3.138:

exp

[
−ik
∆

mδx n δx′
]

= exp

[
−i2π

N
mn

]
. (3.152)

Guaranteeing the equality of both exponents reveals a fixed relation between the
pixel size of the input plane δx′ and the pixel size of the output plane δx:

δx δx′ =
λ∆

N
. (3.153)

Inserting equations 3.152 and 3.153 in equation 3.151 generates the discrete Fresnel-
Kirchhoff integral expressed by one single Fourier transform:

ψ(mδx,∆) =
1√
iλ∆

exp

[
iπλ∆m2

N2δx′2

]
· F
[
ψ(n δx′,∆) exp

[
ik

2∆
n2δx′2

]
δx′
]
. (3.154)

Fresnel transfer function propagation
In section 2.3.1, near-field propagation was deduced by the angular spectrum
method. For one dimensional propagation and when separating constant phase
factors, equation 2.45 is

ψ(x,∆) = F−1

[
F [ψ(x, 0)] · exp

(
− i∆

2k
· q2

)]
. (3.155)

The discrete equivalent of equation 3.155 is

ψ(mδx,∆) = F−1

[
F[ψ(n δx, 0)] · exp

(
− i∆

2k
· n2δq2

)]
. (3.156)

As detailed in section 2.5.2, the function

H̃∆(n δq) =
1√
2π

exp
(
− i∆

2k
· n2δq2

)
(3.157)
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is called transfer function.

Fresnel impulse response propagation
Equation 3.155 can equally be formulated using the impulse response

ψ(x,∆) =
√

2πF−1

[
F [ψ(x, 0)] · F

[
1√
iλ∆

exp

(
ikx2

2∆

)]]
. (3.158)

The discrete version is

ψ(mδx,∆) = F−1

[
F[ψ(n δx, 0)] · F

[
1√
iλ∆

exp

(
ikm2δx2

2∆

)]
δx

]
, (3.159)

with the discrete impulse response

h̃∆(mδx) =
1√
iλ∆

exp

(
ikm2δx2

2∆

)
. (3.160)

Fresnel-Bluestein propagation
One drawback of the single Fourier transform method given in equation 3.154
is the fixed relation between input and output pixel sizes (see equation 3.153).
A slightly different formulation of the discrete Fresnel-Kirchhoff integral helps to
overcome this drawback and allows scaling of input and output pixel sizes that is
not restricted by equation 3.153 [39]. To this end, the complex exponential function
of the discrete Fourier transform (see equation 3.152) is modified as proposed by
L. I. Bluestein [43]:

exp

[
−i2π
N

mn

]
= exp

[
−iπ
N

(
m2 + n2 − (n−m)2

)]
= exp

[
−iπ
N

m2

]
exp

[
−iπ
N

n2

]
exp

[
iπ

N
(n−m)2

]
. (3.161)

With this formulation, equation 3.154 can be expressed in alternative way. Noting
that the exponential functions defined in the output plane are not affected by
the summation inherent in the discrete Fourier transform, the term exp

[−iπ
N m2

]
can be combined with the exponential function outside the Fourier transform in
equation 3.154:

exp

[
iπλ∆m2

N2δx′2

]
· exp

[
−iπ
N

m2

]
=

exp

[
iπ

λ∆
m2δx2

]
· exp

[
−iπ
N

m2

]
=

exp

[
− iπ

λ∆
m2

(
λ∆

N
− δx2

)]
=

exp

[
− iπ

λ∆
m2δx (δx′ − δx)

]
. (3.162)
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In the first and last steps, relation 3.153 was used. An analogous combination of
the exponential function depending on n2 gives

exp

[
ik

2∆
n2δx′2

]
· exp

[
−iπ
N

n2

]
= exp

[
− iπ

λ∆
n2δx′ (δx− δx′)

]
. (3.163)

Hence, again with equation 3.153 one finds

ψ(mδx,∆) =
1√
iλ∆

exp

[
− iπ

λ∆
m2δx (δx′ − δx)

]
N∑
m=1

ψ(n δx′,∆) exp

[
iπ

λ∆
n2δx′ (δx′ − δx)

]
exp

[
iπ

λ∆
δx δx′(n−m)2

]
δx′ . (3.164)

This is a convolution of the functions [39]

f1(n) = ψ(n δx′,∆) exp

[
iπ

λ∆
n2δx′ (δx′ − δx)

]
and (3.165)

f2(n) = exp

[
iπ

λ∆
δx δx′n2

]
. (3.166)

It can be implemented as a multiplication in Fourier space

ψ(mδx,∆) =
1√
iλ∆

exp

[
− iπ

λ∆
m2δx (δx′ − δx)

]
F−1 [F [f1] · F [f2] δx′] .

(3.167)

Note that the Fresnel-Bluestein transform with M = δx/δx′ = 1 (i.e. equal size
of destination and source plane pixels) is the same as the propagation using the
impulse response given in equation 3.159.

3.1.2 Sampling chirp functions

Discrete sampling of near-field propagation can lead to a large variety of artifacts;
some are due to the periodicity of the discrete Fourier transform, others result
from the fact that the complex valued chirp functions involved in near-field pro-
pagation are not band limited and cannot be sampled correctly [37,41,42].

Sampling the single Fourier transform method
The single Fourier transform method described in equation 3.148 contains two
chirp functions

C1(x′) = exp

[
ik

2∆
x′2
]

with x′ = nδx′ (3.168)
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defined in the source plane x′ and

C2(x) = exp

[
ik

2∆
x2

]
with x = nδx (3.169)

defined in the destination plane x. Both, C1 and C2 are 2π-periodic functions,
such that the phases

φC1
(x′) =

k

2∆
x′2 =

π

λ∆
x′2 and φC2

(x) =
k

2∆
x2 =

π

λ∆
x2 (3.170)

outside the interval
|φCi | ≤ π (3.171)

do not contain new information [44].
This means, in order to properly sample the chirp functions, the absolute phase
difference between two neighboring pixels spaced by the frequency interval δx′ or
δx has to be less than or equal to π [37, 41]. For C1, this means

δx′
∣∣∣∣∂φC1

(x′)

∂x′

∣∣∣∣
max
≤ π . (3.172)

It follows that
δx′

∣∣∣∣ 2π

λ∆
x′
∣∣∣∣
max
≤ π . (3.173)

Equation 3.173 is maximal at the limits of the field of view of the source plane,
i.e. at x′max = ± 1

2N δx′, where N is the number of samples. This leads to the
condition

λ∆

N(δx′)2
≥ 1 . (3.174)

The observation plane chirp C2 is properly sampled if

δx

∣∣∣∣∂φC2
(x)

∂x

∣∣∣∣
max
≤ π . (3.175)

Calculating the derivative of C2 with respect to x, considering that this derivative
is maximal at the border of the destination plane at xmax± 1

2Nδx and making use
of relation 3.153 results in

λ∆

N(δx′)2
≤ 1 . (3.176)

This means that strictly speaking, equation 3.154 is properly sampled only if
[37, 41]

λ∆

N(δx′)2
= 1. (3.177)

If we are rather interested in the intensity of the propagated field instead of in its
phase, the sampling condition of the destination plane chirp can be ignored and
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only the source plane chirp has to fulfill relation 3.174.
Sample plane and source plane chirps can be reduced to their aliasing free regions

L =
λ∆

δx
(3.178)

by multiplication with a filter that is one within [−L/2, +L/2] and zero out-
side [45]. Hence, one reduces C1 and C2 to their undisturbed regions.

Sampling Fresnel transfer function propagation
The transfer function chirp CTF in equation 3.155 is

CTF(q) = exp
(
− i∆

2k
· q2

)
, with q = n δq . (3.179)

It is formulated in Fourier space. The corresponding transfer function phase is

φTR = −∆

2k
· q2 . (3.180)

The absolute maximal change of φTR has to be smaller than or equal to π

δq

∣∣∣∣∂φTR(q)

∂q

∣∣∣∣
max
≤ π . (3.181)

It follows that
δq

∣∣∣∣∆k q
∣∣∣∣
max
≤ π . (3.182)

The maximum value for the reciprocal coordinate q is qmax = ± 1
2Nδq. This leads

to
(δq)2 N∆

2k
≤ π (3.183)

and finally with relation 3.142 and k = 2π
λ [37, 41]

λ∆

N(δx)2
≤ 1. (3.184)

The transfer function propagator preserves the pixel size: Source plane and desti-
nation plane are of equal sampling δx = δx′.
When equation 3.184 is violated, in order to avoid aliasing, the number of pixels
N of the field of view can be increased and thus again the sampling condition is
fulfilled. Yet, extending the field of view leads to artifacts, because firstly, there is
no way to predict the ‘correct’ extension and secondly, the information contained
in the newly added pixels will influence the values of the original pixels during
propagation.
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Sampling Fresnel impulse response propagation
The chirp of the impulse response propagation given in equation 3.158 is

CIR(x) = exp

[
ikx2

2∆

]
, (3.185)

with the phase φIR

φIR =
kx2

2∆
. (3.186)

Again, requiring CIR to be 2π-periodic, leads to

δx

∣∣∣∣∂CIR(x)

∂x

∣∣∣∣
max

≤ π . (3.187)

With xmax = 1
2Nδx, this is [37, 41]

λ∆

Nδx2
≥ 1 . (3.188)

Equation 3.188 states exactly the opposite condition than equation 3.184 for the
transfer function sampling.
Similar to the transfer function propagation, the pixel sizes in source and desti-
nation plane are the same. In case that the sampling condition 3.188 is violated,
one can reduce the impulse response to its aliasing free region

L =
λ∆

δx
(3.189)

by setting values of CIR outside [−L/2, +L/2] to zero [45].

Sampling Fresnel-Bluestein propagation
When performing Fresnel-Bluestein propagation following equation 3.167, three
exponential chirps have to be sampled. These are

CFB1(mδx) = exp

[
− iπ

λ∆
m2δx (δx′ − δx)

]
, (3.190)

CFB2(nδx′) = exp

[
iπ

λ∆
n2δx′ (δx′ − δx)

]
and (3.191)

CFB3(nδx′) = exp

[
iπ

λ∆
δx δx′n2

]
. (3.192)

If only intensities are of interest, the correct sampling of CFB1 is not critical.
However, at least approximately correct sampling of CFB2 and CFB3 is important.
Fresnel-Bluestein propagation does not require a fixed relation between input and
output pixel sizes (like relation 3.153 for the Fresnel integral formulation):

δx′ ·M = δx , (3.193)
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where M in principal can take any value [39]. When inserting equation 3.193 in
CFB2, one finds

CFB2(nδx′) = exp

[
iπ

λ∆
n2δx′2

]
· exp

[
− iπ

λ∆
n2δx δx′2

]
= exp

[
ik

2∆
n2δx′2

]
︸ ︷︷ ︸

=:CFB21

· exp

[
− ik

2∆
n2Mδx′2

]
︸ ︷︷ ︸

=:CFB22

. (3.194)

Again, by using equation 3.193, CFB3 can be reformulated:

CFB3(nδx′) = exp

[
ik

2∆
Mn2δx′2

]
. (3.195)

Recognizing that CFB21
is the same as CIR, the sampling condition for CFB21

immediately follows and is
λ∆

N(δx′)2
≥ 1 . (3.196)

The chirps CFB22
and CFB3 differ from CFB21

only by the factor M (and a sign),
such that their sampling condition is

λ∆

MN(δx′)2
≥ 1 . (3.197)

Unfortunately, it is not that easy to correctly filter CFB2 and CFB3. It is in
particular problematic, when the aliasing free areas of the chirps are smaller than
the support of the complex valued field that should be propagated. Approaches
to filter Fresnel-Bluestein propagation can be found in [40,46].

3.1.3 Illustration of discrete near-field propagation

Accuracy of propagation is determined best via comparison with a known solution
for Fresnel diffraction. An analytic solution of Fresnel diffraction is available for
a square aperture. The field U(x,∆) at distance ∆ behind this aperture is given
by [24]

U(x,∆) =
exp (ik∆)

2i
{[C(α2)− C(α1)] + i [S(α2)− S(α1)]} , (3.198)

where

C(a) =

∫ a

0

cos
(π

2
t2
)
dt and S(a) =

∫ a

0

sin
(π

2
t2
)
dt (3.199)

are the so called Fresnel integrals. The variables αi contain wavelength, propaga-
tion distance and aperture width 2w

α1 = −
√

2

λ∆
(w + x) and α2 =

√
2

λ∆
(w − x) . (3.200)



48 Algorithmic of near-field propagation and phase retrieval

The Fresnel integrals were calculated following the approximation proposed by K.
D. Mielenz [47]. A square aperture of 900 µm × 900 µm was simulated on a grid
of 1000 × 1000 pixels with source plane pixels size δx × δy = 4.5 µm × 4.5 µm.
The wavelength λ was set to 600 nm and the propagation distance ∆ was

∆ = f · Nδx
2

λ
with f = {0.25, 1, 4} . (3.201)

The parameter f selects different sampling regimes. For f = 1 equations 3.174,
3.176, 3.184 and 3.188 are fulfilled. This means that the single Fourier transform
method following equation 3.154, the transfer function propagation following equa-
tion 3.156 and the impulse response propagation following equation 3.159 should all
be properly sampled. The Fresnel-Bluestein propagation given in equation 3.167
should at least be properly sampled for δx/δx′ = 1. The short distance regime is
described by f < 1. Here, the transfer function is sufficiently sampled while the
impulse response is not. The destination plane chirp of the Fresnel propagator is
better than Nyquist sampled while its source plane chirp is aliased. The sampling
of Fresnel-Bluestein propagation is expected to be similar to the sampling of the
impulse response and hence not enough.
Setting f > 1 marks the long distance regime. While the impulse response, the
source chirp of the single Fourier transform method and the Fresnel-Bluestein pro-
pagation (depending on M) should be sampled sufficiently, the transfer function
is aliased.
Figure 3.1 summarizes the results for the different propagation methods intro-
duced in this section. The analytic propagation of the square aperture is plotted
in black, whereas the respective numeric solutions are plotted in red (single Fourier
transform propagation), green (propagation by the transfer function), orange (pro-
pagation by the impulse response) and blue (propagation by the Fresnel-Bluestein
method with M = 0.5). On the left hand side of Fig. 3.1, unfiltered propagation
is illustrated, while on the right hand side the respective chirp functions were fil-
tered/the field of view was enlarged for propagation. Note that only intensities
are analyzed; (probably) aliased phases are not shown.
The fixed scaling property between source and destination plane sampling de-
scribed in equation 3.153 affects the single Fourier transform method: The longer
the propagation distance, the coarser the sampling in the destination plane and
the larger the field of view.
Propagation with the transfer function preserves the field of view. For the long
distance regime (f = 4) aliasing of the intensity profile can be observed. This is
removed successfully by extending the field of view before propagation.
As predicted by equation 3.188 the impulse response is undersampled in the short
distance regime (f < 1). The consequence are periodic copies which disturb the
propagated intensity profile and cause aliasing. They can be removed by filtering
the transfer function chirp.
For f = 1 the result of the single Fourier transform method, the transfer function
propagation and the impulse response approach all match the analytic intensity
profile. For long distances, the transfer function is oversampled and reproduces
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the analytic propagation result sufficiently well without aliasing.
Finally, Fresnel-Bluestein propagation shows comparable behavior as the impulse
response propagation in the short distance regime: Periodic copies of the intensity
profile appear around the centered solution and cause aliasing. The periodic copies
can be avoided by reducing CFB2 to its aliasing free region. Care has to be taken,
when this region is smaller or equal to the support of the wave field that should
be propagated.
For f = 1 and in the long distance regime, Fresnel-Bluestein propagation (with
M = 0.5) leads to non-aliased results. Note that the relationM between the source
plane pixel size and the destination plane pixel size was arbitrarily set to a fixed
value of 0.5 to illustrated that Fresnel-Bluestein propagation does neither require
a fixed relation between input and output sampling intervals (as the single Fourier
transform method), nor does it need to preserve the input sampling intervals (as
the transfer function and the impulse response approach). The choice ofM affects
sampling of the chirp functions as well, such that no generalized distance regimes
are determined here.
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Figure 3.1: Comparison of the different propagation techniques (shifted for clarity) for
a quadratic aperture and the distances given in equation 3.201. The analytic solution
is shown in black. On the left, unfiltered propagation is illustrated, while on the right
filtered propagation is presented. (a) Short distance regime. The impulse response
propagation (orange) and the Fresnel-Bluestein propagation (blue) are aliased by
periodic copies; these can be removed by filtering the chirp functions. (b) Propagation
in the ideal sampling regime. No filters are necessary. (c) Propagation in the long
distance regime. The propagation by the transfer function leads to aliasing (green
curve). The intensities obtained from the other propagation methods are properly
sampled. Extension of the field of view avoids aliasing of the transfer function pro-
pagation.
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Next, the different propagation techniques are illustrated for back-propagation
of a digitally recorded and flat field corrected hologram (Fig. 3.2(a)). The ex-
perimental setup used to measure hologram and flat field is described in detail in
chapter 5.1.1. Important parameters are summarized in Table 3.2.

wavelength 633 nm
field of view in pixels 800× 800
source plane sampling δx′ 4.54 µm
propagation distance ∆ 6.51 cm

Table 3.2: Parameters for the holographic reconstructions shown in Fig. 3.2.
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Figure 3.2: Holographic reconstruction with different propagation techniques. (a) Holo-
gram. (b) Reconstruction using the single Fourier transform method. (c) Reconstruc-
tion using the transfer function. (d) Reconstruction using the impulse response. (e)
Reconstruction using Fresnel-Bluestein propagation while preserving pixel sizes. (f)
Reconstruction using Fresnel-Bluestein propagation requiring the destination plane
sampling twice as fine as the source plane sampling. Images (a-f) contain the same
number of pixels, all scale bars denote 0.5 mm.

The hologram is back-propagated by the single Fourier transform propagator
(Fig. 3.2(b)), the use of the transfer function (Fig. 3.2(c)), the use of the im-
pulse response (Fig. 3.2(d)) and by the Fresnel-Bluestein propagation for (e) equal
source and destination pixel size and (f) 0.5× finer sampling in the destination
plane than in the source plane. Note that the number of pixels in (a-f) is kept
the same, such that the scaling properties of the single Fourier transform method
and the Fresnel-Bluestein propagation as well as the pixel size preservation of the
transfer function and impulse response method become visible. In the remain-
ing of this work, propagation is calculated by the transfer function method which
performs best under several successive applications and for which it is compa-
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rably easy to correct aliasing by extension of the field of view. The single Fourier
transform method requires careful scaling of the pixel sizes of source and destina-
tion plane and is therefore not used for the phase retrieval techniques shown later.
Fresnel-Bluestein and impulse response propagation are in particular suitable when
propagation should be applied only once – like in the holographic reconstructions
depicted in Fig. 3.2. Yet, since in most iterative phase retrieval techniques it is
necessary to apply propagation several times, it turns out that both methods are
not as well suited as the transfer function approach.



Algorithmic of near-field propagation and phase retrieval 53

3.2 Theory of projection algorithms
The purpose of this section is to provide some mathematical terminology and a
basic understanding for iterative algorithms that are designed to find elements in
the intersection of two (or more) sets. The section starts with definitions of vector
spaces, subspaces and subsets; properties (convexity and closedness) of subsets
are explored. In the following, mappings are defined and certain properties of
mappings are illustrated. A mapping called projection is examined: For closed
and convex subsets, its characteristics are deduced. Projections can be applied in
an iterative way to find the intersection of the subsets onto which they project.
The most intuitive combination of two projections – von Neumann’s alternating
projection algorithm – is introduced. A second technique – the difference map
– is explained which overcomes certain difficulties of alternating projections for
an appropriate choice of parameters [48]. The topics assembled in this section
are addressed in more detail in the textbooks of C. Byrne [49], F. Deutsch [50],
H. H. Bauschke and P. L. Combettes [51] as well as in [48,52–55].

3.2.1 Definitions and properties of vector spaces, subspaces and sub-
sets

Vector Space [32]
A linear space or vector space V over the field F of real/complex valued scalars
contains an operation called addition V + V → V, an operation called scalar mul-
tiplication F · V → V, a zero element and an inverse element. The following
properties hold:

(1) (u + v) + w = u + (v + w) ∀ u,v,w ∈ V, (3.202)
(2) there is a vector 0 ∈ V with v + 0 = v ∀ v ∈ V, (3.203)
(3) for every vector v there is a vector (−v), such that v + (−v) = 0, (3.204)
(4) v + w = w + v ∀ v,w ∈ V, (3.205)
(5) 1 · v = v , where 1 is the unity element of F and v ∈ V, (3.206)
(6) α · (β · v) = (α · β) · v ∀ α, β ∈ F and v ∈ V, (3.207)
(7) (α+ β) · v = α · v + β · v ∀ α, β ∈ F and v ∈ V, (3.208)
(8) α · (v + w) = α · v + α ·w ∀ α ∈ F and v,w ∈ V. (3.209)

Subspace [32]
Let V be a vector space over the field F and U a subset of V. If the elements u of
U fulfill conditions 3.202 to 3.209, U is called a subspace.

Affine subspace [49]
For a given subspace XW with elements xW of a vector space V and a fixed vector
d of V, the affine spaceW (containing elements w) with respect to XW is obtained
by translating the elements of the subspace XW by the vector d:

W = XW + d = {w = xW + d | xW ∈ XW } . (3.210)
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Euclidean space [49]
The Euclidean space RN is a vector space that contains all N-dimensional vectors
x with real valued entries xi. For elements x and y of RN the scalar product

〈x,y〉 =
N∑
i=1

xiyi (3.211)

can be defined. With the help of the scalar product, the Euclidean length of a
vector x is

||x|| =
√
〈x,x〉 . (3.212)

This immediately leads to the definition of the Euclidean distance d(x,y) of two
vectors x and y:

d(x,y) = ||x− y|| =
√
〈x− y,x− y〉 . (3.213)

The collection of all N-dimensional complex valued vectors x shall be denoted by
CN . The scalar product can be defined by

〈x,y〉 =
N∑
i=1

xiy
∗
i , (3.214)

where ∗ is the complex conjugation. Distances and norms are defined as for the
RN . The spaces RN and CN are examples of a finite dimensional Hilbert space.

Inner product [49]
In a complex or real valued vector space V the scalar valued function 〈x,y〉 is
called an inner product if for all x, y, z of V and all scalars α, the following
properties are fulfilled:

〈x + y, z〉 = 〈x,z〉+ 〈y, z〉 , (3.215)
〈αx,y〉 = α 〈x,y〉 , (3.216)
〈x,y〉 = (〈y,x〉)∗ , (3.217)
〈x,x〉 ≥ 0 and if 〈x,x〉 = 0⇔ x = 0 . (3.218)

The scalar product defined in equations 3.211 and 3.214 are examples of inner
products [49].

Inner product space [56]
An inner product space X is a vector space X over a real or complex valued scalar
field F equipped with an inner product 〈·, ·〉 defined on X . The Euclidean space
RN and the complex space CN are inner product spaces.

Convex sets [49]
A subset C of X is called convex, if for every α ∈ ]0, 1[ and every two points x, y
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(a) (b)

Figure 3.3: (a) Example of two convex sets. All points on the line connecting two
elements of the set are inside the set as well. (b) illustration of non-convex sets. Not
all points on the line connecting two elements of the set are inside the set.

of C, the combination
α · x + (1− α) · y (3.219)

is an element of C as well.
Equation 3.219 describes a line between the points x and y. Convexity of a subset
states that all points on the line in between x and y must also be elements of the
subset. This is illustrated in Fig. 3.3.

