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To bring physiology and pathology of the human brain into better micro-
anatomical and histological context, studies with different methodologies 

are required. Established techniques such as electron microscopy or histology 
show limitations in view of invasiveness, labor-intense and artifact-prone 
sample preparation, as well as an adequate ratio between resolution and volume 
throughput. For this reason, X-ray phase-contrast tomography (PC-CT) has 
been proposed as a three-dimensional non-destructive imaging technique, 
which requires less effort in sample preparation and can assess larger volumes. 
Furthermore, it offers quantitative electron density based contrast even for 
unstained tissue. Up to now, however, PC-CT studies fell short in number of 
samples, so that structural alterations caused by neurodegenerative diseases 
cannot be distinguished from physiological inter-subject variations.

In this thesis, the scalability of PC-CT with respect to the required number 
of samples and resolution-to-volume-throughput is demonstrated, and the 
methodology is advanced with respect to data acquisition, processing and 
segmentation. In addition to the human cerebellum, cortex and hippocampus 
are studied. Concerning quantification and analysis of PC-CT data, this work 
introduces optimal transport analysis to obtain quantitative metrics of the 
cyto-architecture and to identify changes due to neurodegenerative diseases. 
For the case of Alzheimer’s disease, this workflow reveals a yet undescribed 
compactification of granular cells in the human hippocampus. This thesis 
also provides optimized configurations to study neural tissues with laboratory 
instrumentation, and – finally – provides new correlative imaging approaches, in 
particular with scanning electron microscopy.
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Preface of the series editors 
The Göttingen series in x-ray physics is intended as a collection of research monographs 
in x-ray science, carried out at the Institute for X-ray Physics at the Georg-August-
Universität in Göttingen, and in the framework of its related research networks and 
collaborations. 

It covers topics ranging from x-ray microscopy, nano-focusing, wave propagation, image 
reconstruction, tomography, short x-ray pulses to applications of nanoscale x-ray imaging 
and biomolecular structure analysis. 

In most but not all cases, the contributions are based on Ph.D. dissertations. The 
individual monographs should be enhanced by putting them in the context of related 
work, often based on a common long term research strategy, and funded by the same 
research networks. We hope that the series will also help to enhance the visibility of the 
research carried out here and help others in the field to advance similar projects. 

Prof. Dr. Tim Salditt 
Prof. Dr. Sarah Köster 
Editors 
Göttingen June 2014 

Preface to the present volume 

The three-dimensional cyto-architecture of the human brain and its inter-subject 

variation is still not sufficiently well known. A more quantitative micro-anatomy is 

required for the understanding of physiological functions and pathological mechanisms 

alike. Mapping the brain, however, requires further development in imaging methods, 

to visualize and quantify the architectonics of specific brain regions, and to compare 

data between individuals. 

The present thesis contributes significantly towards this goal by boosting the 

performance of phase contrast X-ray tomography with regard to image quality, 

throughput and image processing. To this end, different instrumentation, sample 

preparation and imaging configurations are compared and optimized. Capitalizing on 

this progress, the author has been able to segment structural features of ten thousands 

of neurons by machine learning and has analyzed structural changes between 

individuals of a larger cohort, using tools of optimal transport theory. 

In this way, she can show that nuclei of granular neurons in the hippocampus become 

more compact and heterogeneous in Alzheimer’s disease. This study presents an ideal 

blueprint for subsequent work, showing scalability in data acquisition and exploitation! 

 

Prof. Dr. Tim Salditt 
Göttingen, December 2021 
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Introduction 1
In Plato’s “Allegory of the Cave” [51], people imprisoned in a cave are restricted to
view only the cave wall straight ahead, where they see diffuse objects, and hear the
sounds thereof. Eventually, one of these prisoners gets free, gazes into other directions
in the cave, notices the source of light, and can even step outside the cave and see the
sun. The former prisoner realizes that the diffuse objects were no actual matter, but
the shadows of matter, and the sounds were echos, reflected by the cave wall.
Towards the ultimate goal of fully deciphering the brain, it is indispensable to look
at it from different perspectives, and also to incorporate different ways of collecting
information - since “it is themultiscale structure of complex systems that is responsible
for their major functional properties” [10]. “Multiscale” neuronal mechanisms are
found in different domains, which can be grouped into three as proposed in [13]: (i)
the spatial domain which refers to the level of detail (including molecules, synapses,