Closed sets [53]
A set C ⊂ X is closed, if the limit point c ∈ X of every sequence (cn) in C that
converges to c is within C. A closed set contains its boundary. Intersections of
closed sets are closed. Unions of closed sets are closed. The empty set is also a
closed set.

Distances between a point and a set [53]
The distance of a point x ∈ X to a set C ⊂ X with elements c is defined by

d(x, C) = inf
c∈C

d(x, c) = inf
c∈C
||x− c|| . (3.220)

3.2.2 Mappings

A mapping T : X → X associates every element a ∈ X with an element b ∈ X .
Here, we consider mappings that can be multi-valued (one single input value
is mapped to several output values), or single valued (one single input value is
mapped to one single output value).

Non-expansive mappings [51]
Let T be a mapping from the inner product space X to X . T is non-expansive, if

||T (x)− T (y)|| ≤ ||x− y||, ∀ x,y ∈ X . (3.221)
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X
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Figure 3.4: Illustration of the set of solutions for T (x)−T (y) for (gray) non-expansive
T and (yellow) firmly non-expansive T . The illustration follows [57].

Firmly non-expansive mappings [51]
Let T be a mapping from the inner product space X to X . T is firmly non-
expansive, if

||T (x)−T (y)||2 + ||(Id−T )(x)−(Id−T )(y)||2 ≤ ||x−y||2, ∀ x,y ∈ X , (3.222)

where Id is the identity mapping. Equivalently, T is firmly non-expansive, if there
is a non-expansive mapping T̃ such that

T =
1

2
(Id+ T̃ ) , (3.223)

where Id is the identity mapping which associates each input with itself [53].
Following the illustration by J. Eckstein [57] of a geometric interpretation for
(firmly) non-expansive mappings, one can take the two dimensional Euclidean
space and define two points x and y (see Fig. 3.4). A non-expansive mapping T
guarantees that the distance between x and y is always larger than or equal to
the distance between T (x) and T (y). While T (x)−T (y) is then found within the
subset defined by the gray circle in Fig. 3.4, firmly non-expansive operators even
reduce the distance between T (x)− T (y) by a factor of 1

2 . Their set of solutions
T (x) − T (y) is shifted by half the vector (x − y)/2. Solutions for a firmly non-
expansive mapping T are found within the yellow circle of Fig. 3.4.
The property of firmly non-expansiveness given in equation 3.222 is equivalent

to the following statement [51]:

||T (x)− T (y)||2 ≤ 〈x− y, T (x)− T (y)〉 . (3.224)

To see this consider

||(Id− T )(x)− (Id− T )(y)||2 = ||(x− y)− (T (x)− T (y))||2

= ||x− y||2 + ||T (x)− T (y)||2

−2 〈x− y, T (x)− T (y)〉 . (3.225)
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With this restatement equation 3.222 becomes

||T (x)− T (y)||2 + ||x− y||2 + ||T (x)− T (y)||2 − 2 〈x− y, T (x)− T (y)〉
≤ ||x− y||2

⇒ ||T (x)− T (y)||2 ≤ 〈x− y, T (x)− T (y)〉 . (3.226)

Iterative application of mappings and fixed points
Mappings can be applied in an iterative way

Tn(a) = T (T (.....(T︸ ︷︷ ︸
n times

(a)))) . (3.227)

If T (T (a)) = T (a), ∀a ∈ X the mapping T is called idempotent. This means,
that elements of the set of solutions for T are mapped onto themselves.
Furthermore, an element x of X for which T (x) = x belongs to the fixed point
set of T [53]

FixT = {x ∈ X : T (x) = x} . (3.228)

Usually, fixed points are the limit points of sequences [53].

Weak convergence of a sequence [53]
Suppose x is a point in X . A sequence (xn) in X is said to be weakly convergent,
if

〈xn − x,y〉 → 0, ∀ y ∈ X . (3.229)

The fixed points of a mapping can be found by iterative algorithms. This is not
always an easy task. Yet, as shown by by Z. Opial [58] in the year 1967, when the
mapping is firmly non-expansive, it is possible to find its fixed points by iterative
application of the map (see equation 3.227).

Weak convergence of a sequence
of firmly non-expansive operators to a fixed point [58]
The sequence (Tn(x)) generated by a firmly non-expansive mapping T : X → X
with FixT 6= ∅ converges weakly to a point in FixT .

3.2.3 Projections

Projections are special kinds of mappings, that find the best approximation of a
point x with respect to a subset A [53]. Depending on the geometry of A, they
have different properties. In particular, it turns out that they point to a unique
solution and are (firmly) non-expansive if their underlying subsets are closed and
convex. Projections are the most important operators for iterative phase retrieval
which is – speaking more abstractly – finding fixed points of a certain mapping.
The mappings used for phase retrieval are compositions of projections. To this
end, here the mathematical properties of projections are explored before special
projection operators for the case of (Fresnel) coherent diffractive imaging are clas-
sified. This section is composed of material taken from [49,50,53,54].
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Figure 3.5: Characterizations of projections. (a) Projections onto closed sets can be
multi-valued. (b) Projections onto closed, convex sets are unique. (c) The angle
between the line defined by a point x and its projection y0 onto a subset A and
the line defined by y0 and any other point y within A is at least 90 degrees. (d)
Projections are non-expansive operators.

Best approximation [50]
Let A be a non-empty subset with elements y of an inner product space X , that
contains elements x. An element x ∈ A is called best approximation to x ∈ X (or
nearest point to x from A) if

||x− x|| = d(x, A) := inf
y∈A
||x− y|| . (3.230)

In words, the best approximation x of a point x with respect to a subset A is
found at infimum distance between x and A. Yet, since the infimum distance is
not the minimal distance, but the lowest boundary distance, a best approximation
does not forcibly have to exist.

Projection [50]
Let A be a non-empty subset of an inner product space X , that contains elements
x. The set of all best approximation points x ∈ A for x is denoted PA(x) and
called projection:

PA(x) := {x ∈ A | ||x− x|| = d(x, A)} . (3.231)
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In a finite dimensional inner product space X with subset A, the set of all best
approximation points of x ∈ X with respect to A can be empty, contain a single
element or more than one element. It is necessary for those projections which
point to solutions different from the empty set that the subset onto which they
map is closed. Fig. 3.5(a) illustrates the projection of x onto a set A. For the
sketched case, this projection is multi-valued. As already indicated, projections
have special properties, once the subsets onto which they project are closed and
convex. In the following projections onto closed and convex sets are considered.

Uniqueness of best approximations [50]
Let A be a convex subset of the inner product space X . Each x ∈ X has at most
one best approximation in A.

To see this, take a point x ∈ X and two points y1,y2 ∈ PA(x). As A is con-
vex, 1

2 (y1 + y2) is an element of A as well. The distance between x and A is
smaller than or equal to the distance between x and 1

2 (y1 + y2)

d(x, A) ≤
∣∣∣∣∣∣∣∣x− 1

2
(y1 + y2)

∣∣∣∣∣∣∣∣ (3.232)

=

∣∣∣∣∣∣∣∣12(x− y1) +
1

2
(x− y2)

∣∣∣∣∣∣∣∣ (3.233)

≤ 1

2
||x− y1||︸ ︷︷ ︸

=d(x,A)

+
1

2
||x− y2||︸ ︷︷ ︸

=d(x,A)

= d(x, A) . (3.234)

The first and last equality symbols state that equality must be guaranteed through-
out the inequalities. Equality for the triangle inequality holds if x−y1 = ρ(x−y2)
and with ||x− y1|| = d(x, A) = ||x− y2|| the parameter ρ must be ρ = 1. It fol-
lows that y1 = y2, i.e. there is a unique projection of x onto A.
Fig. 3.5(b) shows such a projection onto a closed and convex set A. Only a single
point y ∈ A is closest to x.

Characterizations of best approximations from convex sets [50]
Let A be a non-empty, convex subset of the inner product space X . The point
y0 ∈ A is best approximation point of x with respect to A (i.e. y0 = PA(x), x ∈
X ) if and only if

〈x− y0,y − y0〉 ≤ 0, ∀ y ∈ A . (3.235)

Suppose 〈x− y0,y − y0〉 ≤ 0. Then it follows

||x− y0||2 = 〈x− y0,x− y0〉 (3.236)
with relation 3.215︷︸︸︷

= 〈x− y0,x− y〉+ 〈x− y0,y − y0〉︸ ︷︷ ︸
≤0

(3.237)

≤ 〈x− y0,x− y〉 (3.238)
≤ ||x− y0|| ||x− y|| . (3.239)
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The last inequality is the Cauchy-Schwarz inequality. This means that

||x− y0||2 ≤ ||x− y0|| ||x− y|| and (3.240)
||x− y0|| ≤ ||x− y|| ∀ y . (3.241)

Hence, y0 = PA(x) is best approximation point.

Suppose that there are some y ∈ A with 〈x− y0,y − y0〉 ≥ 0. By convexity
of A every point yλ = λy + (1− λ)y0 with λ ∈ ]0, 1[ is in A as well. Then

||x− yλ||2 = 〈x− yλ,x− yλ〉 (3.242)
= 〈x− λy − (1− λ)y0,x− λy − (1− λ)y0〉 (3.243)
= 〈x− y0 − λ(y − y0),x− y0 − λ(y − y0)〉 (3.244)

= 〈x− y0,x− y0〉+ λ2 〈y − y0,y − y0〉
− 2λ 〈x− y0,y − y0〉 (3.245)

= ||x− y0||2 + λ2 ||y − y0||2 − 2λ 〈x− y0,y − y0〉 (3.246)

= ||x− y0||2 − λ
[
2 〈x− y0,y − y0〉 − λ ||y − y0||2

]
. (3.247)

Choosing λ sufficiently small, the last bracket is greater zero. It follows that

||x− yλ||2 < ||x− y0||2 . (3.248)

That contradicts the assumption that y0 = PA(x) is best approximation of x.
Equation 3.235 describes that the angle between the line defined by a point x and
its projection y0 onto A and the line defined by y0 and any other point y within
A is larger than or equal to 90 degrees (see Fig. 3.5(c)).

Projections are idempotent operators
It can be seen directly from the definition of a projection: The closest point of an
element PA(x) ∈ A with respect to A is the element itself:

PA(PA(x)) = PA(x) . (3.249)

Projections onto convex sets are non-expansive operators [49, 59]
This means that

||PA(x)− PA(y)|| ≤ ||x− y|| . (3.250)

Equation 3.235 states that:

〈x− PA(x), PA(y)− PA(x)〉 ≤ 0 , (3.251)
〈y − PA(y), PA(x)− PA(y)〉 ≤ 0 . (3.252)

Combining both inequalities leads to

〈x− y − PA(x) + PA(y), PA(y)− PA(x)〉 ≤ 0 (3.253)

〈x− y, PA(y)− PA(x)〉+ ||PA(y)− PA(x)||2 ≤ 0 (3.254)

−〈x− y, PA(x)− PA(y)〉+ ||PA(x)− PA(y)||2 ≤ 0 . (3.255)



Algorithmic of near-field propagation and phase retrieval 61

It follows that

||PA(x)− PA(y)||2 ≤ ||PA(x)− PA(y)|| ||x− y|| (3.256)
||PA(x)− PA(y)|| ≤ ||x− y|| . (3.257)

Equation 3.257 characterizes a non-expansive operator (equation 3.221). Hence,
projections are non-expansive operators. An illustration is provided in Fig. 3.5(d):
The distance between two points x0 and x1 is longer than the distance between
their corresponding mappings onto y0 and y1.

A projection onto a convex set is even more than non-expansive: It is a firmly
non-expansive operator.

Projections onto convex sets are firmly non-expansive operators [49,51]
Consider

||PA(x)− PA(y)||2 = 〈PA(x)− PA(y), PA(x)− PA(y)〉
= 〈PA(x)− x + x− PA(y) + y − y, PA(x)− PA(y)〉
= 〈x− y, PA(x)− PA(y)〉

+ 〈PA(x)− x, PA(x)− PA(y)〉︸ ︷︷ ︸
(I)

+ 〈y − PA(y), PA(x)− PA(y)〉︸ ︷︷ ︸
(II)

. (3.258)

Part (I) in equation 3.258 can be written as

〈PA(x)− x, PA(x)− PA(y)〉 = 〈x− PA(x), PA(y)− PA(x)〉 . (3.259)

Due to the property of projections onto closed, convex sets given equation 3.235,
(I) and (II) are both smaller than or equal to zero. It results that

||PA(x)− PA(y)||2 ≤ 〈x− y, PA(x)− PA(y)〉 , (3.260)

which is the definition of firmly non-expansiveness (see equation 3.224).
Finally it should be emphasized once more, that all these characteristics (unique-
ness, (firmly) non-expansiveness) only hold for those projections PA that map onto
closed and convex sets A. As we will see, in the special problem of phase retrieval,
unfortunately not all underlying subsets A are closed and convex. For this reason
convergence of phase retrieval algorithms in general cannot be guaranteed.

Relaxed projections [48, 60]
A relaxed projection rPA is a map rPA : X → X (where X is an inner product
space) that follows the following criterion:

rPA := (1 + γ)PA − γId , with γ ∈ R . (3.261)
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Figure 3.6: Illustration of the relaxed projection rPA for different relaxation values
γi ∈ R.

The solution space of rPA is a line defined by the point a and its projection PA(a)
onto the constraint set A. The parameter γ selects a specific point on this line:
one special result of rPA. Hence, the parameter γ determines where the output of
rPA will be located with respect to its input value a and the projection of a onto
the constraint set A. Instead of matching a directly onto PA(a), γ relaxes the
position of the output value to points located on the line connecting a and PA(a).
For this reason, γ is also called relaxation parameter. A special kind of relaxed
projection is a reflection with γ = 1. The behavior of rPA depends on the choice
of γ and is illustrated in Fig. 3.6: PA is the projection operator associated with
the set A (shown in green). All possible solutions (i.e. solutions for all γ ∈ R)
are located on the line drawn in light blue. For γ = 0 the solution of rPA will be
the same as the solution of PA (green circle). Choosing γi = −1 will match all
input values a onto themselves (red circle): In this case, rPA is the identity map
Id. The reflection with γ = 1 is marked by the dark blue circle. Solutions of rPA
for γ = {−0.5, 0.5} are also illustrated (yellow and orange circles). Of course, not
only projections, but also every other kind of mappings can be relaxed.

3.3 Searching the intersection of two subsets
With the help of projections onto subsets C and D, elements should be found that
simultaneously fulfill the properties of C and D. In other words, these elements
are located in the intersection of C and D: C ∩ D. Unfortunately, only one
projection can be performed per time. Hence, it is not possible to directly project
onto C ∩D. Hence, one combines these available one-step methods to a map such
that by repetition of this combination finally an element of C ∩D can be found.
Further repetition ideally will not hop away from the element in C ∩ D. There
exists a variety of such combinations of projections. Two methods frequently used
in phase retrieval are explained in this section, namely the map of alternating
projections and the difference map. First, the algorithm of alternating projections
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as the most simple projection algorithm shall be introduced. Second, preparing the
section dealing with ptychographic algorithms, the difference map scheme will be
explained. The behavior of alternating projections and the difference map will be
examined for the ideal situation of projections onto convex, closed and orthogonal
subsets. This is a special case but it will provide a basic understanding for the
operations performed by the proposed maps when iterated more than once. The
essential arguments presented below can be found in [48].

3.3.1 The map of alternating projections

The map of von Neumann’s alternating projections AP is the most straight forward
approach to find elements in the intersection of two constraint sets C and D. It is
defined as

AP := PC PD . (3.262)

As proved in 1959 by W. Cheney and A. A. Goldstein, under certain conditions,
especially under the condition of closed and convex sets this map converges to a
fixed point.

Theorem of W. Cheney and A. A. Goldstein [59]
Let C and D be two closed, convex subsets of an inner product space X and let ei-
ther one of the subsets be compact (closed and bounded), or let one of the subsets
be finite dimensional and let the distance between the sets be attained, then the se-
quence (AP)n = (PC PD)n of the projections PC and PD converges to a fixed point.

Furthermore, L. M. Brègman found that the map converges weakly to a fixed point
which is in the intersection of both constraint sets, provided that the sets intersect.

Theorem of L. M. Brègman [53, 61]
Let C ∩D 6= ∅. Then both sequences (cn) and (dn) with

dn = PD(cn) and cn+1 = PC(dn) (3.263)

converge weakly to a point in C ∩D.

Next, following [48], a graphical motivation will be presented to describe what
happens when alternating projections onto closed, convex, orthogonal and inter-
secting or non-intersecting subsets are performed.
We suppose that the constraint sets C and D are affine subspaces (defined in
equation 3.210) in the n-dimensional Euclidean space RN . Their corresponding
linear subspaces (i.e. which contain the origin) are denoted by XC and XD. The
span of XC and XD is a linear subspace of RN as well. It contains all linear
combinations of elements of XC and XD. Its complement Y contains elements
perpendicular to linear combinations of elements of XC and XD. Following equa-



64 Algorithmic of near-field propagation and phase retrieval

y
D

y
C

X
C

X
D

x
C

˜

Y
y
C

y
D

x
D

˜

D =
 X

 +
 y 

+ x

D

D

C˜

X
C

X
D

Y
y
D

x
D

x
C

˜

˜

y
D

x
C

˜

D =
 X

 +
 y 

+ x

D

D

C˜

(b)X
C

X
D

Y
y
C

x
D

x
C

˜

˜
y
C

x
D

˜

C
 =

 X
 +

 y
 +

 x
C

C
D

˜

(a)

(c) C
 =

 X
 +

 y
 +

 x
C

C
D

˜

Figure 3.7: Illustration of equations 3.264 (a) and 3.265 (b) for R3. The orthogonal,
affine subspaces C and D are generated by shifting the linear subspaces XC and XD
in R3. The red axis Y is the complementary subspace to the plane defined by XC
and XD. Y , XC and XD fully span the R3. (c) The minimal distance between C and
D is ||yC � yD||.

tion 3.210, the affine subspaces C and D are generated by shifting their underlying
linear subspaces XC and XD:

C = XC + x̃D + yC with yC ∈ Y, x̃D ∈ XD , (3.264)
D = XD + x̃C + yD with yD ∈ Y, x̃C ∈ XC . (3.265)

Their minimal distance is ||yC � yD||. If yC equals yD, C and D intersect. An
illustration is depicted in Fig. 3.7. An arbitrary point a in in RN contains com-
ponents of XC , XD and Y :

a = xC + xD + y . (3.266)

If a is projected onto C via PC it results in

PC(a) = xC + x̃D + yC . (3.267)
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Figure 3.8: Alternating projections onto (a) intersecting, closed, orthogonal and convex
subsets and (b) non-intersecting, closed and convex subsets. For case (a) the solution
is found by successive projections onto the sets C and D. For case (b) no unique
solution can be determined and the algorithm cycles between two points, one in C
and one in D.

If a is projected onto D via PD it results in

PD(a) = x̃C + xD + yD , (3.268)

which is because of the distance minimizing properties of a projection (see equation
3.231). When PC and PD are applied in turns, as suggested by AP, this will result
in

AP(a) = x̃C + x̃D + yC . (3.269)

Further application of PD on AP(a) will result in

PD(AP(a)) = x̃C + x̃D + yD .

For yC equaling yD, the algorithm converges to the intersection of the subsets
(Fig. 3.8 (a)). For yC 6= yD, i.e. in case that the two subsets C and D do not
intersect, the map cycles between the points x̃C + x̃D + yC and x̃C + x̃D + yD of
minimal separation ||yC−yD||; stagnation occurs [48]. This is graphically depicted
in Fig. 3.8 (b).

3.3.2 The difference map

Although the method of alternating projections is a very powerful, elegant and
simple way of searching for intersections of constraint sets, it can easily lead to
stagnation. To overcome this, in 2003, V. van Elser proposed an alternative al-
gorithm to solve feasibility problems which is pulled away from local points of
stagnation for an appropriate choice of parameters [48]. The method is called
difference map. Since it found broad application in ptychographic phase retrieval,
it will be explained in the following section. The difference map DM is defined as

DM := Id+ β [PC rPD − PD rPC ] , (3.270)
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where Id is the identity mapping, β ∈ R is a constant and rPi are the relaxed
projections

rPi := (1 + γi)Pi − γiId, i = C,D, γi ∈ R . (3.271)
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Figure 3.9: Step wise illustration of one complete iteration of the difference map starting
at a and ending at DM(a). (a) Illustration of PC rPD. (b) Illustration of PD rPC .
(c) Illustration of Id+ β [PC rPD − PD rPC ] Further explanation can be found in the
main text.

The operation DM searches for the intersection of two constraint sets. For this
purpose, it combines two maps rPi and two projections Pi. For illustration see
Fig. 3.9: Two intersecting constraint sets (C, yellow circle and D, green rectangle)
are drawn. The map rPD (here with γC = 0.5) acts on a and results in the point
rPD(a). This point is projected onto the set C. The result of the projection
PC(rPD(a)) is marked by a red circle (see Fig. 3.9(a)). The map rPC (here with
γC = 0.5) acts on a and results in the point rPC(a). This point is projected onto
the set D. The result of the projection PD(rPC(a)) is marked by a red circle (see
Fig. 3.9(b)). The difference ||PC(rPD(a))− PD(rPC(a))|| is the bold, red line in
Fig. 3.9(c). Via the parameter β a point on this line is selected. The vector a is
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added to the vector defining this point. The result is DM(a). One iteration of the
difference map is complete.
The difference map stagnates for the point ã that fulfills

PC(rPD(ã))− PD(rPC(ã)) = 0 . (3.272)

To find the corresponding point ãC∩D in C ∩D, the map PD rPC or PC rPD has
to be applied to the stagnation point ã:

PC(rPD(ã)) = ãC∩D = PD(rPC(ã)) . (3.273)

To characterize the operation of DM, like in the previous section, the special
case of two orthogonal, affine subspaces C and D defined as in equations (3.264)
and (3.265) is observed once more. When DM is applied to a general point a =
xC + xD + y, it results in [48]

DM(xC + xD + y) = x̃C + x̃D + y

+ (1− βγD)(xC − x̃C)

+ (1 + βγC)(xD − x̃D)

+ β(yC − yD) . (3.274)

Suppose C and D intersect and their intersection is not empty, i.e. yC = yD = ỹ.
In this case DM is contractive for (1 − βγD) ∈ ] − 1, 1[ and (1 + βγC) ∈ ] − 1, 1[.
The optimal choice of parameters would be γD = β−1 and γC = −β−1 [48].
Successive application of DM allows finding the fixed points of DM [48]

FixDM = {x : x = x̃C + x̃D + y, ∀y ∈ Y } . (3.275)

Fixed points of DM are not yet in C ∩D. The application of PC rPD or PD rPC
to these fixed points leads to the solution

xC∩D = x̃C + x̃D + ỹ , (3.276)

which is in the intersection C∩D. This is graphically demonstrated in Fig. 3.10(a).
The dashed green and violet lines are the orthogonal, affine subspaces C and D
which intersect in the point x̃C + x̃D + ỹ. The orange line is the set of fixed
points of DM. By the performance of PC rPD or PD rPC , these fixed points are
all mapped onto x̃C + x̃D + ỹ.
Suppose that C and D do not intersect, i.e. yC 6= yD. For γD = β−1 and
γC = −β−1, iterative application of DM leads to [48]

DMn(xC + xD + y) = x̃C + x̃D + y

+ nβ(yC − yD). (3.277)

Successive iterations of DM hence move the output away from points of stagnation.
In Fig. 3.10(b) this behavior is illustrated by the orange line and arrows pointing
away from elements of minimal separation between C and D.
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Figure 3.10: (a) Illustration of the fixed point set (orange line) of DM for two intersect-
ing, orthogonal constraint sets. By the action of PC rPD or PD rPC these fixed points
are mapped to C ∩D. (b) Where algorithms like alternating projections would stag-
nate, the solution of DM is pulled away from points of minimal separation between
C and D.

A further note on the difference-map algorithm: The optimal choice of the relaxa-
tion parameters γC and γD turned out to be γC = � 1

β and γD = 1
β [48]. Yet,

when the outer projection/reflection is onto a linear subspace, for this choice of
parameters and for β = 1, the difference map transforms to [62]

D̃M = Id+ [PC (2PD � Id)� PD] = PC (2PD � Id) + (Id� PD) . (3.278)

This is identical to the much older Douglas-Rachford algorithm, for which conver-
gence in the convex setting is known [53,62]. Yet, since this work will concentrate
on ptychographic phase retrieval and since one of the famous ptychgraphic algo-
rithms is referred to as difference map ptychography (with the specific parameter
setting of γD = β�1, γC = �β�1 and β = 1), it shall still be denoted as difference
map rather than as Douglas-Rachford.

3.4 Selected projections for phase retrieval
Phase retrieval is a method to solve the phase problem described in section 2.5 by
finding the complex valued envelope ψi(x, y) of a paraxial and monochromatic wave
function Ψi(x, y, z, t) = ψ(x, y) exp(ikz) exp(�iωt). Now, the envelope ψ(x, y)
shall get a lower index i (ψi(x, y)) which refers to the z coordinate oriented along
the axis of paraxial propagation. Hence, a wave front ψi(x, y) is a complex valued
two dimensional function at fixed longitudinal position i. By propagating ψi(x, y)
forwards and backwards between two (or more) positions i, j along the optical axis
and by applying boundary conditions to ψi(x, y) which are characteristic for the
wave field at position i and boundary conditions to ψj(x, y) which are characteris-
tic for the wave field at position j, a wave field should be found that is consistent
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with all of the imposed boundary conditions. Typically these boundary condi-
tions are the agreement with the measured data in the observation plane j and
additional knowledge about the optical setup or the imaged object in the starting
plane i.
The connection to the iterative projection methods described before is the fol-
lowing: The named boundary conditions are imposed onto ψi(x, y) and ψj(x, y)
by projection operators. These projection operators modify ψi(x, y) and ψj(x, y)
by minimum changes, such that the new ψi(x, y) and ψj(x, y) are consistent with
the respective boundary conditions. Projections are chosen to find fixed points
of the phase retrieval mapping. Yet, therefore, the constraint sets underlying the
projection operators have to be closed and convex. In particular, when these sets
are not convex, projections are multi-valued (see Fig. 3.5(a)) which is an obstacle
to prove convergence of the respective projection algorithms [54]. In this section
the properties of projections used for phase retrieval are explored; the geometry of
their underlying subsets is explained. Extensive literature and a detailed analysis
of this subject can be found in [54].
Beforehand a few words on notation: Since in the following not only projections,
but their iterative application, as well as wave fields and objects at different lon-
gitudinal and lateral positions will be of interest, several indices will be necessary
to fully characterize the involved complex valued functions. Lower indices i will
always refer to the longitudinal position (z-direction, i.e. direction of propagation)
of a wave field. Upper indices in round brackets (i) indicate the lateral position
of object or probe. Upper indices which are not in brackets denote the current
iteration n or k. Despite these many indices, to keep notation short, lateral co-
ordinates r = (x, y) are not always explicitly mentioned, but the dependence of
the object, the illumination or probe and the exit wave on these coordinates is
implicitly assumed.

The modulus or magnitude constraint:
Reconstructed intensities have to match measured intensities
Among all discrete wave fields ψi(x, y), there is a subset M of discrete wave fields
ψi,mod(x, y) that matches the measured (and – with this in mind – discrete) in-
tensity distribution. The best approximation PM (ψi(x, y)) of ψi(x, y) is found
by

PM (ψi) := P−∆i,j

[ P∆i,j
[ψi]

|P∆i,j [ψi] |
·
√
Ij

]
, (3.279)

where Ij is the measured intensity distribution at defocus or z-distance j. The
operator P∆i,j is either the Fourier transform F or the Fresnel transform D∆i,j

referring to the propagation of light in the optical far- or near-field (see section
2.3.2).
Considering a single pixel at (x, y), the geometry of the modulus constraint is the
boundary line of a circle with radius

√
Ij(x, y) [48,53]: Phase values from [−π, π[

can be combined with
√
Ij(x, y), see Fig. 3.11(a). The projection onto a circle is

unique with the exception of one single point: The center of the circle corresponds
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Figure 3.11: Projections for phase retrieval and the geometry of their underlying sub-
sets. (a) The modulus constraint replaces the reconstructed intensities in each pixel
by the measured ones and keeps the reconstructed phases. The underlying subset
for each pixel is a ring of radius

√
Ij(x, y). (b) The support constraint sets pixels

outside σ to zero. Pixels inside σ are allowed to have any value in the complex plane.
(c) In the case of X-rays, objects have negative phase shift. Functions with negative
phase shift are elements of the lower half of the complex plane. (d) Pure phase ob-
jects have full transmission with amplitude equal to one. Phases are left untouched.
The geometry of this set is the circumference of the unit circle in the complex plane.
(e) Transmission cannot exceed the value of one. Complex functions fulfilling this
constraint are elements of the unit circle in the complex plane.

to a zero valued amplitude and is projected onto each and every point of the circle’s
boundary. The circumference of a circle is not convex. This means that conver-
gence and in particular convergence to a unique solution cannot be guaranteed [54].

The support constraint: Objects limited to a finite support
The measured intensity is not the only boundary condition that can be deduced
from the experimental configuration. If the object is restricted to a certain area
(or in discrete formulation to a certain number of image points), the so called
support projection acting onto each image point can be formulated as

PS(ψi(x, y)) :=

{
ψi(x, y) if (x, y) ∈ σ ,
0 else, (3.280)
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where S is the set of all complex valued functions which are zero or non-zero within
and zero outside their support σ. Since S is a linear subspace [48], it contains all
linear combinations of its elements as well. As it contains all linear combinations
of its elements, it contains also affine combinations of its elements and in particu-
lar complex combinations. It follows that S is convex [53]. The projection onto S
for a single pixel is the projection onto the complex valued plane in case that the
specific pixel is inside σ and zero in case that it is outside σ, see Fig. 3.11(b).

The negativity constraint: Objects with negative phase shift
A projection onto transmission functions o(x, y) of small negative phase shift can
be formulated as

PN (o(x, y)) :=

{
o(x, y) if arg(o(x, y)) ≤ 0 ,
|o(x, y)| else. (3.281)

The underlying subset of PN is the lower half of the complex plane and hence
convex, see Fig. 3.11(c). This projection makes sense for thin, weak objects with
a complex index of refraction of n = 1 − δ + iβ, where δ is positive and δ << 1,
i.e. objects imaged by X-rays.

The phase object constraint: Objects with no absorption
Transparent objects only shift the phase of the incoming light. They (approx-
imately) do not absorb any photons. Consequently the absolute value of their
transmission function is always one:

PP (o(x, y)) :=
o(x, y)

|o(x, y)|
. (3.282)

The operator PP (o(x, y)) projects onto a ring with radius one in the complex
valued plane. Similar to the magnitude constraint, its underlying subset is of non-
convex geometry. For illustration, see Fig. 3.11(d).

The transmission constraint:
Objects with full or less than full transmission
The objects considered here can only absorb (and, of course, shift the phase), but
they cannot generate additional photons with the same wavelength like the illu-
minating beam. The absolute value of the transmission function cannot exceed
the value of one. A projection onto the set of functions with absolute value lower
than one can be expressed as

PT (o(x, y)) :=

{
o(x, y) if |o(x, y)| ≤ 1 ,
o(x,y)
|o(x,y)| else. (3.283)

The corresponding set of functions is of convex nature: It contains all functions
with absolute value inside the unit circle in the complex plane, see Fig. 3.11(e).
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3.5 The Gerchberg-Saxton algorithm
The Gerchberg-Saxton map is the most intuitive, iterative phase retrieval algo-
rithm. It was developed by R. W. Gerchberg and W. O. Saxton, published in
1972 and introduced as a practical algorithm to determine phases from intensity
measurements in the diffraction and the image plane [63]. It is an example of von
Neumann’s alternating projections applied to phase retrieval [53,60]. Until today,
it has found a broad range of applications [64].
The two constraints chosen for the Gerchberg-Saxton algorithm are two modulus
constraints (see equation 3.279): one in the image plane (real space, longitudinal
position i) and one in the diffraction plane (Fourier space, longitudinal position
j). Hence, two intensity recordings at different positions along the optical axis
(one in the far-field, and one at the position of the sample) are required. The
corresponding subsets shall be called Mff and Mnf. Projections onto these sets are
performed by

PMff(ψi) := F−1

[
F [ψi]

|F [ψi] |
·
√
Ij

]
, (3.284)

PMnf(ψi) :=
ψi
|ψi|
·
√
Ii , (3.285)

where Ij are the measured intensities in the Fourier domain and Ii the measured
intensities in the image plane. Using this terminology, the Gerchberg-Saxton map
is

ψk+1
i = GS(ψki ) := PMff(PMnf(ψ

k
i )) , (3.286)

where k denotes current iteration of the map.

3.6 The error reduction algorithm
In 1982, J. R. Fienup generalized the Gerchberg-Saxton map from its special ap-
plication for imaging using one intensity recording in the image plane and one in
the optical far-field to a larger class of problems. These problems are constrained
by at least two different a priori known or measurable boundary conditions [65].
He named this kind of algorithm ‘error reduction’ , because he showed that the
difference between successive iterates in real space and in Fourier space decreased
or stagnated when applying the error reduction map in an iterative way [65].
For the special problem of phase retrieval from measured diffraction intensities, J.
R. Fienup made use of the modulus constraint PMff in the observation plane (see
equation 3.279) and a real space support constraint PS in the source plane (see
equation 3.280) combined to an alternating projections algorithm:

ψk+1
i = ER(ψki ) := PS(PMff(ψki )) . (3.287)

Since both of these very early phase retrieval algorithms (Gerchberg-Saxton and
error reduction method) are based on alternating projections, they show all the ad-
vantages and disadvantages of this technique. In case that the underlying subsets



Algorithmic of near-field propagation and phase retrieval 73

x

x

x

xx

x

x

x

tu
n
n
e
l

trap

solution 1

solution 2x

multi-valued 
projections

Figure 3.12: Problems of alternating projections onto subsets of arbitrary, closed ge-
ometry. Dark blue: Projections might not be unique. Orange: The initial guess
determines the solution. Violet: Extremely slow convergence can occur when succes-
sive iterates are entering a tunnel. Light blue: Endless cycling between elements that
are not in the intersection of the two subsets is possible, the algorithm is trapped.

of the used projectors are closed, convex and intersecting, the method of alter-
nating projections converges to an element within this intersection [61]. We saw
that not all of the subsets used in phase retrieval are of closed and convex geom-
etry. Especially the subset underlying the important magnitude constraint is not
convex. Furthermore, since the measured intensities are necessarily bounded by a
compact support (namely the field of view of the detector), they actually cannot
result from a confined object in real space. The same is true for holographic inten-
sity distributions: Strictly speaking, the intersection of the two subsets (support
and magnitude constraint) does not exist.
In particular for two subsets of arbitrary geometry, the following can happen [60]:
(1) Projections might be multi-valued (see dark blue paths in Fig. 3.12). (2) Mul-
tiple points of intersections can exist. The choice of the initial guess determines
the solution (an illustration is provided in Fig. 3.12, orange paths). (3) During
successive iterations the algorithm might get trapped between two elements which
are not in the intersection of the constraint sets, but at minimal distance with
respect to each other (red points in Fig. 3.12 and light blue path). (4) The algo-
rithm might get stuck in a tunnel, i.e. the change from one iteration to the next is
negligible (see Fig. 3.12, violet path). While case (3) cannot occur for intersecting,
convex sets, case (4) can happen for convex sets as well [60]. Especially due to
traps, the error reduction and the Gerchberg-Saxton algorithm can produce poor
solutions.
J. R. Fienup and C. C. Wackerman observed three typical modes of stagnation
for the special case of phase retrieval based on alternating projections [66]. The
algorithm stagnates when (1) its output contains features of the image and the
twin image simultaneously, (2) when the reconstruction is superimposed by stripes
of low contrast or when (3) unintentional truncation of the object occurs caused
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by a misaligned support.
Twin images ψ∗i (�x,�y) of ψi(x, y) typically spoil those reconstructed objects
that have a centrosymmetric support. The problem can be overcome by dynami-
cally modulating the support in particular by starting with a non-symmetric sup-
port [66]. Similarly unintentional truncation (due to a misaligned or too restrictive
support) can be avoided by shifting the support during reconstruction [66]. All
of these methods however do not touch the underlying concept of alternating pro-
jections. A different approach to get rid of the described problems would be to
use phase retrieval methods including different combinations of projections and
relaxation techniques and/or to make use of more than one intensity recording in
the image or diffraction plane with slightly different information content.

3.7 Ptychography in the optical far-field
In the last ten years, an imaging method became famous that uses multiple inten-
sity recordings in the diffraction plane generated by shifting an object through a
confined beam. It is called ptychography and despite that the underlying concepts
date back to the year of 1968 [67], first application in X-ray coherent diffractive
imaging was roughly forty years later.

(a) (b)

aperture

object

probe

detector

Figure 3.13: Illustration of Ptychography. (a) An object is shifted inside a confined,
coherent beam denoted probe. Intensities are recorded in the optical far-field. (b)
For each position of the object, one diffraction image is recorded. Using these images
phase retrieval can be performed.

Basically, ptychography is the same as scanning coherent diffractive X-ray imaging
with small step sizes: An (extended) object of interest is illuminated by a coherent
X-ray beam confined by some aperture. The intensity distribution of the trans-
mitting beam is measured in the optical far-field. The beam is scanned to several
positions illuminating different regions of the object, all partially overlapping with
the previous ones. Equivalently the object can be scanned through a fixed beam.
An illustration is depicted in Fig. 3.13(a). For each position of the beam (or the
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object) one image is recorded in the diffraction plane (see Fig. 3.13(b)). It is worth
to notice that ptychography is not restricted to the use of X-rays: Also coherent
visible light can be utilized [68]. However, ptychography is particularly useful for
X-ray microscopy, as it does not necessarily require focusing lenses, which are hard
to fabricate for this spectral range.

3.7.1 The ptychographical iterative engine

In 2004, the first ptychographic algorithm for X-ray imaging was designed by
J. M. Rodenburg and H. M. L. Faulkner [68,69]. It is called PIE (ptychographical
iterative engine) and conceived to find a single transmission function of an object,
that together with a known illumination reproduces all of the measured diffraction
images of the partially illuminated object.
In this early states of ptychographic algorithm development, it was essential to fully
characterize the probe pj(x, y) in amplitude and phase before trying to reconstruct
the object o(x, y) which had been scanned through the beam at defocus position
j. The longitudinal position j of the object is not changed. With this in mind the
lower index j is skipped in the following, however p and o still refer to object and
probe at the same, constant defocus position j. Instead of scanning the object,
the PIE historically is designed such that the probe is scanned to i = [1, 2, ...m]
positions across the object. The probe at position r(i) = (x(i), y(i)) with respect
to the object o(x, y) = o(r) is

p(i)(r) = p(r − r(i)) , (3.288)

and the exit wave ψ(i)(x, y) = ψ(i)(r) following the projection approximation is

ψ(i)(r) = o(r) p(r − r(i)) = o(r) p(i)(r) . (3.289)

The PIE algorithm [68,69] is

on+1(r) = on(r) + βw

(
p(i)
)∗

(r)

|p(i)(r)|2 + α

[
PMff

(
ψ(i),n(r)

)
− ψ(i),n(r)

]
. (3.290)

The factor w is a weighting factor

w =
|p(i)(r)|

max(|p(i)(r)|)
. (3.291)

The purpose of w is to suppress noise; β is a relaxation coefficient and α should
prevent division by zero. The PIE algorithm acts sequentially: It adapts the
reconstructed intensities to the measured ones for one single lateral position i of
the probe and calculates an update for the object. Then it takes the corrected
object field function, shifts the probe to the next lateral position j and again
adapts the intensities. One cycle k of PIE is complete when the object has been
shifted once to every position i = [1, 2, ...m].
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Setting the weighting factor w to w = 1, and choosing a spatially confined probe
within a region of radius σ

p(x, y) :=

{
1 if

√
x2 + y2 ≤ σ ,

0 else ,
(3.292)

the factor (p(i))
∗
(r)

|p(i)(r)|2+α
is nothing else but a support constraint with the support

shifted to position i [69]. Further simplification would be to take only one single
lateral position into account. Since the probe is confined to a region of radius σ,
the reconstructed object will be limited to this area as well. With the definition
of the probe by equation 3.292 and an object confined to the circular region with
radius σ, the following holds

ψ(r) = p(r) o(r) = PS(o(r)) = o(r) . (3.293)

In this case, the PIE scheme of equation 3.290 reduces to

ψn+1(r) = (1 + γ)PS [PMff (ψn(r))]− γψn(r) . (3.294)

where γ = β − 1. The performance of a relaxed operator (a relaxed projection)
was illustrated in section 3.2.3 and Fig. 3.6: Equation 3.294 is a line connecting
the starting guess for ψn with a new estimate PS

(
PMff(ψ(n))

)
. Choosing γ = 0

will select the new estimate as update for ψn. Choosing γ = −1 will match the
output onto the input and will not change ψn at all.
Equation 3.294 can be interpreted as a relaxed version of the error reduction
algorithm. For γ = 0, it is exactly the error reduction algorithm [69]. However,
taking different positions of the confined probe into account breaks the symmetry
imposed by an (in most cases symmetric) support. Hence, even for a uniform
probe as defined in (3.292) within a circular region, the PIE shows considerable
advantages compared to the error reduction method with the object located at one
single position [69, 70]; it especially does not run into stagnation caused by twin
image artifacts, as detailed later. Yet, the main drawbacks of the PIE method are:
(1) It requires a fully characterized probe in amplitude and phase; (2) it requires
accurate knowledge about the positions of the object (or the probe) [70].

3.7.2 Ptychography with the difference map

The main drawback of the PIE is the need for accurate knowledge of the probe. The
first algorithm to overcome this restriction was published by M. Guizar-Sicairos
and J. R. Fienup in May 2008. It is based on a nonlinear optimization approach
using the conjugate gradient method [70]. For the first time, it was possible to si-
multaneously reconstruct object and probe. In addition, inaccuracies in the shifts
of the object could be corrected as well.
Shortly after the non-linear optimization approach described in [70], in July 2008,
P. Thibault et. al. [71] published a method based on the difference map DM in-
troduced in section 3.3.2 that is also capable of reconstructing object and probe.



Algorithmic of near-field propagation and phase retrieval 77

However, in contrast to [70], still accurate knowledge about the translations im-
posed on the object is required.
Recall the definition of the difference map DM:

DM := Id+ β [PC rPD − PD rPC ] , (3.295)

where Id is the identity mapping, β ∈ R is a constant and rPi are the relaxed
projections

rPi := (1 + γi)Pi − γiId, i = C,D, γi ∈ R .

In the special case of ptychography, PD is the projection PMff onto the set of
functions Mff that reproduce the m measured intensities Ii ( i = [1, 2, ...m]) in the
diffraction plane. The second constraint set is the set O of functions

ψ̂(r) = ô(r) · p̂(i)(r) , (3.296)

which minimize the objective function

F :=

m∑
i=1

M,N∑
x,y

|Ψ− Ψ̂|2 , (3.297)

where M and N are the number of samples/pixels in horizontal and vertical di-
rection and where

Ψ :=
{
ψ(1)(r), ψ(2)(r), ..., ψ(m)(r)

}
and (3.298)

Ψ̂ :=
{
ψ̂(1)(r), ψ̂(2)(r), ..., ψ̂(m)(r)

}
. (3.299)

The single ψ(i)(r) are the current iterates for the exit wave at position i. Mini-
mization of F can be achieved by setting the derivative of F with respect to p̂(i)(r)
and ô(r) to zero. It results in two coupled equations for object and probe [72]:

ô(x, y) =

∑m
i=1 p̂

∗(r − r(i))ψ(i)(r)∑m
i=1 |p̂(r − r(i))|2

, (3.300)

p̂(x, y) =

∑m
i=1 ô

∗(r + r(i))ψ(j)(r + r(i))∑m
i=1 |ô(r + r(i))|2

. (3.301)

The operator pointing onto the set O cannot exactly be expressed as a projector
[73]. For this reason, it shall be named ΠO instead of PO. The wave function
ψ̂(r) shall be separable in object and probe, hence we denote ΠO as separability
constraint.
When replacing PC by ΠO and PD by PMff , equation (3.295) is

DMpty = Id+ β [ΠO rPMff − PMff rΠO] =

Id+ β {ΠO [(1 + γMff)PMff − γMffId]− PMff [(1 + γo)ΠO − γoId]} =

Id+ β(1 + γMff)ΠO PMff − βγMffΠO − β(1 + γo)PMff ΠO + βγoPMff . (3.302)
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Figure 3.14: One full cycle of pPIE or difference map based ptychography.

Choosing β = γMff = −1, and γo = 1 leads to the mapping provided in [72]:

DMpty(Ψk) = Ψk+1 = Ψk + PMff

[
2ΠO(Ψk)−Ψk

]
−ΠO(Ψk) , (3.303)

where upper indices refer to the current/the next iteration. Note that this algo-
rithm is performing in a parallel way: In contrast to the PIE algorithm, DMpty
addresses the single elements of Ψk separately, i.e. the update ψ(i),k does not
influence the update of ψ(j),k with i 6= j (see Fig. 3.14). For this reason the dif-
ference map ptychography is also called pPIE (parallel ptychographical iterative
engine) [74].