Fig. 1.1: Illustration of selected imagingmethods used in neuroscience. The horizontal
axis gives the spatial scale, and the vertical axis whether a tool is applied for planar or
volumetric investigations. “Quasi-3d” indicates the extension from 2d to 3d by serial
probing. A frame, if present, implies that a method is also applied to image the live
state.
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cells, regional segregations and beyond), (ii) the temporal domain which describes
neuronal network dynamics at sub-seconds, over years and across species, and (iii) the
topological domain which distinguishes the regionality of a network. It is essential to
ultimately combine these three domains at different scales, in order to bring function
into an anatomical context [47]. To this end, brain maps andmodels such as “BigBrain”
[4] rely on the combination of data from a wealth of experimental modalities. Fig.
1.1 depicts the overlapping and complementary nature of such methods which are
exemplified in the following.
The importance of the spatial domain (i) is demonstrated by the numerous top-down
or level-up mechanisms in neuronal tissues. For instance, neurons are embedded
in a network of glial cells which secrete molecules into the extracellular space. The
composition of this extracellular milieu differs among cell layers and is detected by
axonal growth cones, and therey directs axons during neurogenesis [20, 131]. In neu-
rogenesis, also the synaptic level is relevant: Synaptic connectivity follows high target
specificity and is mediated by cell-surface proteins, which can be studied by joint im-
munohistochemistry and genetic analysis [165, 200]. The fact that aged synaptic vesicles
are eventually removed from the release pool and degraded, raises questions on the
link between synaptic activity and synaptic vesicle trafficking. These also involve the
temporal domain (ii), and can be approached by computational modeling and subse-
quent multimodal experiments, such as correlative NanoSIMS (nanoscale secondary
ion mass spectrometry) and FM (fluorescence microscopy) [94]. The synaptic vesicle
supply in relation with activity is of particular importance for long-lived neurons, since
they can not undergo cell division in most cases. In fact, neurodegeneration is of
particular relevance in adult tissues and subcellular mechanisms can provide insight
into the death of entire cell populations. For instance, pathological protein aggregates
can be characterized by cryo-EM (electron microscopy) and mass spectrometry [5].
While neurodegeneration may occur across the brain, adult neurogenesis is restricted
to few brain regions such as the olfactory bulb and the hippocampus [61]. In these
regions, the integration (iii) of newly generated neurons can be of particular interest
and studied by FIB-SEM (focused ion-beam scanning-EM) at the level of dendrites and
synapses, at different time points (ii) [17]. Beside the apparent dynamics in the tem-
poral domain (ii), information is processed among topological scales (iii), i.e. within
confined regions, throughout the brain and beyond. The activity of single neurons
within such long-ranging circuits can be studied to unravel their synaptic plasticity, us-
ing a variant of FM [91] based on optogenetics [137]. On the much coarser mm-spatial
scale, also PET (positron-emission tomography [57]) andMRI (magnetic-resonance