3.7.3 The extended ptychographical iterative engine

Some months after publication of the nonlinear optimization and the difference
map approaches to simultaneously reconstruct object and probe, A. M. Maiden
and J. M. Rodenburg provided an extension of the PIE algorithm, capable of
retrieving information of both, object and illumination at the same time. This
extended ptychographical iterative engine (ePIE) consists of the two maps ePIEo
(update of o) and ePIEp (update of p) with reversed roles of object and probe [74]:

ePIEo(on(r)) = on+1(r)

= on(r) + α

(
pn(r − r(i))

)∗
max(|pn(r − r(i))|2)

·
[
PMff

(
ψ(i),n(r)

)
− ψ(i),n(r)

]
, (3.304)
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ePIEp(pn(r)) = pn+1(r)

= pn(r) + β

(
on(r + r(i))

)∗
max(|on(r + r(i))|2)

·
[
PMff

(
ψ(i),n(r)

)
− ψ(i),n(r)

]
, (3.305)

where the parameters α, β ∈ R adjust the step size of the update and where the
exit wave for the probe at position i is described by

ψ(i),n(r) = on(r) pn(r − r(i)) . (3.306)

One full iteration k is complete, when n = m, where m is the number of recorded
diffraction patterns. After that, the following iteration starts with (sub-)index
n = 1 addressing the first (randomly chosen) diffraction pattern again. It was
observed that this method is more robust to noise in the diffraction images and
provides faster convergence than the difference map approach [74]. As the PIE
method, the ePIE operates sequentially: The updates of object and probe at
position i in sub-iteration n will influence the updates of object and probe at
position j > i. A graphical visualization is depicted in Fig. 3.15. Whereas single
mappings inside one iteration of the pPIE (see Fig. 3.14) have no knowledge about
each other and hence can be performed in parallel, the ePIE intertwines its single
sub-iterates within one global iteration (see Fig. 3.15).
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Figure 3.15: One full cycle of ePIE.

3.7.4 Lateral diversity as a solution to the twin image problem in far-
field imaging

Following the Frauenhofer approximation, the intensities measured in the diffrac-
tion plane are the squared modulus of the Fourier transform of the signal ψ(r)
in the image plane. Unfortunately, there are two, symmetric signals ψ(r) and
ψ∗(−r) (the so called twin signal) that produce the same far-field intensity (see
section 2.5.1). Both, ψ(r) and ψ∗(−r) fulfill the boundary conditions of the mag-
nitude constraint correctly. If in addition the support of ψ(r) is centrosymmetric
about the origin, then the support of ψ(r) is the same as the support of ψ∗(−r).
Consequently, both functions ψ(r) and ψ∗(−r) also fulfill the boundary conditions
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imposed by the support constraint [70]. They are both true solutions of the phase
retrieval problem. When during the first iterations of an alternating projections al-
gorithm image and twin are simultaneously reconstructed, stagnation occurs [66].
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Figure 3.16: (a) The error reduction cannot distinguish between the image (orange
triangle) and its twin (gray triangle), when an object is fully illuminated inside a
centrosymmetric area. Reconstructions are likely to stagnate in mixtures of both -
image and twin image. (b) Illuminating different, slightly overlapping regions (1, 2,
3) of the object, reconstructing them separately, shifting them by the known transla-
tions S and superimposing these shifted single reconstructions (S(1), S(2), S(3)) will
assemble the image in the correct and the twin image in an incorrect way. Whereas
in situation (a) further iterations of phase retrieval will stagnate, in situation (b) the
solution corresponding to the image is favored.

A non-symmetric support can be used to avoid reconstructions showing features
of ψ(r) and ψ∗(�r) [66]. But this is not the only way how to get rid of the twin
image. One reason why far-field ptychography is so powerful is that translational
diversity in the recorded diffraction patterns reduces twin image artifacts and after
some iterations pulls the solution towards ψ(r) [70]. In Fig. 3.16(a) a sketch is
provided to demonstrate the result of a simple step of error reduction. An object
(here the orange triangle) is fully exposed within the region of the circle. Perform-
ing one step of error reduction will mix the image (lower orange triangle) and its
twin (gray triangle), each for itself a valid solution. Restricting the illuminated
area and exposing several regions (regions 1, 2 and 3 in Fig. 3.16(b)) will result in
partial reconstructions, all mixed by their twins and all centered (as the magnitude
of the Fourier transform is insensitive to spatial shifts). Yet, with the information
at hand, where regions 1, 2, and 3 are located with respect to the origin, it is
possible to add up the shifted, partial reconstructions in the correct way (blue box
in Fig. 3.16(b)). The image is restored correctly while the twin image parts are not
assembled appropriately [70]. Using this result as the input for the next iteration,
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phase retrieval will favor the image instead of its twin and will eventually pull the
solution towards ψ(r)8.

Summary and outline
This chapter summarized algorithmic tools necessary for phase retrieval. First, a
review of discrete near-field propagation was presented. Among these techniques,
the transfer function implementation was chosen as preferred propagator for the
implementation of iterative phase retrieval.
Second, starting from basic mathematical tools, projection algorithms were intro-
duced. To this end, firstly, projections were described. Their properties depend
on the set of functions onto which they project. Once these sets are closed, convex
and intersecting, alternating projections converge to a fixed point that has the
properties of all of the sets simultaneously. Iterative phase retrieval relies on pro-
jections onto sets of functions that fulfill boundary conditions of the experimental
setup and reproduce the measured data. Different phase retrieval techniques were
introduced: among them the method of Gerchberg and Saxton and the error re-
duction algorithm. Both of them belong to the class of alternating projections
algorithms. Furthermore, the difference map was described in a theoretical way
and in an application oriented version in the context of far-field ptychography.
Finally, different algorithms to analyze ptychographic data were summarized. In
the following chapter, one of these algorithms, namely the ePIE method, will be
modified and applied for a generalized version of ptychography for the optical
near-field.

8 Note that the overlap between neighboring scan positions has to be considerably larger than
sketched in Fig. 3.16. A large overlap further results in an ‘incoherent’ mixture of neighboring
twin image components and impedes stagnation.





4 Near-field ptychography: Theory, implementa-
tion, simulations

The situation of near-field X-ray holography deviates in many aspects from far-field
diffraction imaging. In particular, two main differences have to be considered: (1)
The propagation of optical wave fronts is carried out by the Fresnel-Kirchhoff-
integral instead of the Fourier transform. (2) The probe is not confined by any
kind of aperture and the entire field of view of the detector is illuminated.
While the first aspect is a technical detail that affects implementation and experi-
mental realization, such that the sampling condition of the near-field propagator
is fulfilled, the second aspect is crucial for successful reconstruction of the correct
object and probe. It becomes necessary to adapt and generalize the whole procedure
of ptychography and thereby to include longitudinal translations of the sample.
Without the claim of completeness, a short review of relevant literature will be
given. A motivation is provided why this additional degree of freedom – namely
translations of the sample along the optical axis – is necessary. It follows a detailed
description of the constraints and the implementation of near-field ptychography.
Subsequently, simulations are presented to illustrate performance, capabilities and
limits of near-field ptychography. The chapter closes with a summary.

4.1 Ptychography in the optical near-field: Concepts and
developement

The history of Fresnel X-ray imaging dates back to the late 20th century. In 1996,
S. W. Wilkins et al. demonstrated phase contrast X-ray imaging with a polychro-
matic and confined source [12]. Lateral confinement of the optical field leads to
an increase in the lateral coherence length (which is inversely proportional to the
source size) and due to the magnifying cone beam geometry allows for high reso-
lution imaging basically independent of the detector resolution.
One year later, the concept of cone beam X-ray imaging with a one dimensional
X-ray waveguide was successfully performed by S. Lagomarsino et al. at the Eu-
ropean Synchrotron Radiation Facility (ESRF). The image quality was promising
enough that the authors already pointed out the possibility to reconstruct the ob-
ject’s transmission function by numerical algorithms [13].
In the year 2006, G. J. Williams et al. imaged a solid state test structure with
an X-ray beam of highly curved phase fronts. Focusing was performed by the
use of a Fresnel zone-plate [15]. In the focal plane, the beam was confined by an
order sorting aperture. A central stop prevented the zeroth order diffraction from
hitting the detector. The measured diffraction patterns include a Fresnel diffrac-
tion region in the center as well as intensity scattered to higher angles. Thus, the
primary beam decayed considerably within the field of view. This enabled a probe
reconstruction prior to phase retrieval of the object’s transmission function. The
probe was determined by the method of H. M. Quiney et al. – a technique that
allows reconstructing a highly focused beam by iterating between the pupil plane
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of the zone-plate, the focal plane and the detection plane [75]. Hence, two data
sets were needed – one that contained the Fresnel diffraction patterns and one that
contained independent recordings of the probe. After separate probe retrieval, an
error-reduction algorithm was used to reconstruct the complex valued object.
In the same year, magnifying cone beam off-axis holography with two dimensional
X-ray waveguides was demonstrated by C. Fuhse et al. [76]. Instead of an error
reduction scheme as in [15], here a single step holographic phase retrieval was per-
formed, using the approach of off-axis illumination to avoid twin image artifacts.
Apart from cone beam X-ray imaging that also records the decay of the illumi-
nation, X-ray diffraction in the optical near-field has been under investigation as
well. Here, the entire field of view of the detector is illuminated. Phase retrieval
based on the contrast transfer function and a series of images defocused to differ-
ent degrees was successfully applied and finally, in 1999, lead to the development
of holo-tomography by P. Cloetens et al. [10, 11].
In the following years, cone beam holography was further developed and in 2008,
the technique of keyhole coherent diffractive imaging [77] was invented. The setup
is basically the same as for Fresnel coherent diffractive imaging: A highly curved
X-ray beam, focused by a zone-plate is impinging on a sample. Effective near-field
diffraction, as well as scattering to higher angles is recorded by the detector. The
difference with the experiment published in [15] is that in [77] an extended test
structure was imaged by separate recordings of different regions of the sample.
These regions were reconstructed independently (error reduction with probe re-
trieval performed beforehand following the method of [75]) and finally composed
to a single image.
One year later, D. J. Vine et al. [78] published a method called ptychographic Fres-
nel coherent diffractive imaging. It is a combination of Fresnel coherent diffrac-
tive imaging and ptychography following the PIE method without probe retrieval.
Again, prior to reconstruction, phase retrieval for the probe is performed by the
algorithm of H. M. Quiney. The scattered field is determined by alternating pro-
jections using a support and a magnitude constraint. After that, the object’s
transmission function is calculated similarly as in the PIE method of J. M. Ro-
denburg and H. M. L. Faulkner [68,69].
In 2013, M. Stockmar et al. published near-field ptychography based on the differ-
ence map and – as in far-field ptychography – on exclusively lateral diversity [79]
and which finally was also extended to tomography [80]. The main differences with
the methods which were just described are that firstly, an illumination extending
over the entire field of view is used. With the primary beam covering the whole
active area of the detector, no higher angle scattering signal can be recorded.
The data consists of magnified Fresnel holograms. Secondly, probe retrieval is
performed simultaneously to the reconstruction of the object. However, phase re-
trieval did not work as well as for far-field ptychography: Reconstructions were
noisy. This noise was attributed to a lack of diversity in the data. By putting a
wave front diffusing material (i.e. a piece of paper) in the beam path upstream the
sample, the quality of the reconstructions could be considerably improved. Yet,
now, the information about the probe is lost: Instead of the pure, reconstructed
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X-ray beam, the deteriorated probe is useless for further analysis like beam char-
acterization.
This first real near-field ptychography attempt was mainly inspired by far-field
imaging techniques, where indeed diversity in the data is most efficiently gener-
ated by laterally shifting the sample through the beam. Yet, contrast and diversity
in near-field imaging mainly emerge from defocus translations of the sample as ap-
plied in electron microscopy and in holo-tomography [11].

(a) (b)

object

probe

detector (c)

for each lat. pos.

Figure 4.1: Near-field ptychography scheme. (a) An object is illuminated by an ex-
tended wave front. Intensities are recorded in the optical near-field/the holographic
regime. (b) A conventional ptychographic data set as for the far-field case. (c) In
addition, the object is translated to several positions along the optical axis. At each
lateral position of (b) a dataset as illustrated in (c) is recorded.

In 2011, the fact that longitudinal shifts help to enhance the quality of phase re-
trieval has also been detailed on by C. Putkunz et al. [81]: An increase in phase
resolution and a decrease in artifacts were observed . Translations of the sample
in all three dimensions of space are required. Phase retrieval was implemented by
adaption of the difference map scheme. However, despite the fact that in this work
the application of the difference map for simultaneous phase retrieval of object and
probe (see [71]) is cited it was not made use of the update of the probe as proposed
in [71]. As in [15, 77, 78], C. Putkunz et al. applied the phase retrieval algorithm
of H. M. Quiney et al. [75] to reconstruct the probe prior to the object. Note that
whereas the method of [75] for probe retrieval works for the special configuration
of a focused beam cleaned up by an order sorting aperture, it does not work for
reconstructing a full field illumination.

The main task of this thesis was to establish ptychography for the optical near-
field without the need of any wave front diffusing material or the recording of flat
fields, but with the integration of defocus variations of the sample in order to en-
hance diversity in the data. It will become clear that a full ptychographic data set
for the optical near-field does not only require lateral translations of the sample
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(as in the far-field case and in [79]), but also longitudinal translations along the
optical axis. In other words, in order to collect holograms with sufficient diversity,
a conventional ptychographic data set consisting of exclusively lateral shifts has
to be recorded at several positions along the optical axis (see Fig. 4.1).

4.2 Longitudinal diversity as a solution to the twin image
problem in near-field imaging

In section 2.5.2, it was deduced that Fresnel back propagation of an inline hologram
results in a mixture of a focused, sharp image and an out of focus complex conju-
gated image (the twin image), see Fig. 4.2(a) and equation 2.135. Assume that an
object is shifted only laterally in an extended, clean illumination. A hologram is
recorded and reconstructed by simple back propagation for every position of the
object. Each of the reconstructions will contain the same, but laterally shifted,
defocused twin image (Fig. 4.2(b)). When the reconstructions are superimposed
according to their lateral shifts S, the reconstructed twin features will superim-
pose in the same (correct) way as the reconstructed images (Fig. 4.2(c)). There
is no difference with a single and simple holographic reconstruction (Fig. 4.2(a)).
Further iterations will most likely stagnate at this solution.

(a) (b)

S(1)+S(2)+S(3)

1

2 3

holographic reconstruction

superposition of 
holographic 

reconstructions 1, 2, 3

laterally shifted 
holographic reconstruction for

one defocus distance

original original

image, valid solution
twin,    valid solution

image, valid solution
twin,    valid solution

(c)

Figure 4.2: Near-field twin image features spoiling the holographic reconstruction (a)
cannot be eliminated by lateral translations of an object (orange triangle) in a full-
field illumination (b). (c) Images and twin images will add up to correct solutions of
the magnitude constraint. Further iterations of phase retrieval will lead to stagnation.

If in contrast the distance between object and detector is alternated, holographic
reconstructions will show sharp objects superimposed by twin images defocused
to different degrees (Fig. 4.3). Adding up these reconstructions leads to a valid
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solution for the object. The superimposed twins, however, cannot be attributed
to a single distance (Fig. 4.3(b)). They are invalid solutions of the magnitude
constraint. Using this superposition as initial guess for further iterations of phase
retrieval, the respective algorithm will most likely converge to the image rather
than to a mixture of image and twin.

image, valid solution
twins,   invalid solution

1 2 3

1+2+3

superposition of 
holographic 

reconstructions 1, 2, 3

holographic reconstructions for
 different defocus distances

original

(a) (b)

Figure 4.3: Successful twin image elimination in the optical near-field. (a) Holographic
reconstructions for the object (orange triangle) at different longitudinal positions with
respect to the detector. (b) The superposition of the reconstructions sketched in (a)
will add up to a combination of a valid solution of the magnitude constraint and
a mixture of twin images defocused to different degrees, which does not fulfill the
magnitude constraint. Further iterations of phase retrieval will most likely favor the
image rather than a combination of image and twin.

From this analysis, a fundamental difference between the special needs of far- and
near-field ptychography becomes clear: In the near-field, it cannot be sufficient to
shift an object only perpendicular to the optical axis. Further translations along
the optical axis are required to accomplish the task of lateral shifts in far-field
ptychography, namely to eliminate twin image artifacts and to provide diversity
to the measured data.
If longitudinal diversity is of such importance for near-field imaging, what is the
purpose of lateral diversity in this context? We have shown that simultaneous
phase retrieval of an object and a non-uniform probe is not possible by exclusively
using on-axis shifts [82]. We will see that lateral translations of the object are im-
portant for a successful reconstruction of the probe – unperturbed by twin image
artifacts.

4.3 Constraints for near-field-ptychography
Near-field ptychographic phase retrieval allows including different constraints. In
general, three types of constraints are to be distinguished: (1) Constraints related
to the exit wave, (2) constraints related to the probe, (3) constraints related to
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the object. Most of these constraints can be formulated as projections onto sets of
functions fulfilling the imposed boundary conditions (see section 3.2.3). Finally,
the update of object and probe is formulated as a combination of all of these
constraints.
Due to the extended probe used for near-field ptychography and in contrast to far-
field ptychography, it makes more sense to talk about shifts of the object, rather
than to consider shifts of the probe. The object o(i) at lateral position i is

o(i)(r) = o(r + r(i)) , (4.307)

where r(i) is the vector pointing to the center of mass of the object at position i.
Shifts of an object from lateral position i to lateral position j will be expressed by

S(i→j)
(
o(i)(r)

)
= o(r + r(i) + (r(j) − r(i)))

= o(r + r(j)) = o(j)(r) . (4.308)

The shift operator S(i→j) shall always act on the transmission function of the
object – it shall not act on the probe, hence

ψ
(j)
j = S(i→j)

(
ψ

(i)
j

)
= S(i→j)

(
o(i)
)
pj . (4.309)

Constraints for the exit wave

Magnitude constraint for the exit wave
Most of the knowledge about object and probe is taken from the measured data. To
be more precise, the most important information is encoded in the recorded holo-
grams. The current iterate of the exit wave ψ(i)

j has to reproduce these holograms.
For this purpose the magnitude constraint PMnf (see also description related to
equation 3.279) for the optical near-field is used

PMnf(ψ
(i)
j ) = D−∆j,det

 D∆j,det(ψ
(i)
j )∣∣∣D∆j,det(ψ
(i)
j )
∣∣∣
√
I

(i)
j,det

 . (4.310)

As in the previous chapter, upper indices in brackets always denote lateral posi-
tions of the sample, lower indices always refer to the longitudinal position of the
sample. Consequently, ψ(i)

j is the exit wave with the sample at lateral position i
and longitudinal position j. The notation of the intensity I(i)

j,det has to be read as

intensity of ψ(i)
j recorded at fixed defocus position det.

Separability constraint for the exit wave
The exit wave function ψ(i)

j needs to be separable into the complex transmission
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function of the object at lateral position i and the complex wave field of the probe
at the specific defocus position j. To this end, the objective function

F :=
∑
x,y︸︷︷︸

pixels

∑
j︸︷︷︸

long. shifts

∑
i︸︷︷︸

lat. shifts

|ψ(i)
j (x, y)− ψ̂(i)

j (x, y)|2, (4.311)

where
ψ̂

(i)
j = ô(i)p̂j = S(1→i)

[
ô(1)
]
D∆1,j

[p̂1]

is minimized (see also [82]). Since F contains only absolute values, it is minimal
when each of its single summands f (i)

j is minimal. It suffices to minimize

f
(i)
j := |ψ(i)

j − ψ̂
(i)
j |

2 (4.312)

=
(
ψ

(i)
j − ô

(i)p̂j

)(
ψ

(i)
j − ô

(i)p̂j

)∗
(4.313)

= ψ
(i)
j ψ

(i)∗
j − ô(i)∗p̂∗jψ

(i)
j − ô

(i)p̂jψ
(i)∗
j + ô(i)p̂j ô

(i)∗p̂∗j . (4.314)

The function f (i)
j depends on ô(i) and p̂j . The point wise partial derivatives with

respect to these variables are set to zero:

∂f
(i)
j

∂ô(i)
= −p̂jψ(i)∗

j + |p̂j |2ô(i)∗ = 0 , (4.315)

∂f
(i)
j

∂p̂j
= −ô(i)ψ

(i)∗
j + |ô(i)|2p̂∗j = 0 . (4.316)

Solving equation 4.315 for ô(i) results in

ô(i) =
p̂∗jψ

(i)
j

|p̂j |2
. (4.317)

Solving equation 4.316 for p̂j leads to

p̂j =
ô(i)∗ψ

(i)
j

|ô(i)|2
. (4.318)

Equation (4.317) can be interpreted in an intuitive way:
Noting that |p̂j |2 = p̂j p̂

∗
j , the division by |p̂j |2 combined with the multiplication

with p̂∗j is similar to the division by p̂j . Assuming that ψ(i)
j can be formulated

as a product of object and probe, only the component referring to the object is
left. An analogous argumentation is possible for the evaluation of the probe by
equation (4.318).
Note that both ô(i) and p̂j should be non-zero in order to provide reasonable values
for equations 4.317 and 4.318. For near-field ptychography, in contrast to far-field
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ptychography, this can be guaranteed: Thin objects of high transmission and low
absorption in an extended wave field are considered. For this reason, the absolute
value of the object’s transmission function should be close to one. The absolute
value of p̂j is far from zero: The entire field of view of the detector is illuminated by
a partially coherent pj . Yet, if one would account for a probe covering only a finite
section of the detector and for an object that has regions of zero transmission, it
would be more accurate to describe equations 4.317 and 4.318 in a similar way as
shown in [73] by

ô(i) ≈ o(i) − λo
∂f

(i)
j

∂ô(i)
, (4.319)

p̂j ≈ pj − λp
∂f

(i)
j

∂p̂j
, (4.320)

where λo and λp are parameters that determine the step size in direction of the

negative gradients
∂f

(i)
j

∂ô(i) and
∂f

(i)
j

∂p̂j
.

Constraints for the object

Constraints which only affect the object can be deduced from pre-knowledge of
the sample without considering the measured holograms.

Phase object constraint
In most cases, due to the complex index of refraction with (δ � β), contrast
caused by phase shift dominates with respect to contrast caused by absorption.
This is in particular true for weakly absorbing materials like biological tissues. If
the sample is approximately transparent, a phase object constraint can be applied
which projects onto functions of uniform and full transmission:

PP (o(i)(r)) :=
o(i)

|o(i)|
. (4.321)

As deduced in section 3.4, the phase object constraint is related to a non-convex
set.

Amplitude constraint
A less restrictive version of equation 4.321 is the amplitude or transmission con-
straint (see section 3.4). It can also be applied for objects with arbitrary absorp-
tion. Transmission values larger than one are set to one, transmission values lower
than one are left unchanged. This procedure is similar to the method proposed
by T. Latychevskaia and H.-W. Fink [83] for solving the twin image problem.
However, assuming an object that extends over the entire field of view and that
consists of a combination of different materials, it makes more sense to correct
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transmission values that increase a certain value ε ≤ 1, because full transmission
might still be too large

PT (o(i)(r)) :=

{
o(i)(r) if |o(i)(r)| ≤ ε ,
ε o

(i)(r)
|o(i)(r)| else.

(4.322)

For example, ε can be set to the average transmission of the object. The opera-
tion performed by equation 4.322 suppresses features of the amplitude exceeding
a certain value ε. It is likely that these features result from interference of image
and twin. The underlying set of functions fulfilling the transmission constraint is
convex.

Negativitiy constraint
Thin objects illuminated by X-rays cause a negative phase shift. Positive phase
values can be set to zero (see 3.4).

PN (o(i)(r)) :=

{
o(i)(r) if arg(o(i)(r)) ≤ 0 ,
|o(x, y)| else. (4.323)

Automatic focusing
Since there is always uncertainty about the knowledge of the exact propagation
distances, tools for automatic adjustment are beneficial. The automatic focusing
algorithm used here is inspired by the method of P. Langehanenberg et al. [84].
The recorded hologram

√
Ij,det with the detector at distance ∆j,det is

Ij,det = |D∆j,det [ψj ] |2 = |D∆j,det [oj pj ] |2 .

Here the object oj(x, y) also gets an index j indicating its position z = zj along
the optical axis. Consider a uniform illumination pj(x, y) = I, i.e. ψj = oj . The
absolute value of the holographic reconstruction

oj̃(x, y) =
∣∣∣D−∆j̃,det

[Ij,det]
∣∣∣ (4.324)

with incorrect distance zj̃ = zj + δ is focused for the distance zj̃ where the loga-
rithmically weighted, accumulated Fourier spectrum

f(zj̃) =
∑
qx,qy

log
{

1 +
∣∣∣F [oj̃(x, y)

]∣∣∣} (4.325)

is minimal in case that the contrast due to phase shift dominates the contrast due
to absorption, or maximal in case that absorption contrast is more pronounced [84].
To find the minimum/maximum of f(zj̃), a climbing-search strategy [84] is used
(see Fig. 4.4).
This procedure is similar to manually adjusting a microscope. At first, the sample-
detector distance is changed using a coarse step size ∆z(1). The position where
the sample appears focused is determined. After that, the sample is translated
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Figure 4.4: Illustration of the climbing search strategy.

again with respect to the detector. This time a smaller step size ∆z(2) is used and
the position of the object is further refined.
The climbing-search strategy does essentially the same: In a first step, f(zj̃) is
calculated for values of zj̃ in a large interval around an initial guess z′

j̃
. For this

purpose, a coarse step size ∆z(1) is used. The minimum (maximum) of f(zj̃)
within this interval is determined and a refined distance z′′

j̃
is found. Next, f(zj̃)

is minimized (maximized) for values within a narrower interval around z′′
j̃
. This

time, a finer step size ∆z(2) is chosen. The minimum of f(zj̃) within this narrow
interval is determined. The process is iterated until the minimum (maximum) of
f(zj̃) is found up to a desired precision.
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Figure 4.5: Application of automatic focusing prior to reconstruction (a) and during
phase retrieval (b). (a) The recorded holograms are back propagated to different
distances zj̃ around an initial position at z′

j̃
. Equation 4.325 is evaluated and its

minimum (maximum) is determined. A refined distance is found. (b) The transmis-
sion function is propagated over a (probably wrong) distance. It is back propagated
to several positions around its starting point. Equation 4.325 is evaluated and an
updated position of the sample is found at the minimum/maximum of f .

The automatic focusing procedure can be applied to the recorded holograms and
to the reconstructed, defocused transmission function of the object in iteration
i. Before phase retrieval, distances are roughly determined with the help of the
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recorded (and if possible for this purpose filtered and flat field corrected) holograms
(see Fig. 4.5(a)). These distances are used for the first few iterations of phase
retrieval.
It is the magnitude constraint, which requires information about the propagation
distances. Since by this constraint the reconstructed intensities are replaced by
the measured ones, the intensity of the defocused object at the detector should
be correct. This does not yet mean that the absolute position where the object
should be focused is correct, too. For this reason, the sample-detector distance is
further refined during phase retrieval starting from the defocused, current iterate
of the transmission function in the detection plane (see Fig. 4.5(b)).

Constraints for the probe

The probe is the most uncertain part; we almost have no knowledge about what
constraints the probe despite the average number of photons and eventually a
measured flat field. The following options to constrain the probe can be applied, if
at least one measured flat field is available. (1) The number of photons can be ad-
justed by scaling the total reconstructed intensity to the intensity of the flat field.
(2) Using the flat field, the magnitude projection can be applied to the probe.
(3) Having access to two flat fields at different positions along the optical axis, a
Gerchberg-Saxtion step can be used to correct the reconstructed illumination.

Adjustment of total flux
Adjustment of the flux is done by

Fad(|p1(x, y)|2) =

(∑
x,y

Iflat(x, y)

)
· |p1(x, y)|2∑

x,y p1(x, y)p∗1(x, y)
, (4.326)

where Iflat is the measured flat field.

Magnitude constraint for the probe
Similar to the magnitude constraint for the exit surface wave, a magnitude con-
straint can be formulated that adapts the reconstructed flat field to the measured
one – provided that a flat field has been recorded:

PMflat(p1) = D−∆1,det

[ D∆1,det(p1)

|D∆1,det(p1)|
√
Iflat

]
. (4.327)

Here, the total intensity is automatically adjusted.

Gerchberg-Saxton step
A Gerchberg-Saxton step can be performed, if flat fields at two different positions
along the optical axis are available. It corrects the reconstructed intensities of the
probe at two different defocus distances

GS(p1) = PMflat2

[
PMflat1

(p1)
]
. (4.328)
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In experiments at synchrotron beamlines, it is often not possible or not foreseen
to shift the detector along the optical axis. In general, the detector is translated
under a certain angle with respect to the beam path. Additional alignment of the
flat fields – one with respect to the other and with respect to all of the measured
holograms – has to be performed before phase retrieval. For this reason, the
recording and usage of two flat fields at different positions is not favored.

Additional tools to improve reconstructions

Low pass filter
In case of a strongly aberrated probe that contains features of high frequency, it
is helpful to filter the reconstructed object during the first iterations and thereby
to force high frequencies to merge into the probe. Low pass filtering is done in
Fourier space by multiplication with a Gaussian function g(qx, qy) of adjustable
full width at half maximum of 2

√
2 ln2 σ.

LP
[
o

(i)
j

]
= F−1

[
F
(
o

(i)
j

)
· g(qx, qy)

]
, (4.329)

where

g(qx, qy) := exp

(
−
q2
x + q2

y

2σ2
k

)
. (4.330)

The parameter σk depends on the current iteration k

σk = σ · k . (4.331)

It is linearly increased during phase retrieval. Hence, filtering is gradually relaxed
and finally switched off completely.

Linear blending
The technique of linear blending is used to prevent artificial edges that result from
the recombination of the current iterate of the object, which shows a single part
of the object, and the previous guess, which shows the entire object. The method
is commonly found in software designed for image processing.
Two images A (for example the photograph shown in Fig. 4.6(a), left part) and B
(for example the photograph shown in Fig. 4.6(b), left part) are linearly blended
into each other by the following procedure: (1) The mean absolute value A of
image A is adjusted to the mean absolute value B of image B. (2) The adjusted
image A is multiplied by an inverse truncated pyramid mask (1− γ) which is zero
within its central region and linearly increasing towards the edges, where it is one
(Fig. 4.6(a), right part and Fig. 4.6(c)). Image B is multiplied by a truncated
pyramid mask γ which is one within its central region and linearly decaying to-
wards the edges, where it is zero (Fig. 4.6(b), right part and Fig. 4.6(d)). Finally,
both masked images are added

C = (1− γ)
[
A+ (B −A)

]
+ γB . (4.332)
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Figure 4.6: Illustration of linear blending. (a) Image A and inverse, truncated pyramid
mask (1 − γ). (b) Image B and truncated pyramid mask γ. (c) Image A multiplied
by (1− γ). (d) Image B multiplied by γ. (e) Result: sum of (c) and (d).

The resulting image C does not show sharp edges as a consequence of the combi-
nation of A and B (Fig. 4.6(e)). The steepness of the truncated pyramid mask γ
has to be chosen such that the transition between A and B appears quite natural
and smooth.

4.4 Implementation of near-field ptychography
The implementation of near-field ptychography follows the ePIE scheme proposed
in [74]. The combination of the techniques introduced in this chapter in an appro-
priate way results in an algorithm for near-field ptychography which was designed
and implemented in the scope of this work.

For k = 1 : it, where it is the number of iterations,
for n(i, j) = 1 : m where m is the number of recorded holograms,

choose (i, j) ∈ [(1, 1), (1, 2), ..., (2, 1), (2, 2), ...︸ ︷︷ ︸
m pairs of (i,j)

].

Calculate the exit surface wave:

ψ
(i),n
j = o(i),n pnj = D∆1,j

[pn1 ] S(1→i)
[
o(1),n

]
. (4.333)
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Separate object and probe:

p̃1
n+1 = Fad

[
pn1 + αD−∆1,j

[(PMnf

[
ψ

(i),n
j

]
− ψ(i),n

j

)
S(1→i) [o(1),n

]∗
|S(1→i)

[
o(1),n

]
|2

]]
,

(4.334)
and

õ(1),n+1 = PX

{
LP
[

˜̃o(1),n+1

]}
, (4.335)

where

˜̃o(1),n+1 = S(i→1)

[
S(1→i)

[
o(1),n

]
+ β

(
PMnf

[
ψ

(i),n
j

]
− ψ(i),n

j

)
D∆1,j

[
p̃1
n+1
]∗

|D∆1,j

[
p̃1
n+1
]
|2︸ ︷︷ ︸

summed by linear blending

]

(4.336)
and where

LP =

{
LP for 1 ≤ k ≤ a
Id else, (4.337)

and where further constraints are

PX =



Id
PT for b ≤ k ≤ c
PP for b ≤ k ≤ c
PN for b ≤ k ≤ c
PN PT for b ≤ k ≤ c
PN PP for b ≤ k ≤ c .

(4.338)

Finally, automatic focusing can be applied

õ(1),n+1 automatic focusing
−−−−−−−−−−−−−−→

o(1),n+1 , (4.339)

and different constraints for the probe can be used

pn+1
1 = PY

[
p̃1
n+1
]
, (4.340)

where

PY =

 GS
PMflat

Id.
(4.341)

The relaxation parameters α and β can be changed during the reconstruction. The
advantage is that in the first iterations, the reconstruction of either the object or
the probe can be favored while the other one is kept almost constant. In fact,
addressing special weight to the reconstruction of the object at the beginning has
turned out to speed up convergence to reasonable solutions.
In cone beam X-ray microscopy, bringing the sample close to the focus provides
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an increase in resolution. For this reason it could be of interest to attribute
more influence to the reconstructions with finest pixel size. To this end, the
reconstructed object resulting from the plane closest to the focus can be favored
by a larger value of β.
The thresholds a, b and c for switching additional constraints on and off can be
chosen independently for each constraint. It helps to highly constrain the system
for the first iterations and relax or turn down the additional boundary conditions
for succeeding iterations.
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Figure 4.7: Sketch of one global iteration k of the near-field ptychography algorithm.

Figure 4.7 (see also [85]) visualizes the technical concept of near-field ptychogra-
phy, and especially its differences and similarities with respect to the ePIE method
(see also Fig. 3.15). One global iteration k is shown, which consists of subiterations
n that address the single holograms.
Each subiteration contains the following four steps: (1) The guessed exit wave ψ(i)

j

is calculated by multiplication of o and p. (2) The magnitude constraint is applied
to the exit wave. This results in a modified exit wave PMnf

[
ψ

(i),n
j

]
. (3) Next, ψ(i)

j

and PMnf

[
ψ

(i),n
j

]
are required to calculate an update of p. (4) Finally, the new p,

ψ
(i)
j and PMnf

[
ψ

(i),n
j

]
are used for the update of o.

The main differences with the classical ePIE scheme are: First, the separation of
object and probe is obtained from division by |S(1→i) [o(1),n

]
|2 and division by

|D∆1,j

[
pn+1

1

]
|2. In a formulation identical to the ePIE, it should be a division

by max
(
|S(1→i) [o(1),n

]
|2
)
and max

(
|D∆1,j

[
pn+1

1

]
|2
)
, respectively (see equations

3.304 and 3.305).
Second, the updates of probe and object are intertwined with each other, which
is not the case for the ePIE, where the newly calculated probe is not used for the
update of the object within the same sub-iteration (see Fig. 3.15).

4.5 Pre-processing of the recorded holograms
Before starting phase retrieval, there are some important pre-processing steps to
do, namely (1) averaging and dark-field correction of the recorded images, (2) re-
finement of distances by automatic focusing, (3) re-ordering of the measured data,
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(4) determination of shifts by sub-pixel image registration [86].
If a dark-field is available, every hologram is corrected by subtraction of the dark
current. In addition, to reduce noise, several redundant holograms can be aver-
aged.
Since the distances between sample and detector (for each defocus position) are
always affected by errors, it helps to apply the automatic focusing procedure in-
troduced in section 4.3 to the measured holograms and thereby to refine the ex-
perimentally determined distances.
A crucial step in pre-processing is the precise calculation of lateral and longitudi-
nal shifts in sub-pixel precision.
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Figure 4.8: (a) Lateral alignment. Shifts in (x,y) (dotted arrows) between the different
lateral positions are calculated for each plane. (b) Longitudinal alignment. Shifts in
(x,y) between the different defocus positions are determined.

Relative shifts of the holograms are extracted from the measured data by using the
image registration technique of M. Guizar-Sicairos et al. [86] for sub-pixel align-
ment.
Lateral shifts are always calculated with respect to the first, stored image of a
lateral scan (see Fig. 4.8(a)). Longitudinal alignment is performed with respect to
the object found at the largest distance of sample and detector (see Fig. 4.8(b)).
While longitudinal alignment due to a considerable large amount of overlap is not
difficult, lateral alignment can be challenging whenever not all of the recorded
holograms overlap. This is illustrated in Fig. 4.9: The first image (Arabic index
(1)) does not overlap with the last image (Arabic index (9)) of the lateral scan.
Yet, the central image (Arabic index (5)) overlaps with each and every image of
the scan. The re-arrangement of the holograms in a spiral order (following the Ro-
man numbers and arrows) guarantees that the first, stored image (Roman index
(I)) overlaps with every other image.
Proper alignment is the most crucial step in data pre-processing. There are two
options implemented to perform this task. The optimal method has to be chosen
regarding the measured data and/or the properties of the sample.
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Figure 4.9: Images (1) to (9) are created by shifting a sample horizontally and vertically.
Image (1) has no overlap with image (9). However, the central image (Arabic index
(5)) overlaps with all of the images (1)-(9). When calculating transversal shifts, it is
advantageous to store the images according to the roman indices. This guarantees
that for all images shifts can be calculated with respect to the central image.

(1) It is possible to align the holograms for each lateral scan with respect to the
first, stored hologram.
(2) Another option is to align the holographic reconstructions of the raw data us-
ing either the reconstructed phases (recommended procedure for phase objects),
or the reconstructed amplitudes (recommended for mainly absorbing objects).
Both options allow to pre-filter the raw data before alignment by application of a
mask in Fourier space, that needs to be specially designed for each experiment.
If a flat field is available, the holograms are flat field corrected before alignment
(but, of course, not again before phase retrieval). Flat field correction combined
with Fourier space filtering can considerable facilitate alignment.

4.6 Modification of near-field ptychography for cone beam
geometry

As detailed in section 2.3.3 and section 2.4, curved wave fronts enable the recording
of magnified holograms. This overcomes limitations imposed by the physical pixel
size of the detector. Next, the near-field ptychography algorithm shall be adapted
to cone beam geometry (see also supplemental material of [85]). In section 2.3.3,
it was deduced that propagation of a cone beam is equivalent to propagation of a
magnified plane wave.
Let ψ1 be a modulated plane wave at distance ∆f,1 with complex amplitude A

ψ1(x, y) = A exp (ik∆f,1) . (4.342)
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Figure 4.10: (a) Near-field ptychography setup for parallel beam geometry. (b) Near-
field ptychography setup for magnifying cone beam geometry.

A respective cone beam illumination in paraxial approximation at distance ∆f,1

behind the focus is then described by

ψSW(x, y, z = ∆f,1) = ψ1(x, y) exp

[
ik

2∆f,1

�
x2 + y2

)]
. (4.343)

Propagation of ψSW using equation 2.45 is performed by magnification of ψ1 by a
factor of

M =
∆f,1 + ∆1,det

∆f,1
. (4.344)

The propagation distance has to be transformed as well, resulting in an effective
length

zeff =
∆1,det

M
, (4.345)

where ∆1,det is the distance from plane 1 to the detector.
Cone beam near-field ptychography requires transformation of both, object and
probe to effective geometry. The exit wave has to be propagated from any defocus
plane to the detector. Each distance corresponds to a different magnification. Fur-
thermore, the probe has to be propagated between the different defocus positions.
In fact, it is necessary to consider two settings: one for the exit wave, i.e. the
product of object and probe and one for the probe. This is depicted in Fig. 4.11,
which illustrates effective propagation of (a) the exit wave, and (b) the probe.

The magnification of the object (or equivalently the exit wave)M (n)
o is determined

by the distance of the object at longitudinal position n with respect to the focus
(∆f,1 + ∆1,n) and the distance between focus and detector (∆f,1 + ∆1,det)

M (n)
o =

∆f,1 + ∆1,det

∆f,1 + ∆1,n
. (4.346)
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Figure 4.11: (a) Effective geometry for propagation of the exit wave. (b) Effective
geometry for propagation of the probe.

With this information at hand, effective pixel sizes and effective propagation dis-
tances for the exit wave can be calculated by

d
(n)
eff,o =

δ

M
(n)
o

and z
(n)
eff,o =

∆1,det �∆1,n

M
(n)
o

, (4.347)

where δ is the physical pixel size of the detector. According to Fig. 4.11(b), the
propagation of the probe requires the magnification M (n)

p

M (n)
p =

∆f,1 + ∆1,n

∆f,1
. (4.348)

Effective pixel sizes and propagation distances become

d
(n)
eff,p =

δ

M
(n)
p

and z
(n)
eff,p =

∆1,n

M
(n)
p

. (4.349)

The product of both magnifications – M
(n)
o and M

(n)
p – is constant for every

position n
M (n)
p ·M (n)

o = max
[
M (n)
o

]
= const. (4.350)

This illustrates that a step wise effective propagation from one plane to the next
and then to the detector results in the same magnification as a one-step propa-
gation directly to the detector.
When further examining the effective propagation of the probe, one can observe
that the effective field of view N

(n)
x ·d(n)

x,eff,p×N
(n)
y ·d(n)

y,eff,p (yellow parts in Fig. 4.12)
is constant for each defocus plane. The detector is always at constant distance
∆1,det with respect to the focus. In this configuration, there is no way to access
information about the regions outside the effective field of view (gray regions in
Fig. 4.12).
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Figure 4.12: For each longitudinal position n, the effective field of view (yellow) is
constant. Propagation of the probe in effective geometry from plane 1 to plane n
requires larger pixel size and coarser sampling than propagation from plane 1 to the
stationary detector. Decreasing and increasing of the resolution is avoided by using
a scaling factor s(n). The probe is always propagated with highest resolution d(1)eff,o,
keeping the number of pixels as well as the effective field of view constant.

The effective pixel size of the probe decreases for defocus positions closer to the
detector. To keep the effective field of view constant, the number of pixels, carrying
information has to increase (see lower part of Fig. 4.12).
Following these insights, one can think of two ways to propagate the probe from
plane 1 to plane n using effective geometry: (1) In plane 1 the complex valued
field of the probe is of highest resolution, i.e. of smallest effective pixel size. For
propagation from plane 1 to plane n > 1 the resolution of the probe has to be
decreased to d(n)

eff,p < d
(1)
eff,o. Starting from plane n for propagation to the detector,

the resolution has to be increased again. Interpolation and binning of the probe
is always accompanied by a loss of information and requires computation time.
(2) A more efficient technique is to keep the number of pixels with information
content constant. This is equal to scaling the effective pixel size of the probe

d̃
(n)
eff,p = d

(n)
eff,p · s

(n) (4.351)

by the factor

s(n) =
M

(n)
p

max
[
M

(n)
o

] . (4.352)

No interpolation or reduction of the probe is necessary. Instead, the probe is
assumed to be available at highest possible resolution d(1)

eff,o in each defocus plane.
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4.7 A study based on simulations for a parallel beam setup
Before turning to experimental realization of near-field ptychography, a prelimi-
nary study is presented in this section. The following issues are addressed: (1)
Which artifacts do typically occur in the reconstructions? (2) What is the main
purpose of longitudinal diversity? (3) What kind of information is added by lateral
diversity?

Table 4.1: Parameters for the simulations. Fresnel numbers F10 = a2/zλ are defined by
a characteristic structure of a = 10δ, where δ is the pixel size and λ is the wavelength.

wavelength [nm] 0.1
pixel size [µm] 0.1
number of pixels 1024× 1024
F10 0.10, 0.11, 0.14, 0.33
# holograms 64 (4 defocus planes, 16 lat. positions)

To answer these questions, different simulations were carried out using the same
values for wavelength, pixel size, and the same size of the field of view (see Table
4.1). The simulated holograms (examples depicted in Fig. 4.13) are free of noise
such that artifacts in the reconstruction can be attributed to the phase retrieval
algorithm rather than to the influence of noise. Oversampling of the Fresnel-
propagator (see equation 2.45 and section 3.1) was fulfilled for each propagation
distance. The essential difference between the three types of simulations is the
choice of object and probe.

4.7.1 A first proof of principle

To determine the characteristics and the extent of errors in the reconstructions,
an artificial case was studied: a probe consisting of two different photographs (one
for the amplitude and one for the phase) as well as an object modeled by two other
photographs for amplitude and phase. Figure 4.14(a) shows the modeled object in
amplitude a (first picture from left) and phase p (second picture from left), as well
as the modeled probe in amplitude (second picture from right) and phase (first
picture from right).
The artificial object was shifted to four positions along the optical axis with Fresnel
numbers (calculated for 10 pixels) of 0.10, 0.11, 0.14, 0.33. A lateral scan (four
by four scan points) was simulated at each of these longitudinal positions. In total
64 simulated holograms were used for phase retrieval. The step size for the lateral
scans was set to 50 pixels in horizontal and vertical direction. Fig. 4.13(a) depicts
one of the artificial holograms as an example.
Phase retrieval was initialized with a uniform amplitude distribution and zero
phase (both for object and probe). No other constraints than the magnitude con-
straint and the separation of object and probe were used. During the first iteration
the update of the probe was almost kept constant (α = 0.01) and the update of
the object was performed with β = 0.3. After the first iteration both relaxation
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Figure 4.13: Intensity (a.u.) of simulated holograms for object and probe modeled
by four different photographs (a); the object modeled by a structure forming the
logo ‘GAU’ and a clean probe (softly decaying amplitude and zero phases) (b); the
object modeled by the ‘GAU’ structure (stronger contrast than in (b)) and the probe
modulated by a second structure (‘IRP’-logo) of equal contrast as used for the object
(c). Scale bars denote 20 µm.
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Figure 4.14: (a) Models for object and probe in amplitude and phase. (b) Recon-
structed object and probe. (c) Difference between the images shown in (a) and (b).
Global modulations of contrast as well as local artifacts at the limits of the field of
view and in low frequency regions of the amplitudes become visible.

parameters were set to 0.39. After 40 iterations the algorithm was terminated;

9 These are typical values for α and β which were chosen for most of the presented reconstruc-
tions. However, appropriate values have to be found by trial and error for each data set
independently.