3

imaging [199]) comprise different temporal and topological scales (ii,iii) in three di-
mensions (3d). PET, MRI, EM [17, 162] and histology or immunohistochemistry [4,
47] all cover a range of spatial and topological scales and hence provide anatomical
landmarks for multimodal brain maps. The portfolio of experimental methods in
neuroscience is supplemented by X-ray based methodologies. X-ray probing yields
benefits as non-destructive (3d) testing at a comparatively high resolution. Subcellular
details can be imaged by TXM (transmission X-ray microscopy), localized elemental
quantification by XRF (X-ray fluorescence), and structure analyzed using XRD (X-ray
diffraction) [32, 96]. Furthermore, PC-CT (phase-contrast computed-tomography) can
cover the temporal domain (ii), but has more importantly been proven to enable 3d
virtual histology at very different scales in the spatial and topological domains (i,iii)
[35, 83, 105, 142, 145, 189, 202]. Recently, the gap between the different domains was
narrowed by the correlation of functional in vivo FM-data of murine neuronal tissue
with its anatomical maps from EM and PC-CT [16].
In this work, propagation-based PC-CT1 is used to image neuronal tissues in three
dimensions. PC-CT is non-destructive, can achieve isotropic resolution in the tens
of nm, and can cover large (mm-range) fields-of-view, while being highly flexible in
sample preparation. As demonstrated in Ch. 3, 4 and 5,multiscale PC-CT can be im-
plemented in such a way that entire human brain regions and sub-cellular details are
imaged with a single setup. In Ch. 4, this is utilized to study tissue samples from ≳20
individuals in 3d, taking advantage of the considerable volume throughput in imaging
and in automatizedmachine-learning based segmentation. The image contrast reflects
the local electron density, such that subcellular structures as chromatin can be stud-
ied and contextualized within neurodegenerative mechanisms by optimal-transport
analysis (Ch. 4). Furthermore, dendritic connections can be tracked through neuronal
layers (Ch. 3). PC-CT is also used in a correlative manner with SEM (Ch. 5) and XRF
tomography (Sec. A.1). Such experiments can be implemented at accelerator-based or
table-top X-ray sources, at sub-µm resolution (Ch. 2).
PC-CT of neuronal tissues is a highly interdisciplinary field, and the following sections
are equally diverse: Sec. 1.1 and 1.2 give an introduction into neuroscience and a
basis for the understanding of brain structure. Since PC-CT is an emerging technique,
adequate sample preparation is raised in Sec. 1.3. Further, in PC-CT, the optimization
of phase-retrieval and tomography are crucial, which are briefly described in Sec. 1.4
and 1.5, respectively. The foundations and a practical workflow for advanced feature
analysis with optimal transport theory are addressed in Sec. 1.6. In each part, a variety

1In the following, “PC-CT” will refer to propagation-based phase-contrast computed-tomography.
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of aspects has to be reviewed, understood, and optimized in order to extend the operat-
ing range of PC-CT, such that it can substantially contribute to the understanding of
the brain.

1.1 The Healthy Brain

The central nervous system (CNS) can be defined as that part of the nervous system,
which lacks lymphatic structures and is isolated from potential internal perturbations
by the blood-brain-barrier, while it is protected from external aggressions by bony
structures [20]. Accordingly, the CNS comprises the brain and the spinal cord. Infor-
mation is processed in a complex and rapidly interacting network with a hierarchically
organization of specialized regions, spanning entire regions (tens of cm) down to
individual differentiations of neural precursor cells (tens of µm) [172]. In this context,
first the brain regions relevant for this work are introduced, followed by a description
of the cellular components of the CNS.

1.1.1 Selected Regions in the Human Brain

In this work, the cerebellum, the hippocampal formation, and the cerebral cortex are of
particular relevance, and depicted in Fig. 1.2.

Cerebellum The cerebellum is located in the posterior cranial fossa and is connected
to the brainstem through three cerebellar peduncles, and separated from the cerebrum
by the tentorium. It is responsible for the coordination of motion and can be associated
with related disorders, such as ataxia or hypotonia [167].
The gray matter (GM) of the cerebellum, the cerebellar cortex, has a characteristic
three-layer structure: themolecular layer (ML), which comprises stellate and basket
cells; the Purkinje-cell layer (PCL) with massive cell soma; and the granular layer (GL),
which shows Golgi cells and, most importantly, granule cells [167]. The neurons have
a spatial orientation which is in agreement with their purpose in signal processing, and
show afferent and efferent fibers throughout the layers. The GL is further bounded by
the white matter (WM), where fibers are pooled, and only a small number of neuronal
somata are present. ML, GL andWM can be identified in the histological section in
Fig. 1.2(c).
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Fig. 1.2: Spatial categorization of the brain regions studied in this work. (a & b) Sketch
of the human brain in sagittal and of one hemisphere in frontal plane, respectively.
Regions are color labelled: (light pink) cerebellum, (golden) hippocampal formation,
(brown) parts of the cerebral cortex which are of relevance for this thesis work, namely
the frontal lobe, the corpus callosum and the visual cortex. (c-e) Histological slices of
these regions, with labels on the significant neural structures: (c) cerebellum (stain:
HE), (d) hippocampal formation (stain: HE), (e) cerebral cortex (stain: NABC1). Fea-
ture labels can be found in the respective paragraphs in Sec. 1.1.1. Scale bars: 2
mm.
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Hippocampal Formation The hippocampal formation is part of the limbic system,
embedded in the left and right temporal lobe of the cerebal cortex. It serves declarative
long-term memory, emotions and vegetative functions, and is one of the regions first
affected in Alzheimer’s disease [167]. The hippocampal formation has an elongated
shape and it is 4-5.2 cm in length in its anterior-posterior axis [119]. In lateral view
in Fig. 1.2(d), the distinct layers of the hippocampal formation can be recognized:
the fimbria-fornix serves as landmark to identify the adjacent dentate gyrus (DG),
which is composed of granular neurons (10-18 µm diameter cell soma [36]). A further
hippocampal layer is the cornu ammonis (CA), which is a band of pyramidal cells and
can be divided into four subregions, CA1 through CA4. The DG forms a clamp around
the CA4. The CA region runs from CA4 to CA1 into the subicular cortex. Both in the
CA and the subicular cortex, neurons have a pyramidal shape of 25-35 µm in diameter
[3]. For information processing, these strata are interconnected, for the most part in a
unidirectional manner [3].