Near-field ptychography: Theory, implementation, simulations 105

reconstructions of object and probe are depicted in Fig. 4.14(b).
A first inspection reveals that – despite some differences in contrast – the results
for object and probe mirror the originals quite well. Even small details in the
probe are found correctly.
However, by closer examination of the object’s amplitude, it turns out that espe-
cially in regions of low spatial frequencies and hence less structure, sharp compo-
nents of the reconstructed phases become visible (for example in the upper right
corner). This might be induced by numerical artifacts which occur when perform-
ing propagation of artificially extended wave fronts. Even though the near-field
propagator was oversampled for each distance, and thus extension of the field of
view would not have been necessary, it turns out that enlarging the field of view
for propagation reduces in particular disturbances at the edges of the reconstruc-
tions. Here, still some of these named edge effects are visible in the corners of the
reconstructed amplitude of the probe.
In addition to these local errors, global differences between the originals and the
reconstructions become visible when subtracting the images shown in Fig. 4.14(b)
from those shown in Fig. 4.14(a). The differences in contrast are either a low fre-
quency background consisting of an approximately linear gradient that modulates
the reconstructions, or a more complex background that in particular reduces the
contrast between extended neighboring and nearly homogeneous regions of differ-
ent gray values.
While imprints of the phases in the amplitudes are problems that are very un-
likely to negatively influence the reconstructions of physical objects (edges in the
amplitude will also occur as edges in the phase – simply by the nature of physical
objects), the reasons for global modulations in contrast and techniques to suppress
them have to be studied in future work.
Another way to judge the performance of an algorithm is to calculate the mean
squared contrast gap Gf of amplitude and phase of object and probe within one
sub-iteration n

Gnf =

√
1

M ·N
∑
x,y

(fn−1(x, y)− fn(x, y))
2
, (4.353)

where fn is either |on|, arg (on), |pn1 | or arg (pn1 ) and M,N are the numbers of
pixels in horizontal/vertical direction. In addition, the mean squared error En in

iteration n between the reconstructed hologram
√
Ĩ

(i),n
j,det(x, y) and the measured

hologram
√
I

(i)
j,det(x, y) can be calculated

En =

√√√√ 1

M ·N
∑
x,y

(√
Ĩ

(i),n
j,det(x, y)−

√
I

(i)
j,det(x, y)

)2

. (4.354)

The error metric En is evaluated each time when the magnitude constraint is
applied; Gnf is calculated each time when object and probe are updated. This
means, within one global iteration k, En and Gnf are determined m times, where
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Figure 4.15: (a) Mean squared error of the reconstructed holograms with respect to
measured/simulated holograms. (b) Mean squared change of |on|. (c) Mean squared
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arg (pn1 ).

m is the number of recorded holograms (see also the sketch of the algorithm in
Fig. 4.7).
The values of En and Gnf for the reconstructions shown in Fig. 4.14 are depicted
in Fig. 4.15. The blue dots indicate the respective En or Gnf , whereas the red lines
are the average value of En or Gnf within one global iteration k. By observing
En (Fig. 4.15(a)), it can be seen that while during sub-iterations n the differences
with the measured data fluctuate, the mean fluctuations (red line in Fig. 4.15(a))
of the respective global iterations k decrease. The same statement can be given
regarding the mean squared change of |on|, arg (on), |pn1 | and arg (pn1 ) shown in
Fig. 4.15(b)-(e). The jumps in Fig. 4.15(d) and (e) after the second iteration reflect
the change of α – the relaxation parameter for the update of the probe.
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4.7.2 Clean illumination

Whereas the simulation presented in the previous section reveals numerical dif-
ficulties, in the following, more realistic simulations were performed to illustrate
challenges based on physical non-uniqueness - such as the elimination of twin im-
age features. For this purpose an object with refractive index n = 1−δ+iβ (where
β = 1 · 10−6, δ = 1 · 10−5) and 0.2 µm thickness was simulated (see Fig. 4.16(a),
images on the left hand side). It was exposed to a basically uniform probe with
a Gaussian amplitude profile (amplitude values varying from 6.3 to 5.9) and zero
phase (see Fig. 4.16(a), images on the right hand side). Wavelength, field of view
and Fresnel numbers are listed in Table 4.1 and are identical to those of the pre-
vious simulation. Same is true for the initialization of phase retrieval. To save
computation time, the artificial holograms were binned by a factor of two10. The
lateral step size covered 20 binned pixels in horizontal and vertical direction. The
reconstructions after 35 iterations are depicted in Fig. 4.16(b).
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Figure 4.16: a) Models for object and clean probe with uniform, flat phases. (b)
Reconstructed object and probe. Scale bars denote 20 µm.

The reconstructed object appears sharp and clean. Concerning the reconstructed
amplitudes, the difference in contrast between dark and light regions can be suf-
ficiently reproduced. Yet, especially the phases show a considerable enhancement
of contrast around dominant edges. Finer structures are less affected by this phe-
nomenon. Up to a global phase shift and a loss in contrast, the phases of the object
can be found reliably. The reconstructed probe reveals some modulations in am-
plitude and phase which can be attributed to propagation as well as to separation
of object and probe. However, these modulations are weak enough such that they
basically do not contribute and the reconstruction of the probe was successful.
In chapter 4.2 it was demonstrated that near-field ptychography using an extended
illumination requires a different strategy to reduce and eliminate twin image ar-
tifacts spoiling the reconstruction of the object. It was graphically motivated in
10Note that binning by a factor of two reduces the total number of pixels to 512× 512. Fresnel
numbers over 10 (binned) pixels are [0.40, 0.44, 0.56, 1.32].
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Figure 4.17: The reconstructed object is propagated to its twin image plane. Phase
retrieval has been successful, if a defocused object becomes visible. Phase retrieval
has failed to eliminate the twin image, if a sharp complex conjugated image of the
object appears.

Fig. 4.2 and 4.3 that by using holograms with exclusively lateral diversity, twin
image features will be combined in a functional way, whereas by using holograms
with longitudinal diversity, differently defocused twin images will add up such that
no single distance can be addressed to the resulting defocused components in the
reconstructed object. Further iterations of phase retrieval will favor the image in-
stead of its twin. To strengthen this statement, nine simulations were performed,
each with a different amount of lateral and longitudinal diversity.
The reconstructed objects were defocused by twice the sample-detector distance,
i.e. they were propagated to the twin image plane. Figure 4.17 illustrates that in
the twin image plane we expect to either observe the phases of the properly defo-
cused object, or the phases of the complex conjugated, focused object. In the first
case, phase retrieval has successfully eliminated twin image components. In the
second case, phase retrieval has not been able to reconstruct the object without
its twin.
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Figure 4.18: Illustration of the importance of longitudinal diversity for near-field imag-
ing. (a) Phases of the reconstructed objects in clean illumination using holograms of
different amount of lateral and longitudinal diversity. (b) Phases of (a) in the twin
image plane. Scale bars denote 20 µm.

Fig. 4.18 summarizes the following results:
(1) In case of an extended, clean illumination covering the whole object, lateral di-
versity does not enhance the quality of the reconstructed object. No differences can
be noticed when comparing the simple holographic reconstruction (Fig. 4.18,(a)
one lateral, one longitudinal position) with reconstructions based on exclusively
lateral diversity (Fig. 4.18(a), 9 and 16 lateral, one longitudinal position).
(2) To demonstrate that the unwanted artifacts in the reconstructed object are in-
deed features resulting from the twin image, Fig. 4.18(b) depicts the propagation
of the objects shown in (a) to the twin image plane at twice the sample-detector
distance. If the complex conjugated of (a) is visible in (b), the blurred components
of (a) belong to the virtual image (sharp in (b)). This behavior is distinctly visible
for reconstructions based on holograms with exclusively lateral diversity.
(3) Adding longitudinal diversity to the holograms almost instantaneously reduces
twin image components and the propagation of the reconstructed object to the
conjugated plane does not contain sharp complex conjugated features anymore.
(4) Further increase of (lateral and longitudinal) diversity increases the contrast
of the reconstructions, but on the other hand, it slows down computation.

To complete the above discussion, the change of arg
(
o(n)

)
for the nine simula-

tions with different lateral and longitudinal diversity is presented in Fig. 4.19.
Whereas the increase of lateral diversity leads to stagnation of phase retrieval,
longitudinal diversity contributes to larger changes of arg

(
o(n)

)
in successive iter-

ations. As in Fig. 4.15, the red line describes the mean change within one global
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Figure 4.19: Mean squared change of arg(o) for simulations with different amount of
lateral and longitudinal diversity.

iteration containing m sub-iterations, where m is the total number of lateral and
longitudinal scan points11.
In Fig. 4.18, it can be seen that the quality of the reconstructed object obtained
from holograms with only longitudinal diversity is already satisfying. Under these
circumstances, what is the purpose of lateral diversity for near-field imaging?
One answer is that it considerably improves the quality of the reconstructed probe.
This is laid out in Fig. 4.20: Whereas the separation of object and probe does not
work for a single hologram or holograms of only longitudinal diversity (left hand
side in Fig. 4.20(a) and (b)) [82], it works very well for holograms containing lat-
eral diversity and a mixture of lateral and longitudinal diversity (right hand side
in Fig. 4.20(a) and (b)).
Summarizing these insights, it requires lateral diversity to reconstruct the probe
and longitudinal diversity to reconstruct the object.
Still, the analysis based on the visualization of the twin image could be contestable:
The amount of holograms and consequently the amount of diversity that entered
the simulations with exclusively lateral diversity (16 lateral positions, i.e. 16 holo-
grams or 9 lateral positions and 9 holograms) is much less than the amount of

11Note that a very smooth curve of Gnf (or En) does not forcibly indicate reconstructions of
better quality.
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Figure 4.20: Illustration of the purpose of lateral diversity. (a) Amplitudes of the recon-
structed clean probe using holograms of different amount of lateral and longitudinal
diversity. (b) Phases of the reconstructed clean probe using holograms of different
amount of lateral and longitudinal diversity. Scale bars denote 20 µm.

holograms (64 in total) used for the most successful simulation where lateral and
longitudinal diversity were combined.
It is possible to argue that once the total amount of holograms containing no matter
what kind of diversity is the same, exclusively lateral diversity should lead to the
same results as longitudinal and lateral diversity together. Yet, this is not the case:
An additional simulation was carried out with 64 artificial holograms, all with only
lateral diversity. The lateral step size was set to 10 (binned) pixels, while the whole
field of view consisted of 512× 512 (binned) pixels. The reconstructions obtained
from this simulations are directly comparable to the reconstructions obtained from
the simulation based on 16 lateral scan points (step size of 20 (binned) pixels) for
each of the four defocus positions. Results are depicted in Fig. 4.21 which shows
(a) the reconstructions from data using 64 holograms that contain exclusively lat-
eral diversity and (b) the results of reconstructions from 64 holograms of mixed
lateral and longitudinal diversity. Again, the superiority of near-field ptychogra-
phy using lateral and longitudinal shifts over near-field ptychography relying only
on lateral diversity is clearly emphasized.
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Figure 4.21: Simulations with 64 holograms in total. (a) Near-field ptychography
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4.7.3 Modulated illumination

In reality, the probe is never perfectly clean. It was observed in [79] that a strongly
structured probe enhances the quality of the reconstructed object. In the follow-
ing, this behavior shall be motivated and additional insights will be given.
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 Figure 4.22: a) Models for object and modulated probe. (b) Reconstructed object and
probe. Scale bars denote 20 µm.

The simulated object (Fig. 4.22(a), first two images from the left) is assumed to
have a refractive index of n = 1 − δ + iβ (where β = 1 · 10−6, δ = 1 · 10−5) and
1 µm thickness. The probe (essentially the same as in chapter 4.7.2) was modu-
lated by a second structure of identical refractive index and also 1 µm thickness
(see Fig. 4.22(a), first two images from the right). Distances and further parame-
ters were chosen as in section 4.7.2 (see Table 4.1) for the binned configuration. An
example of a hologram is depicted in Fig. 4.13(c). Besides the modulus projection
for the exit wave and the separation of object and probe, no further constraints
were used for phase retrieval.
Figure 4.22(b) displays the reconstructions after 35 iterations of near-field ptycho-
graphy. The conclusions which were obtained by studying the clean beam setup
and which are related to the overall contrast of the object are equally true for the
simulation with modulated probe. The amplitude of the reconstructed probe dis-
plays stripes (probably an artifact of propagation of a limited field of view and of
the use of several lateral shift operations). The reconstructed phase of the probe is
of slightly reduced contrast but shows an enhancement of contrast around edges.
Besides this, both, the reconstructed amplitude and the reconstructed phase of
the probe are free of artifacts.
Like in the previous section, the significance of lateral and longitudinal diver-

sity is illustrated by comparing nine reconstructions that differ by the amount
of holograms which were used for phase retrieval. The reconstructions of object
and modulated probe are propagated to their respective twin image planes. A
reasonable solution for object and probe is obtained, if in these twin image planes,
properly defocused images are visible (see Fig. 4.23).
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Figure 4.24: Illustration of the importance of longitudinal diversity under the influence
of a modulated probe for near-field imaging. (a) Phases of the reconstructed objects
using holograms of different amount of lateral and longitudinal diversity. (b) Phases
of (a) in the twin image plane. Scale bars denote 20 µm.

In agreement with [79], we find that if the holograms used for phase retrieval
contain only lateral diversity, and if the probe is considerably modulated, an im-
proved quality of the reconstructed object can be observed (see Fig. 4.24(a), sev-
eral lateral positions, one longitudinal position). However, as it can be seen in
Fig. 4.24(b) (several lateral positions, one longitudinal position), some twin image
details, especially in finely structured regions are still visible. In accordance with
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the analogous examination presented in section 4.7.2, twin image components in
the reconstructed object completely vanish when holograms with longitudinal di-
versity are added to the reconstruction.
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Figure 4.25: Illustration of the importance of lateral diversity for near-field imaging
with simultaneous probe retrieval. (a) Phases of the reconstructed, modulated probes
using holograms of different amount of lateral and longitudinal diversity. (b) Phases
of (a) in the twin image plane. Scale bars denote 20 µm.

An interesting finding can be made when observing the corresponding recon-
structed probes for these nine simulations with different amount of data (see
Fig. 4.25). In accordance with the insights gained in the previous section, longitu-
dinal diversity alone does not suffice to reconstruct the probe. The main features
deteriorating the probe can be addressed to the twin image of the illumination
(Fig. 4.25(b)). Lateral diversity in the holograms reduces twin image components
of the probe in almost every case. It seems that lateral diversity fulfills an analo-
gous task for the probe as longitudinal diversity for the object: The removal of
twin image artifacts. This is the reason why lateral and longitudinal diversity are
equally important for a successful near-field ptychography reconstruction.
In addition, for the nine simulations, in Fig. 4.26 the mean squared differences
En between the measured/simulated holograms and the reconstructed holograms
are shown. Essentially two messages are provided: (1) A very smoothly decreas-
ing error does not necessarily indicate high quality reconstructions for object and
probe.
(2) Adding further and further lateral diversity to the data leads to stagnation,
longitudinal diversity slowly pulls the error towards lower values.
Yet, as it can be seen from Fig. 4.26, the number of applied magnitude constraints
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Figure 4.26: Mean squared error En in (sub-) iteration n, i.e. each time when a mag-
nitude constraint was applied, for simulations with different amount of lateral and
longitudinal diversity. The red line shows En averaged over one global iteration k.

depends on the number of available holograms.
To illustrate the problems and benefits arising from the use of holograms with
only lateral diversity/mixed longitudinal and lateral diversity and to present a fair
comparison between near-field ptychography using lateral diversity and near-field
ptychography using lateral and longitudinal diversity for phase retrieval, 64 holo-
grams with exclusively lateral diversity were simulated in the given setup. The
lateral step size was 10 (binned) pixels, with a total number of 512 (binned) pixels
in each dimension. Phase retrieval was performed.
The results are depicted in Fig. 4.27(a). In agreement with [79], we find that the
reconstruction of the object looks quite promising. However, a closer look still re-
veals weak twin image features. The reconstructed probe shows several artifacts,
that may either result from numerous shifting operations or from numerical diffi-
culties with near-field propagation. For comparison, the reconstructions of object
and probe using 64 holograms of mixed lateral and longitudinal diversity are given
in Fig. 4.27(b). Twin image features are completely removed and the reconstructed
probe is much closer to the original (see Fig. 4.22(a)). Hence, despite the fact that
the number of holograms was the same for both simulations and despite a struc-
tured illumination, the quality of the reconstructions is considerably better when
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using holograms of lateral and longitudinal diversity. Again, the message is that
lateral diversity alone is not sufficient for ptychography in the optical near-field.
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Figure 4.27: Comparison between ptychography using 64 holograms with lateral diver-
sity (a) and ptychography using 64 holograms with lateral and longitudinal diversity
(b). In both cases phase retrieval was performed for 35 iterations. The number of
magnitude projections per iteration are the same for (a) and (b). Order of images
from left to right: Amplitude of the reconstructed object, phase of the reconstructed
object, amplitude of the reconstructed probe, phase of the reconstructed probe. Scale
bars denote 20 µm.
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4.7.4 Exploring limits: Objects with large phase shift

Near-field ptychography with lateral and longitudinal diversity has another im-
portant advantage: It is possible to reconstruct objects with large phase shifts.
For this purpose, the thickness of the simulated object (‘GAU‘-logo) was changed
from 1 µm to 3 µm resulting in a phase shift of 1.89 rad, which is larger than
π/2 rad. The thickness of the beam modulating object (‘IRP‘-logo) was left un-
changed at 1 µm. Two simulations of 35 iterations each were performed, using
either 64 holograms (512× 512 pixels) of exclusively lateral diversity (with lateral
step size of 10 pixels and Fresnel number over 10 pixels of 0.40) or 64 holograms
(512×512 pixels) containing lateral and longitudinal diversity (4 defocus positions
and 16 lateral scan points per defocus position with lateral step size of 20 pixels
and defocus shifts attributed to Fresnel numbers of [0.40, 0.44, 0.56, 1.32].
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Figure 4.28: (a) Ptychography (35 iterations) of a thick object based on 64 holograms
containing only lateral diversity. (b) Ptychography (35 iterations) of a thick object
based on 64 holograms containing lateral and longitudinal diversity. Order of images
from left to right: Amplitude of the reconstructed object, phase of the reconstructed
object, amplitude of the reconstructed probe, phase of the reconstructed probe. Scale
bars denote 20 µm.

The reconstructions are depicted in Fig. 4.28. Ptychography based on lateral di-
versity (Fig. 4.28(a)) shows two main problems, namely twin image artifacts (see
zoomed region of the reconstructed amplitude of the object with adjusted con-
trast) and phase jumps between positive and negative values which can finally
lead to phase wrapping artifacts (phase jumps between −π rad and π rad). This
can be seen in the zoomed region of the reconstructed phase of the object. Note
that this is in contrast to the findings presented in [87]. The reason for this might
be the choice of the wave front diffusing structure which for this simulation might
not have been as strong as in [87]. Ptychography using lateral and longitudinal
diversity (Fig. 4.28(b)) is much more robust with respect to both described prob-
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lems: Twin image components are almost completely eliminated and phase jumps
do not occur that quickly.

Summary
In this chapter, a thorough derivation of near-field ptychography and the under-
lying concepts, as well as technical details concerning the implementation were
provided. To this end, an adaption of the ePIE scheme presented in the pre-
vious chapter was chosen. Essential ingredients of near-field ptychography are
holograms that contain lateral and longitudinal diversity. Hence, a ptychographic
data set for the holographic near-field is recorded by shifting the sample along
and perpendicular to the optical axis. In contrast to far-field imaging, shifting
the sample along the longitudinal direction provides more diversity to the data
and allows to eliminate holographic twin image ambiguities. Furthermore, near-
field ptychography enables reconstructions of objects with strong phase shifting
properties. These findings were illustrated by selected simulations with completely
artificial and more realistic objects and probes.
While simulations based on artificial phantoms are used to visualize technical
problems influencing the reconstructions, realistic objects and probes are used to
provide a preview of what can be expected when near-field ptychography is applied
to experimental data.





5 Experimental results
This chapter presents near-field ptychographic imaging experiments. Starting from
preliminary studies with coherent, visible light, near-field ptychography is used to
reconstruct object and probe from holograms recorded with coherent, parallel and
cone beam X-rays at synchrotron sources. Parts of the content of this chapter –
especially section 5.1 and section 5.3.1 – can be found in [85] and are reviewed
here in more detail.
Extended and confined solid state test structures serve as samples. They are il-
luminated by clean and intentionally modulated wave fronts. An analysis of the
reconstructed refractive index of one of the test structures is given. Furthermore,
near-field ptychography is compared to reconstructions obtained from inversion of
the contrast transfer function. It will turn out that near-field ptychography allows
for imaging with high resolution and low noise.

5.1 Near-field ptychography with coherent visible light
5.1.1 Experimental setup

detector, CCD
4.5 µm pixel size

movable in 
3 dimensions

fixedLASER

collimator visible light
633 nm

d

IRP Optics Lab

  

samplebeam modulator

4
.5

 m
m

Figure 5.1: Setup for visible light near-field ptychography: A laser beam of 633 nm
wavelength is coupled into a monomode optical fiber attached to a collimator. Two
objects – one fixed for intentional beam modulation and one movable in all three
dimensions of space – can be inserted in the beam path. The detector is a CCD
camera with pixel size of 4.5 µm. The distances d between the movable sample and
the detector were chosen such that the sampling condition of the Fresnel near-field
propagator was fulfilled.

Near-field ptychography was experimentally tested using the setup for visible light
holography shown in Fig. 5.1. The probe (a laser beam of 633 nm wavelength) is
coupled into a monomode optical fiber attached to a collimator of numerical aper-
ture NA=0.14 (model 60FC-L-0-M60-33, Schäfter+Kirchhoff, Germany). This
leads to a coherent, monochromatic, extended and parallel beam of about 4.5 mm
in diameter. As sketched in Fig. 5.1, there are two possibilities to insert an ob-
ject into the beam path: (1) A fixed sample holder allows for intentional beam
modulation by a suitable test structure; (2) at a distance of 13 cm behind this
modulation position a motorized xyz-stage is installed to enable translations of
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the object of interest in all three dimensions of space. The zero point of the sam-
ple stage is at a distance of 6.5 cm with respect to a stationary CCD detector
(CoolSnap Myo, Photometrics, USA). Distances are chosen such that the sam-
pling condition of the Fresnel propagator (see equation 3.184) is fulfilled.
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Figure 5.2: (a) Left: Flat field of unmodulated laser beam. Center: Hologram of GAU-
logo. Right: Hologram of GAU-logo after conventional flat field correction. (b) Left:
Flat field of modulated laser beam. Center: Hologram of GAU-logo. Right: Hologram
of GAU-logo after conventional flat field correction. Scale bars denote 0.5 mm.

Two separate experiments were carried out to demonstrate near-field ptycho-
graphic phase retrieval. At first, a sample (photo resist on glass with logo ‘GAU’;
the structured area covered approximately 2×2 mm2) was attached to the movable
sample stage and shifted to distances d ∈ [6.5, 6.0, 5.6, 5.2, 4.9] cm with respect to
the detector. At each of these positions along the optical axis, the sample was
scanned to 16 positions inside the plane perpendicular to the beam path with a
lateral step size of 0.85 mm in horizontal and 0.68 mm in vertical direction. Holo-
grams were recorded at each scan point as detailed in Table 5.1.
Next, another test pattern (photo resist on glass with logo ‘IRP’; the structured
area covered approximately 2.5×2 mm2 ) was additionally positioned in the beam
behind the collimator to intentionally modulate the probe. Similar to the first
experiment, the movable sample (logo ‘GAU’) was translated along and perpen-
dicular to the optical axis. Details can also be found in Table 5.1.
Figure 5.2 depicts selected raw data and a flat field corrected hologram of the

first experiment (a) and of the second experiment (b), respectively. The first
column shows the intensity profile of the probe (top: non-modulated, bottom:
modulated); the second column provides illustrative examples of holograms for
both experiments. The third column shows the same holograms after conventional
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object photo resist (1.4 µm) on glass
structured area approximately 2× 2 mm2

beam modulation no/ photo resist (1.4 µm) on glass
structured area approximately 2.5× 2 mm2

geometry parallel beam
wavelength [nm] 633
pixel size [µm] 4.54
number of pixels 1940× 1460
accumulation time [ms] 10× 6
F10 0.051, 0.054, 0.057, 0.062, 0.067
lateral step size [mm] 0.85 (horiz.), 0.68 (vert.)
sample-detector distances [cm] 6.5, 6.0, 5.6, 5.2, 4.9
# holograms 80 (5 defocus planes,

each with 16 laterally shifted holograms)
image corrections dark image, faulty pixel mask

Table 5.1: Parameters for the visible light in-line holography experiments. Fresnel
numbers F10 = a2/zλ are calculated for a structure size of a = 10δ with pixel size δ
and wavelength λ.

flat field correction. In both cases (clean and modulated probe) not all features
resulting from the illumination can be eliminated by division of the hologram by
the flat field.

5.1.2 Results of near-field ptychography for visible light

To reconstruct object and probe, the ptychographic near-field algorithm described
in chapter 4 was initialized with a homogeneous amplitude distribution for object
and probe with zero phases. During the first three iterations only small changes
were allowed to influence the probe. Twin suppression (see equation 4.322) was
applied during the first seven iterations. Automatic focusing (see equation 4.325)
was used at the beginning of iteration two, four and six assuming the object to
be weakly absorbing. Phase retrieval was performed for 20 iterations. Results are
depicted in Fig. 5.3, 5.5 and 5.7.
Phase retrieval with high image quality and separation of object and probe could
be demonstrated for a clean as well as for a modulated probe. Note that whereas
the reconstructed amplitude of the object is of rather weak contrast, the retrieved
phase is strongly varying (the contrast in the reconstructed phase is about π/2
rad). The resolution of the reconstructed object was determined as described in
section 2.4.3 by (1) selecting a region of interest and fitting step functions to edges
of this region, (2) calculating the power spectral density and (3) angular averaging
the power spectral density. Results are shown in Fig. 5.4. For both cases – the
experiment with clean illumination and the experiment with modulated beam –
the achieved resolution is between 20 µm and 10 µm.
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Figure 5.3: (a) Reconstructed object in amplitude (left) and phase (center) for a clean
illumination. Right: Small detail of the reconstruction. (b) Reconstructed object in
amplitude (left) and phase (center) for a modulated illumination. Right: Small detail
of the reconstruction. Scale bars denote 0.5 mm
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Figure 5.4: (a) Determination of the object’s resolution (full period) for the experiment
with clean illumination. Left: A region of interest was extracted and error functions
were adapted to the edges. Three examples are plotted. Center: The power spectral
density of the reconstructed phases. Right: Angular averaged power spectral density.
(b) Same analysis as in (a) for the experiment with modulated illumination.
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The power spectral density in Fig. 5.4(a) reveals a slightly broader intensity dis-
tribution in the high frequency range than the power spectral density shown in
(b).
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Figure 5.5: Reconstructed clean probe in (a) amplitude and (b) phase. Left: One-
dimensional cut through the reconstructed amplitude (a) and phase (b) profile for
different distances along the optical axis. Center: Reconstructed amplitude (a) and
phase (b) of the probe at distance d = 6.5 cm upstream the detector (at the starting
position of the sample). Right: Reconstructed amplitude (a) and phase (b) at the
detector. Scale bars denote 0.5 mm.

To characterize the reconstructed clean probe (see Fig. 5.5), it was propagated for
10 cm along the optical axis starting from the farthest position d of the object
with respect to the detector (Fig. 5.5, left part). The overall amplitude and phase
profile stays the same (as expected for a parallel beam illumination with nearly flat
amplitudes and phases). The reconstructed amplitude at the detector (depicted
in the left part of Fig. 5.5) qualitatively matches the measured flat field (depicted
in Fig. 5.2). The phase distribution of the probe shows a torus shaped profile in
the region of highest intensity (Fig. 5.5 (b)). Since light that has passed through
a monomodal fiber should not reveal these aberrations, it is most likely that they
result from the collimating lens. To further characterize the phase profile, the
center of mass of the reconstructed intensity was determined. Around the center
of mass, a region of interest was extracted. The reconstructed phase within this
region of interest was low pass filtered (see Fig. 5.6(b), left image) and angular
averaged.
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Figure 5.6: (a) Intensity profile (red) and phase profile (dark blue) of the reconstructed
probe at d = 6.5 cm upstream the detector. The phase profile was fitted to a linear
combination of radial Zernike polynomials (light blue curve). (b) Low pass filtered,
reconstructed phase profile of the probe (left) and two-dimensional representation of
the corresponding linear combination of Zernike polynomials (right). (c) Single radial
Zernike polynomials with their respective weights used to explain the reconstructed
phase profile.

A linear combination of Zernike polynomials [28] with radial coordinate ρ

f(ρ) = a+ b ·R0
2(ρ) + c ·R0

4(ρ) + d ·R0
6(ρ) + e ·R0

8(ρ) , (5.355)

with

R0
2(ρ) = 2ρ2 − 1 , (5.356)

R0
4(ρ) = 6ρ4 − 6ρ2 + 1 , (5.357)

R0
6(ρ) = 20ρ6 − 30ρ4 + 12ρ2 − 1 , (5.358)

R0
8(ρ) = 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 (5.359)

was then fitted to the low pass filtered and angular averaged phase profile. The
result is depicted in Fig. 5.6(a), along with the two-dimensional representation of
the adjusted phase in the right image of Fig. 5.6(b). The single Zernike polynomials
(equations 5.356 - 5.359) are plotted in Fig. 5.6(c) with their respective weights.
The weights a, b, c, d, e were determined to

a = −0.015 ± 2.1 · 10−4 ,

b = 0.022 ± 7.0 · 10−4 ,

c = 0.019 ± 9.0 · 10−4 ,

d = −0.024 ± 1.0 · 10−3 ,

e = 0.014 ± 1.1 · 10−3 .
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Hence, the main aberrations are due to a defocus term (R0
2) and the spherical

aberrations R0
4 and R0

6.
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Figure 5.7: Reconstructed modulated probe in (a) amplitude and (b) phase in the
modulation plane (left), at distance d = 6.5 cm upstream the detector (center) and
directly at the detector (right). Scale bars denote 0.5 mm.

Next, the reconstructed probe of the data set with beam modulator was analyzed.
To this end, the reconstructed probe was back propagated to the position of the
beam modulator. Figure 5.7 depicts the amplitude (a) and phase (b) of the re-
constructed, modulated probe directly in the modulation plane. As expected, the
beam modulator is clearly visible in both amplitude and phase. Furthermore, am-
plitude and phase are shown at d = 6.5 cm upstream with respect to the detector
(center column of Fig. 5.7). Finally, amplitude and phase directly at the detector
are depicted in the left column.

5.1.3 An analysis regarding the twin image problem

Next, the following question should be addressed: What is the main contribution
of lateral and longitudinal diversity to the reconstruction? Is it possible to verify
the theoretical findings presented in section 4.7 in experiments? The suitability of
lateral and longitudinal shifts to create diversity is investigated by further analysis
of the data presented in part 5.1.2. In particular and in agreement with the simu-
lations presented in section 4.7, it can be shown that both, lateral and longitudinal
shifts are required to remove twin image artifacts in object and probe.
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For this purpose, the amount of laterally and longitudinally shifted holograms
(movable object, modulated probe) contributing to phase retrieval was succes-
sively reduced. For each of these reduced data sets, phase retrieval (without twin
image suppression) was performed. The reconstructed object was propagated to
its twin image plane, the reconstructed probe to the modulation plane and the
twin image plane with respect to the beam modulator.
Results for the object are detailed in Fig. 5.8; results for the probe are depicted in
Fig. 5.9. On closer examination of the reconstructed objects, the following points
can be stated: (1) It is not possible to separate object and probe by using the
information of a single hologram. (2) Using holograms containing only lateral di-
versity leads to high frequency artifacts and phase wrapping. This is in agreement
with the simulation of strongly phase shifting objects presented in section 4.7.4.
(3) Sharp complex conjugated components of the object can be observed in the
twin image plane – an indication that lateral shifts alone do not contain enough
diversity to solve the twin image problem. Again, this is in agreement with the
simulations shown in section 4.7. (4) Exploiting only longitudinal diversity en-
hances the quality of the reconstructed object: Twin image features are reduced.
However, longitudinal diversity alone does not allow for separation of object and
probe. Features resulting from the probe are still visible in the reconstructed ob-
ject. (5) It is the combination of longitudinal and lateral shifts that solves the
twin image problem and at the same time separates object and probe.
Inspection of the reconstructed probes provides further insight into the importance
of especially lateral diversity: (1) Longitudinal diversity alone is not able to re-
move twin image artifacts in the probe (see also [85]). (2) In contrast, lateral shifts
of the object ’sample’ the illumination inside an extended region perpendicular to
the optical axis. The quality of the reconstructed probe is considerably enhanced
by adding lateral diversity. (3) However, because the equations for separation of
object and probe (see equations 4.334 and 4.335) are coupled, a convincing recon-
struction of the probe can only be achieved along with a convincing reconstruction
of the object and contrariwise. Also these findings correspond well to the insights
provided by the simulations of section 4.7.
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5.2 X-ray near-field ptychography in a parallel beam setting
Generalized ptychographic phase retrieval is demonstrated for full-field phase con-
trast radiography. Experiments were performed at the insertion device beam line
ESRF/ID19 [88]. A sketch of the setup can be found in Fig. 5.10(a). The pink
beam mode at a photon energy E = 18.77 keV (first harmonic) was used.

 

 

movable in 
3 dimensions

X-rays
18 keV

d

helium

multilayer

ESRF/ID19

  

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0.9e4

1e4

1.1e4

1.2e4

1.3e4

0.8

0.9

1

1.1

detector

1.4 µm pixel size
lens-coupled

I(a.u.) I(a.u.)

flat field corrected

(a)

(b)

sample

flat field hologram

artifacts from 
flat field correction

I/I0

Figure 5.10: (a) Setup of the ESRF/ID19 imaging beamline with parallel probe. (b)
Left: Flat field. Center: Hologram of dandelion seed. Right: Flat field corrected
hologram. Scale bars denote 250 µm.

For this experiment a seed of dandelion attached between two polypropylene foils
served as a sample.
It was translated to variable distances d ∈ [20.56, 19.96, 19.36, 18.96] cm with
respect to the stationary detector, a Gd3Ga5O12:Eu single-crystal scintillator of
10 µm thickness with an optical microscope of 20× magnification (NA=0.4) and a
fast-read out CCD detector (FReLoN 2k, ESRF) [89]. At each position along the
optical axis, 16 holograms with different lateral translations of the sample were
recorded. The lateral step size was 0.21 mm. Further details can be found in
Table 5.2. Figure 5.10(b) shows a measured flat field at ID19, an example of a
hologram of the dandelion seed recorded in the regime of direct contrast and the
flat field corrected hologram. Although the beam was comparably clean, features
resulting from the probe are remaining in the flat field corrected hologram.
Near-field ptychography was initialized using a back-propagated flat field for the
probe and a uniform distribution of amplitudes (zero phases) for the object. Holo-
grams were binned by a factor of two to speed up computation. During the first
iterations, automatic focusing was applied (see equation 4.325). The phases of the
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Table 5.2: Parameters for x-ray holography at ESRF/ID19.

object seed of dandelion
attached to a polypropylene foil

geometry parallel beam
wavelength [nm] 0.066
pixel size (after binning) [µm] 1.40
number of pixels (after binning) 1024× 1024
accumulation time [s] 0.1
F10 14.4, 14.8, 15.3, 15.6
sample-detector distances [cm] 20.56, 19.96, 19.36, 18.96
lateral step size [mm] 0.21
# holograms 64 (4 defocus planes,

16 lat. scan positions)

object were projected to negative values (see equation 4.323). Phase retrieval was
performed for 10 iterations in total.
The reconstructed, absolute value of the object’s transmission function is depicted
in Fig. 5.11(a). Two regions of interest revealing little barbs are shown next to
the overview image. The full period resolution estimated by the power spectral
density of the reconstructed amplitudes shown in (a) is between 5 µm and 10 µm.
The reconstructed, complex valued probe is depicted in Fig. 5.12 (left and center).
It results in an intensity distribution at the detector which is shown in the right
part of Fig. 5.12 and compares well with the measured flat field (Fig. 5.10(b, left
image)).
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5.3 Waveguide based cone beam X-ray near-field ptycho-
graphy

Next, two series of experiments are presented. Both were performed at the DESY/-
P10/GINIX-setup [90–92]. The main difference was the choice of samples. In
the first experiment, a confined sample was studied. In the second experiment,
an extended sample covering the whole field of view was used. The probe was
shaped by an X-ray waveguide which results in a smooth and clean illumination.
In both series of experiments the main contribution of lateral diversity was due
to (mis-) alignment of the sample in the beam path: Lateral shifts in the order
of micrometers appear quite naturally, because defocus shifts are difficult to be
performed exactly parallel with the optical axis.

5.3.1 Imaging confined objects in a deeply holographic regime

The main components of the X-ray holographic microscopy setup GINIX at P10
are depicted in Fig. 5.1312.
The undulator beam with photon energy E = 7.9 keV is focused by Kirkpatrick-
Baez (KB) mirrors onto the entrance side of an X-ray waveguide (lithographically
defined air channel in silicon, 91 nm× 70 nm× 1 mm) [93]. The result is a clean,
mode filtered and highly divergent X-ray beam as depicted in Fig. 5.13(b), (c) and
(d) (left column). During propagation, the probe diverges and forms a cone-like
illumination. Hence, it is possible to collect images of the object with different
magnification and resolution, covering an extended field of view.
The sample was a nano-fabricated test structure containing patterns of different
sizes and layouts produced by focused ion beam on a 200 nm gold substrate and
attached to a Si3N4 membrane. Three different test patterns were imaged: (1)
a structure in the following called ‘Nano-World’ (electron micrograph depicted
in the right part of Fig. 5.14(a)), (2) a structure in the following called ‘IRP-
Logo’ (electron micrograph depicted in the right part of Fig. 5.14(b)) and (3) a
structure in the following called ‘Micro-World’ (electron micrograph depicted in
the right part of Fig. 5.14(c)). Structure (1) was positioned at a distance of 5.1 mm
behind the waveguide exit and shifted by [0.38, 0.89, 1.40] mm with respect to its
initial position towards the detector (sCMOS, Photonic Science, UK; 6.54 µm pixel
size) which was placed at 5.12 m downstream the waveguide. In each defocus plane
four exposures at slightly different lateral positions were taken (three of them with
an exposure time of 1 s, one of them (the sample was centered in the beam) with
an exposure time of 3 s). Details can be accessed in Table 5.3.
With the sample positioned 5.1 mm behind the waveguide, the effective pixel size

12Scale bars in figures showing the results of cone beam microscopy are calculated with respect
to the smallest effective pixel size (in Fig. 5.13 this pixel size would be 6.5 nm for the images
shown in (b) and 19.1 nm for the images shown in (c) and (d)). Effective pixel sizes are listed
for each experiment in the corresponding tables.
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in the sample plane is 6.5 nm. However, this comes at a price: The near-field
propagator is considerably under sampled (see section 3.1):

λ · zeff
N · d2

eff
=

0.16nm · 5.1mm
1080 · (6.5nm)2

= 17.9 , (5.360)
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with wavelength λ, effective propagation distance zeff for the largest sample to
detector spacing, number of pixels N and effective pixel size deff in one dimension.
To avoid aliasing, the field of view of the propagated field needs to be enlarged by
a factor of 17.9. However, this requires a long computation time and the storage
of a large amount of data. For this reason, the field of view was still kept smaller
than necessary for Nyquist sampling.
In the next two experiments, the object was placed at 15.13 mm behind the wave-
guide exit and translated towards the detector by distances of
[0.1, 0.5, 1.0, 1.5, 2.0, 2.5] mm with respect to the initial position. Further details
can be found in Table 5.3. Compared to the first experiment, the distance between
waveguide and detector was left unchanged. Two images per plane were recorded.
An example of a flat field, a hologram and the flat field corrected hologram can
be seen in Fig. 5.13(b) for the structure ‘Nano-World’, in Fig. 5.13 (c) for the
structure ‘IRP-Logo’ and in Fig. 5.13(d) for the structure ‘Micro-World’. In (c)
and (d) the intensity of the flat field is considerably lower than the intensity of the
hologram. The reason is that during the experiment the waveguide slightly drifted
in the beam. Nevertheless, since the flat fields are not used for phase retrieval,
this does not impede data analysis.
Reconstructions were carried out using the same stetting of parameters for all three
cases. Near-field ptychography was initialized with a back-propagated version
of the measured intensities (for the probe) and a homogeneous distribution of
uniform amplitude and phase corresponding to 200 nm gold illuminated by X-
rays of 7.9 keV. In total, phase retrieval was run for 20 iterations. During the
first eight iterations, special weight was attributed to the update of the object
while keeping the probe rather stable. The update of the object in the plane of
highest resolution was enhanced with respect to the updates resulting from defocus
positions with lower resolution. Twin image artifacts were suppressed during the
first seven iterations (see equation 4.322). Following equation 4.323, the phases of
the object were projected to negative values. Automatic focusing (equation 4.325)
was applied during reconstruction.
Fig. 5.14 shows the reconstructed objects for all three experiments. The amplitudes
of the reconstructed transmission functions are depicted on the left hand side of
Fig. 5.14. As expected, slight aliasing artifacts can be seen in the amplitude of
‘Nano-World’. A transmission larger than one can be observed in Fig. 5.14(c). For
this reason, the reconstructed amplitude is more qualitative than quantitative. The
reconstructed phase shifts match the expectations better than the reconstructed
amplitudes. A more detailed analysis of the reconstructed refractive index is given
in section 5.3.1.
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Table 5.3: Parameters for X-ray waveguide holography at DESY/P10/GINIX.

object ‘Nano-World’, Si3N4+Ti+Au
(200 nm + 3 nm + 205 nm)

geometry cone beam
wavelength [nm] 0.16
eff. pixel size [nm] 6.5, 7.0, 7.7, 8.3
number of pixels 1920× 1080
accumulation time [s] 1 and 3
eff. F10 5.3e− 3, 5.7e− 3, 6.2e− 3, 6.8e− 3
waveguide-sample distances [mm] 5.10, 5.50, 6.00, 6.50
waveguide-detector distance [m] 5.12
maximum lateral displacement [µm] 2.6
# holograms 16 (4 defocus planes, 4 exposures each)
object ‘IRP-Logo’, Si3N4+Ti+Au

(200 nm + 3 nm + 205 nm)
geometry cone beam
wavelength [nm] 0.16
eff. pixel size [nm] 19.1, 19.3, 19.8, 20.4, 21.0, 21.7, 22.3
number of pixels 1920× 1080
accumulation time [s] 3
eff. F10 15.6e− 3, 15.7e− 3, 16.1e− 3,

16.6e− 3, 17.1e− 3,
17.7e− 3, 18.2e− 3

waveguide-sample distances [mm] 15.13, 15.21, 15.63,
16.12, 16.62, 17.13, 17.62

waveguide-detector distance [m] 5.13
maximum lateral displacement [µm] 1.4
# holograms 14 (7 defocus planes, 2 exposures each)
object ‘Micro-World’, Si3N4+Ti+Au

(200 nm + 3 nm + 205 nm)
geometry cone beam
wavelength [nm] 0.16
eff. pixel size [nm] 19.1, 19.3, 19.8, 20.4, 21.1, 21.7, 22.3
number of pixels 1920× 1080
accumulation time [s] 3
eff. F10 15.6e− 3, 15.7e− 3, 16.1e− 3,

16.6e− 3, 17.2e− 3,
17.7e− 3, 18.2e− 3

waveguide-sample distances [mm] 15.13, 15.23, 15.63,
16.12, 16.63, 17.13, 17.62

waveguide-detector distance [m] 5.13
maximum lateral displacement [µm] 1.4
# holograms 14 (7 defocus planes, 2 exposures each)
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Reconstructed phase. Right: Electron micrograph. Scale bars denote 1 µm.

One of the reconstructed probes is depicted in Fig. 5.15. Amplitude (a) and phase
(b) of the reconstructed probe are shown at 15 mm behind the waveguide exit.
The reconstructed intensities at the detector are shown in (c). Note that spoiled
regions of the camera (see lower left part of the flat fields) are not addressed to
the object but are merged into the probe. As expected, the reconstructed probes
are essentially the same for all three experiments. Due to the unstable waveguide
and hence also unstable illumination of the object during the scan, a quantitative
comparison with the flat field is difficult.
The full period resolution of the reconstructed objects was determined (1) by

fitting step functions to selected regions (left part of Fig. 5.16), (2) by calculating
the power spectral density (central part of Fig. 5.16) and (3) by angular averaging
of the power spectral density (right part of Fig. 5.16). Following this analysis,
the resolution was between 140 nm and 100 nm (full period) with lowest effective
pixel sizes between 6.5 nm (‘Nano-World’) and 19.1 nm (‘Micro-World’ and ‘IRP-
Logo’). Despite the low effective pixel size, the resolution of ‘Nano-World’ is not
better than the resolution of the other two test patterns. The reasons might be
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instabilities in the setup due to vibrations at the sample during and right after
scanning the test structure.
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Analysis of the refractive index
The test structure was made of 205 nm Au on a Si3N4 membrane of 200 nm thick-
ness with an interlayer of 3 nm Ti. The reconstructed difference in the refractive
index for structured and unstructured regions shall be determined. For this analy-
sis, the small layer of titanium is neglected. For an energy of 7.9 keV the refractive
index of Au is [94]

nAu = 1− δ + iβ = 1− 4.9 · 10−5 + i 5.2 · 10−6,

and the refractive index of Si3N4 is [94]

nSi3N4
= 1− δ + iβ = 1− 1.2e · 10−5 + i 1.8 · 10−7.

With a layer of 205± 20 nm of Au13, this leads to a transmission ranging between
95.4% and 96.2%. The expected phase shift is between −0.44 rad and −0.36 rad.
For a layer of 200 ± 20 nm Si3N4 we expect a transmission of about 99.8% and
a phase shift between −0.10 rad and −0.08 rad. Since only relative phase shifts
can be measured by phase retrieval techniques, the relative phase shift between
regions of Au and regions of Si3N4 should be between −0.36 rad and −0.26 rad.
The difference in transmission should be between 3.62% and 4.44%.
To determine the experimental phase shift and transmission of the reconstruction
shown in Fig. 5.17(a) and (b), line profiles were extracted (depicted in Fig. 5.17(d-
e)). They indicate that the differences in transmission and phase (about 2% differ-
ence in transmission and 0.22 rad in phase shift) are slightly lower than expected.
To nail down more precise values, a threshold was applied to the reconstructed ob-
ject separating regions of Au (gray areas in Fig. 5.17(c)) and Si3N4 (white areas in
Fig. 5.17(c)) while neglecting the edges (black areas in Fig. 5.17(c)). By averaging
over all pixels of regions consisting of Au and over all pixels of regions consist-
ing of Si3N4, a mean phase shift between structured and unstructured regions of
−0.21 rad± 0.02 rad and a mean difference in transmission of 1.4% ± 1.2% was
found (see histograms in Fig. 5.17 (f-i)). Whereas the validity of the measured
relative transmission is still questionable, the relative phase shift between Au and
Si3N4 is quite realistic.