Cerebral Cortex The cerebral cortex represents 40% of the human brain by weight
[177] and comprises a number of different subregions. It is responsible for human-
specific competences, which include language, somatosensory and structural detection
tasks and conceptual thinking [177]. Matching these evolutionary achievements, the
major part of the cerebral cortex is referred to as neocortex, a six-layered structure
which is sketched in Fig. 1.3. Projection neurons represent 80% of all neurons [76],
and are primarily found in cortical layers for short- and long-range signaling [172]. Fig.
1.2(e) shows a histology image of cortical tissue.
The frontal cortex is located in the anteriority of the cerebral brain (cf. Fig. 1.2(a & b),
“Frontal Lobe”), whose neocortical neurons are afferent in layer I-IV for signals from
monoamine neurons, thalamus and other cortical parts, and efferent in layer V-VI to
conduct towards the spinal cord, thalamus, cranial nerve motor nuclei, neostriatum or
in III to other cortical regions [167]. Fig. 1.2 comprises two further cortical regions: In
the posterior pole, the visual cortex is responsible for tasks such as the combination of
images from both eyes and its analysis [167]. The two contralateral hemispheres of
the human brain are connected by the corpus callosum (CC), which is the major white
matter tract [172].
With a significant proportion of myelinated fibers, the cerebral cortex is affected in
Multiple Sclerosis, which is an inflammatory disease accompanied with demyelination
[173]. Further, in view of its massive and complex neuronal structure, the cerebral
cortex also shows signs of pathology in Alzheimer’s and Huntington’s disease [167].
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1.1.2 Neuronal and Glial Cells in the CNS

Fig. 1.3: Brain tissue cells, arranged in layers as in the cerebral cortex: Depending
on their target brain region, neurons extend from layer I over multiple layers (labels
on the right), embedded in a network of glial cells. During neurogenesis, radial glial
cells (GC) guide the neuronal projections from the pia, which is a layer of membranes
surrounding nervous tissue, and oligodendrocytes (OD), astrocytes and microglia (µG)
serve maintenance until cellular maturity is reached. Labels on the left indicate the
components of the leftmost neuron.

Two main groups of cells reside in the brain tissue: neuronal and glial cells, as depicted
in Fig. 1.3 with the indication of cortical layers I-VI [131].
Neuronal cells serve the storage and transmission of information by membrane protein
synthesis, generation of action potentials (APs) and release of neurotransmitters [131].
In addition to neurons, 50% of the cells in the human brain are glia (lat. nerve glue,
Rudolph Virchow) [6], also referred to as satellite cells, which tightly enclose each
single neuron to within 20 nm [131]. They hence organize neuronal connections, and
do not generate APs but rather have a modulating role: they interact with neurons
by segregation into the extracellular matrix, which is referred to as cerebrospinal fluid
[20, 100, 131]. Thereby, in principal all glial cells can modulate axonal growth, for
instance. Glial cells can be grouped into oligodendrocytes, astrocytes, microglia and
ependymal cells [20]. Glia-glia communication occurs directly via low-resistance gap
junctions. Importantly, glial cells are not postmitotic after differentiation, i.e. they are
still capable of cell division [20].
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Neuronal Cells