13The thickness was determined with the help of a profilometer (Veeco Dektak 6 ); an error of
±20 nm is justified.
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5.3.2 Imaging extended objects in a deeply holographic regime

The experiments shown next demonstrate reconstructions of extended objects in
a clean, as well as in a disturbed probe. In contrast to methods, where only over-
lapping regions are reconstructed, the near-field ptychographic algorithm takes
all of the measured data into account: Instead of interpolating the holograms to
the same resolution before phase retrieval, the reconstructed object is interpolated
during phase retrieval to the highest possible resolution determined by the experi-
ment. The consequences are reconstructions of high resolution and large field of
view.
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The experiment was carried out at DESY/P10/GINIX. Hence, the setup of the
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X-ray microscope is basically the same as described above – with one modification:
a fixed object for intentional beam modulation can be inserted between waveguide
exit and sample (see Fig. 5.18). Hard X-rays (λ = 1.6 · 10−10 m) were focused by
Kirkpatrick-Beatz mirrors (KB-mirrors) and passed through an X-ray waveguide
(91 nm × 70 nm) [93]. Holograms of a ‘Siemens-Star’ (ANT/XRESO-50HC, NTT-
AT, Japan, 200 nm Ta) initially placed at ∆fs = 19.9 mm behind the waveguide
were recorded at z = 5.34 m with respect to the waveguide exit by an sCMOS de-
tector (Photonic Science, UK; 6.54 µm pixel size). The ‘Siemens-Star’ was shifted
to four additional defocus positions at ∆fs = [20.8, 25.8, 30.8, 35.8] mm behind
the waveguide exit. For better statistics, at each of these five defocus positions
10 holograms of the sample were collected (each with an exposure time of 8 s).
The object was not scanned laterally such that the main contribution of lateral
diversity was included in the defocus shifts.
Two experiments were performed using this configuration. First, the probe was
not intentionally modulated. A measured flat field, one exemplary hologram and
the flat field corrected hologram are shown in Fig. 5.18(b). Second, the probe was
disturbed by 100 nm phase shifting latex spheres spread on a Si3N4 frame. A flat
field, an exemplary hologram and the flat field corrected hologram are depicted
in Fig. 5.18(c). Further details concerning the experimental setup as well as the
effective propagation distances and pixel sizes are listed in Table 5.4.

Table 5.4: Experimental parameters P10.

object ‘Siemens-Star’, Ta (200 nm)
beam modulation none/ 100 nm latex spheres
geometry cone beam
wavelength [nm] 0.16
eff. pixel size [nm] 24.3, 25.5, 31.7, 37.8, 43.9
number of pixels 1920× 1080
accumulation time [s] 10× 8
eff. F10 19.0e− 3, 20.0e− 3,

24.9e− 3, 29.7e− 3, 34.5e− 3
waveguide-sample distances [mm] 19.8, 20.8, 25.8, 30.8, 35.8
waveguide-detector distance [m] 5.33
maximum lateral displacement [µm] 2.7/ 3.4
# holograms 50 (5 defocus planes,

10 exposures each)

Phase retrieval was initialized by a back-propagated flat field for the probe and
a homogeneous amplitude and phase distribution of Ta at 7.9 keV for the object.
The algorithm was performed for 20 iterations (each experiment). Twin images
were suppressed during the first iterations (equation 4.322); the phases of the ob-
ject’s transmission function were projected to negative values (equation 4.323) and
automatic focusing (equation 4.325) was included.
The reconstructed probes are depicted in Fig. 5.19. The clean probe shows weak
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artifacts resulting from the object and visible in the reconstructed phases which
are between −0.05 rad and 0.05 rad. These artifacts could have probably been
avoided with more lateral diversity in the holograms. The reconstructed intensi-
ties at z = 5.34 m compare well with the measured flat field. Same is true for the
disturbed probe.
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Figure 5.19: Reconstructed probe for (a) non-modulated waveguide beam and (b)
waveguide beam modulated by phase shifting latex spheres. Left: Reconstructed
amplitude at largest sample to detector distance. Center: Reconstructed phase at
largest sample to detector distance. Right: Reconstructed flat field. Scale bars
denote 5 µm

The reconstructed objects for both experiments are summarized in Fig. 5.20. The
main difference in quality of the reconstructions shown in Fig. 5.20(a) and (b) can
be seen in the amplitudes (the left part of Fig. 5.20). For a clean illumination
compared to a modulated illumination, the reconstructed amplitudes contain less
noise and slightly sharper edges. These differences are not visible for the recon-
structed and much more dominant phases. In fact, the reconstructed phases are
clean and artifact free.
Fig. 5.21 details the resolution of the reconstructed phases of the objects. The

resolution was analyzed by edge fits (left part of Fig. 5.21), the power spectral
density (central part of Fig. 5.21) as well as the angular averaged power spectral
density (right part of Fig. 5.21). With an effective pixel size of 25 nm, features
down to 100 nm lines and spaces (full period resolution) could be resolved in both
experiments.
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Figure 5.21: Resolution analysis for the reconstructed phase of (a) ‘Siemens-Star’ im-
aged by a clean probe and (b) ‘Siemens-Star’ imaged by a modulated probe. Left:
Adaption of error functions to selected edges. Center: Power spectral density. Right:
Angular averaged power spectral density.
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Comparison between CTF based reconstruction and near-field ptycho-
graphy
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Figure 5.22: Comparison between CTF based reconstruction and near-field ptychogra-
phy (NFP). (a) Composite image of CTF based reconstruction (lower left part) and
near-field ptychographic reconstruction (upper right part). (b) Composite image of
power spectral density of (a). (c) Angular averaged power spectral density of the CTF
based reconstruction (red) and the near-field ptychographic reconstruction (blue).

Near-field ptychography is an iterative technique that does not need any lineariza-
tion of the propagator or the object’s transmission function. The flat field of the
illumination does not need to be known as near-field ptychography does not rely
on the faulty flat field correction. However, in the case of a clean probe, the flat
field correction is approximately correct and high quality reconstructions of the
object (without the probe) can also be obtained by quicker single-step techniques
that are for example based on the contrast transfer function (CTF) [11,95–97].
A flat field corrected and Fourier transformed hologram F [I∆] (qx, qy) which was
recorded at some distance ∆ with respect to the sample can be approximately
described by [95]

F [I∆] (qx, qy) ≈ 2πδD(qx, qy) + 2F [φ] (qx, qy) sin(X ) , (5.361)
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where δD is the Dirac delta, φ is the phase shift of the transmission function of
the object and

X =
∆λ

4π

(
q2
x + q2

y

)
. (5.362)

Since the CTF function contains zero crossings which depend on the propagation
distance ∆, several holograms with different ∆ are used for phase retrieval. The
phase is determined by minimization of a cost function: The summed distance
between the approximated and measured holograms is analytically minimized by
setting the derivative with respect to φ to zero and after that by directly calculat-
ing the phase shift φ [95].

Here, the same data set (in particular the same number of holograms) was fed in
the CTF [11,95,97] and in the near-field ptychography algorithm. The reconstruc-
tions are analyzed regarding their resolution. Fig. 5.22 depicts the reconstructed
object (a). The image shown there is a composition of the reconstructions achieved
by CTF (lower left part) and by near-field ptychography (upper right part). The
reconstructed phase shift is comparable. However the contrast in the central region
of the reconstruction obtained by near-field ptychography is slightly enhanced. At
an effective pixel size of 24 nm, both reconstructions reveal the 100 nm lines and
spaces. The 50 nm lines and spaces are not resolved anymore. Both reconstruc-
tions look very clean and artifact free. A closer inspection is necessary to mark
the differences between the two techniques.
To this end, the power spectral density (Fig. 5.22(b)) was calculated. Although
the power spectral density is essentially the same for frequencies corresponding to
up to 150 nm lines and spaces, a larger amount of noise is found in the high fre-
quency domain for the CTF reconstruction than for the near-field ptychographic
reconstruction.
The same effect can be seen in the angular averaged power spectral density de-
picted in Fig. 5.22(c). At a resolution of 120 nm lines and spaces, noise starts
to interfere with the red curve (referring to the CTF reconstruction), whereas the
blue curve (referring to the near-field ptychography reconstruction) is deteriorated
by noise starting at a resolution of 100 nm lines and spaces.
Hence, even if this particular data set does not allow to prove a significant increase
in resolution when turning from CTF-based reconstruction techniques to near-field
ptychography, it provides a strong indication that near-field ptychography offers
the potential for high resolution imaging at spatial frequencies where techniques
requiring a flat field correction suffer from noise.

The results of the last sections can be summarized by three main points. (1)
Near-field ptychography can be applied to image confined objects with unknown
support; it successfully eliminates the twin image without the need of a support
constraint or restriction to phase objects.
(2) Phase shifting properties of a material can be reliably determined.
(3) Compared to CTF techniques, large objects covering the whole field of view
can be reconstructed with lower noise in the high frequency domain.
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5.4 KB-cone beam X-ray near-field ptychography
To obtain a small focal spot and hence a highly divergent beam, a pair of curved
Kirkpatrick-Baez (KB) mirrors is commonly used for X-rays. Focusing X-rays
however comes at a price: Strong aberrations caused by surface defects of the mir-
rors on the nanometer scale cause a highly structured probe [29]. An example can
be seen in the left part of Fig. 5.23(b). A flat field measured at the newly build
ID16A beamline at ESRF (the setup of this beamline is sketched in Fig. 5.23(a))
is depicted. The horizontal and vertical stripes are the mentioned figure errors.
Holograms recorded with such an illumination are basically indistinguishable from
the flat field – at least, they are not distinguishable by eye and certainly not
at first glance (see central part of Fig. 5.23(b)). The standard way to correct
raw data, i.e. the division of the hologram by the flat field, reveals the hologram
caused by the transmission function of the sample in the beam path (right part of
Fig. 5.23(b)). As already detailed, the flat field correction is only applicable in case
of a homogeneously or mildly disturbed probe. It breaks down when aberrations
become too dominant or are of higher, spatial frequency than the features caused
by the object of interest [30].
Here, near-field ptychography in a cone beam that was focused by KB-mirrors is
shown.
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Figure 5.23: (a) Setup at ESRF/ID16A dedicated to high resolution imaging by nano-
focused hard X-ray beams. (b) Left: Flat field. Center: Hologram of nanowires.
Right: Flat field corrected hologram. Scale bars denote 2 µm.

The experiment was performed at the ID16A beamline of ESRF which is ded-
icated to high resolution imaging by nano-focused hard X-ray beams (spot sizes
down to 40 nm in two dimensions). As described in Fig. 5.23(a) X-rays of 17.05 keV
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Table 5.5: Experimental parameters ID16A.

object ‘nanowires’,
InP substrate,
insulating SiO2 layer,
ITO cover

geometry cone beam
wavelength [nm] 0.073
pixel size of the detector (2x binned) [µm] 16.9
eff. pixel size (2x binned) [nm] 10.0, 10.5, 12.2, 15.8
number of pixels (2x binned) 1024× 1024
accumulation time [s] 2
eff. F10 6.90e− 2, 7.19e− 2,

8.36e− 2, 10.88e− 2
distances focus-sample [mm] 2.02, 2.11, 2.45, 3.18
distance focus-detector [cm] 34.04
lateral step size [µm] 2.5
# holograms 64 (4 defocus planes,

16 lat. positions)

are confined by KB-mirrors. Since not only the mirrors, but also the sample is
kept in vacuum, the object of interest can be moved right behind the focal spot.
The given configuration enables imaging at an effective pixel size down to 5 nm.
For this experiment a sample consisting of nanowires (InP substrate, insulat-
ing SiO2 layer and ITO cover [98]) spread onto a Si3N4 membrane was cho-
sen. The sample was inserted in the beam at a defocus distance of 2.02 mm
with respect to the focus and 34.04 cm apart from a high-resolution imaging
camera. The detector was lens-coupled to a FReLoN F−K4320 (0.85 µm pixel
size). The sample was translated towards the detector with defocus distances of
[2.02, 2.11, 2.45, 3.18] mm. At each defocus position 16 holograms were recorded
with the object shifted inside the plane perpendicular to the optical axis by a
lateral step size of 2.5 µm. Further details can be found in Table 5.5.
Near-field ptychographic phase retrieval was performed for ten iterations, includ-
ing the projection of the object onto a pure phase object (equation 4.321) with
negative phase shift (equation 4.323). Automatic focusing (equation 4.325) was
applied during reconstruction. Phase retrieval was initialized by a uniform ampli-
tude distribution with zero phases for object and probe. The reconstructed object
is presented in Fig. 5.24. Since the recorded holograms were binned by a factor of
two before reconstruction, the smallest effective pixel size is 10 nm.
Single nanowires are clearly distinguishable. Even internal density variations be-
come visible. The reconstructed object is free of artifacts resulting from the probe.
To estimate the resolution, step functions were fit to selected regions (shown in
Fig. 5.24(b)) indicating an average, full period resolution of 89.7 nm. The power
spectral density (Fig. 5.24(c)) reveals an even higher frequency content and a full
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Figure 5.24: Reconstructed nanowires. (a) Reconstructed phase. Scale bar denotes
2 µm. (b) Step functions were fitted to selected regions to determine the resolution.
Scale bars denote 0.1 µm. (c) Power spectral density of (a). (d) Radially averaged
power spectral density of (a).

period resolution down to 50 nm. In addition, the angular averaged power spectral
density was calculated (Fig. 5.24(d)) and again a resolution was found between
100 nm and 50 nm.
The reconstructed probe is depicted in Fig. 5.25 showing amplitude and phase at
2.02 mm behind the focal plane (left and central part of Fig. 5.25) as well as the
reconstructed flat field (right part) which compares well with the measured flat
field presented in Fig. 5.23(b, right part).

Clear separation of object and probe demonstrated by inspection of
holograms

The distinct separation of object and probe can be illustrated by inspecting the
raw data (left part of Fig. 5.26), the flat field corrected raw data (central part
of Fig. 5.26) and the hologram obtained from propagation of the reconstructed
transmission function of the object (right part of Fig. 5.26).
The hologram of the object’s transmission function is basically not visible in the
recorded raw data. Figure errors resulting from the surface of the KB-mirrors and
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Figure 5.26: Comparison of raw data (left), flat field corrected raw data (center) and
reconstructed, propagated transmission function of the sample. Scale bars denote
2 µm.

dirt in the beam path are of much stronger contrast than the object of interest.
Since these artifacts are not only very dominant but also in the high frequency
domain, the flat field corrected hologram still reveals features which can be at-
tributed to the probe. It is obvious that here, flat field correction cannot be the
method of choice to obtain the hologram of the transmission function, which is
necessary for those phase retrieval techniques that cannot reconstruct the object
along with the probe. Phase retrieval methods relying on defective holograms (like
in the central part of Fig. 5.26) will provide reconstructions disturbed by artifacts
of the illumination.
The right part of Fig. 5.26 shows the propagated transmission function of the ob-
ject reconstructed by near-field ptychography. It neither contains features of dirt,
nor artifacts of the probe. Separating object and probe during phase retrieval
results in more convincing results than methods relying on the standard flat field
correction. Interestingly, artifacts resulting from dirt are completely merged into
the reconstructed probe and do not spoil the object.
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Comparison of CTF based reconstruction and near-field ptychography
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Figure 5.27: Comparison between CTF based reconstruction and near-field ptychogra-
phy. (a) Composite image of CTF based reconstruction (lower left part) and near-field
ptychographic reconstruction (upper right part); scale bar denotes 2 µm. (b) Com-
posite image of power spectral density of (a). (c) Angular averaged power spectral
density of CTF based reconstruction (red) and near-field ptychographic reconstruc-
tion (blue).

Next, it shall be illustrated, to what extend reconstructions from flat field cor-
rected holograms differ from reconstruction achieved by near-field ptychography.
For this purpose, the data collected for near-field ptychography was analyzed us-
ing CTF based phase retrieval [11, 95, 97] for each lateral position including the
corresponding four defocus shifts. After that, a composite image was formed by
sub-pixel alignment and linear blending of all the single CTF reconstructions.
Thus the amount of data used for both phase retrieval algorithms – CTF and
near-field ptychography – was exactly the same. This is inevitable for a legitimate
comparison judging the quality of the reconstruction.
Fig. 5.27(a) reveals that in fact, it is hard to distinguish the CTF phase retrieval
result from near-field ptychography. Again, a closer look from a different perspec-
tive is useful.
To this end, the power spectral density of both reconstructions was calculated (de-
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picted in Fig. 5.27(b)). Despite very similar appearance in real space, CTF based
techniques suffer from high frequency noise visible in Fourier space and impeding
high resolution.
In contrast, near-field ptychography shows less noise. The same result is also illus-
trated by the angular averaged power spectral density (Fig. 5.27(c)): Whereas the
signals of the CTF and the near-field ptychographic reconstructions are essentially
the same for the lower spatial frequencies, both reconstructions start to deviate in
the high frequency range. The signal obtained by the CTF reconstruction shows
a noisy behavior for frequencies encoding a resolution beyond the 100 nm lines
and spaces. In the same region the frequency content of the reconstruction ob-
tained from near-field ptychography decays considerably. This is comparable to
the results presented for waveguide imaging: CTF based reconstructions are more
strongly affected by noise than reconstructions achieved by near-field ptychogra-
phy.
Near-field ptychography is an iterative method and compared to the one step
approach of CTF, it requires much longer computation time for phase retrieval.
Certainly, it is not the method of choice to provide a quick overview of the mea-
sured data. However, if reconstructions of high resolution and low noise along with
the information of the probe are needed, it has the tendency to show more details
than CTF based techniques.



6 Conclusion
The need to correct artifacts resulting from an imperfect illumination was the
main motivation of this work. Since conventional flat field correction is strictly
speaking not correct and impedes obtaining highly resolved micrographs, an alter-
native approach is advantageous. For far-field coherent X-ray imaging techniques,
simultaneous reconstruction of object and probe is feasible. Yet, so far, for the
optical near-field, phase retrieval that separates object and (undisturbed) probe
has not been achieved.

The main goal of this thesis was to design a phase retrieval algorithm that closes
this gap and can reconstruct object and probe in the optical near-field in a simi-
lar way as it is done in far-field ptychography [70, 71, 74]. To achieve this aim,
it is necessary to understand the fundamental differences of far- and near-field
images: Whereas non-uniqueness inherent in far-field intensity distributions can
be overcome by scanning a confined illumination across an extended sample, non-
uniqueness in the extended optical near-field is eliminated by translating the sam-
ple along and perpendicular to the optical axis.

To this end, the experimental and the algorithmic concept of far-field ptychography
was generalized by adding an additional degree of freedom to the displacements
of the sample, namely translations to different defocus positions. The benefits
for phase retrieval from defocus translations is well known for the optical near-
field [11]. Here, longitudinal diversity was combined with lateral diversity for the
purpose of phase retrieval for object and probe. It was shown that neither with
longitudinal diversity alone, nor with exclusively lateral diversity as in far-field
imaging methods, it is possible to calculate object and probe from a series of holo-
grams. It is the combination of both, that enables complete separation and artifact
free phase retrieval. Hence, a full data set for near-field ptychography consists of
holograms that show lateral and longitudinal displacements of the sample.

Experiments were performed with visible light in a parallel beam geometry using
a collimated laser and with X-rays at different synchrotron sources. It could be
demonstrated successfully that the developed method works equally well for a par-
allel beam (Fig. 6.1(a)) and a magnifying cone beam configuration (Fig. 6.1(b)).
Simulations and experiments indicate that strong phase objects can be recon-
structed without the need of linearization of neither the object’s transmission
function nor the propagator. Furthermore realistic phase shifting properties of a
test structure were determined by analyzing the reconstructed transmission func-
tion of the object. Finally, the comparison of reconstructions obtained by near-field
ptychography and reconstructions obtained by a method that inverts the contrast
transfer function reveals the potential of near-field ptychography to provide highly
resolved images with low noise.
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Figure 6.1: (a) Parallel beam near-field ptychography with visible light and modulated
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1 mm. (b) Magnifying cone beam near-field ptychography with hard X-rays. Object
and clean probe are reconstructed. Scale bars denote 10 µm.

Besides information about the sample, simultaneous reconstruction of object and
probe is a method to characterize extended wave fronts. To this end, it could be
beneficial to also record the decay of the illumination and to not use an implemen-
tation of phase retrieval for the effective, magnifying geometry. Instead, a direct
approach to retrieve curved wave fronts could provide new insights.

The experiments with visible light and modulated probe anticipate a further ap-
plication of near-field ptychography by swapping the roles of sample and beam
modulator. A specially designed ‘reporter’ object could be used to divert ra-
diation scattered by the beam modulator to higher angles than covered by the
numerical aperture of the detector and thereby enabling phase retrieval of the
beam modulating structure at super-resolution.
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Lensless, holographic X-ray microscopy is a non-invasive imaging technique 
that provides resolution on the nanometer scale. Therefore, a divergent, co-

herent and especially clean wave front impinging on the sample is needed. Yet, 
focusing X-rays by even the most advanced X-ray mirrors causes so called fi gure 
errors of high spatial frequency content. The results are strongly deteriorated 
intensity profi les that are often even more pronounced than the holographic im-
age of the sample itself.

A common strategy to compensate these fi gure errors is to divide the hologram 
by the pure intensity profi le of the beam (the so called fl at fi eld). However, this 
division is only valid in the limiting case of an illumination focused down to a 
point source. In reality, as a consequence of a fi nite spot size, one has to accept a 
loss in resolution when performing the fl at fi eld correction. An approach different 
from the described straightforward procedure is necessary. Here, the simultane-
ous reconstruction of object and probe is proposed using holograms which were 
not fl at fi eld corrected before phase retrieval.

To this end, a method has been developed that allows simultaneously recon-
structing object and probe in amplitude and phase from holographic intensity 
recordings. The experimental way of proceeding was mainly inspired by well-es-
tablished holographic full-fi eld X-ray imaging techniques that require holograms 
defocused to different degrees. Consequently, the conclusion seems reasonable 
that diversity in the optical near-fi eld arises mainly from variation of the propa-
gation distance of light. This so called longitudinal diversity is used to properly 
phase the transmission function of the sample of interest. The algorithmic strat-
egy of simultaneous phase retrieval for object and probe draws on far-fi eld pty-
chography where lateral translations of the sample create diverse diffraction pat-
terns. In view of the need for longitudinal diversity realized by shifts of the sample 
along the optical axis, ptychography has been generalized and adapted for the 
optical near-fi eld. Hence, translations of the sample in all three dimensions of 
space need to be exploited to collect enough information about object and probe 
such that both can be reconstructed simultaneously in amplitude and phase. 
Concepts have been put into practice by simulations as well as by experiments 
with coherent visible light and hard X-rays from synchrotron sources.

The presented approach offers the opportunity to perform high resolution im-
aging, to be extended to tomography and to be adapted to super-resolution 
experiments.
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