Neurons have been described as the computational units of the brain [118]. They are
very diverse in shape and function, for instance they secrete different neurotransmitters
[20]. Still, all neurons present the same kind of basic subcellular components, such as
soma and (ramified) dendrites, which are both unmyelinated, and an axon (cf. Fig. 1.3
left). Axons can be excitatory, inhibitory ormodulatory, and transport nutrients along
their microtubules [20]. Excitatory neuron-neuron communication happens at well-
defined synaptic junctions, from the axon of the efferent to the dendrite of the afferent
neuron, and is inhibitory in axo-somatic or axo-axonic connections. Presynaptically,
synaptic vesicles carry neurotransmitters, which are released at synaptic junctions and
activate highly specific receptors postsynaptically.
Apart from the contribution of ionotropic receptors at synaptic sites, the composition
of the ionic milieu in neurons is regulated by ionic channels [20]. These are evenly
distributed along the neuron, except for the axon: the axon is surrounded by a continu-
ously renewed sheath of central myelin [87], which has an isolating effect due to its
impermeability to ions. In turn, Na2+ channels accumulate along the axon at the nodes
of Ranvier (NoR), which are regular myelin interceptions [131]. The action potentials
propagate in a so-called “saltatory manner” and electrical conduction properties of
the axons are enhanced. Note that in general, neurons in the CNS become postmitotic
after differentiation.

Glial Cells

Oligodendrocytes Oligodendrocytes (OD) serve the myelination of axons [20]. Also,
they provide metabolic supply. ODs have a diverse appearance, however, they are all
characterized by a rather round cell soma of 10-20 µm in diameter and an oval nucleus
[20]. Further, ODs show slow proliferation, which might be an important aspect in the
context of neurodegeneration.

Astrocytes Astrocytes serve the physical structure of the brain, and together with
ODs, also contribute to the metabolic supply of synapses [20]. They show a high
variability in morphology, ranging from fibrous to protoplasmic soma. Astrocytes form
connections with capillaries and neurons, in close proximity to synapses and neuronal
cell bodies, where they regulate the concentration of neurotransmitters.
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Radial Glial Cells Radial glial cells (Radial GC) take an essential role during the
maturation of the mammalian CNS [131], in particular in the cerebrum and the
cerebellum. Notably elongated, these cells guide the neurons throughout the tissue,
perpendicularly to the neuronal layers under development, as indicated in Fig. 1.3.

Microglial Cells Microglia (µG) differ from other glias in structure and origin, play-
ing a phagocytic role as they target debris such as misfolded proteins. They derive
from still controversial precursors from the yolk sac [112], and can differentiate into
macrophages upon activation. In the healthy, mature CNS, µG are found in a resting
state and become activated and adopt a phagocytic phenotype during disease [20].

Ependymal Cells Ependymal cells are located at the ventricular surfaces, and show
a distinct morphology with apical cilia and microvilli [20, 131].

1.1.3 Open Questions and Challenges

The study of the human brain is accompanied by intrinsic limitations compared to
small animals, regarding fundamentally ethical aspects which compromise in vivo
experiments or tissue preservation protocols (delayed and prolonged chemical fixation,
inapplicability of perfusion). In addition, further factors such as the availability of
laboratory models, differences in overall size, physiochemical characteristics and
cellular densities present challenges in the context of brain pathology research [81]. For
this reason, neuroscientific questions have often recourse to small-animal models with
controversial translation to humans [110]: These questions may address the formation
of neuronal networks, the identification of neuronal or glial cell types, and the role
thereof in a temporal and spatial context. As such, cell types can be characterized by
three attributes: (i) morphology, (ii) electrophysiology and (iii) gene expression [146,
203]. For instance, methods exist to identify single µG and study them in vivo over
time [95, 132]. In this way, the understanding of single cell types can be expanded, and
further their role in progressive neurodegenerative disorders. Beyond the cellular level,
scientific questions further span protein and synaptic scales, as well as long-range
centimetric neural circuitry and tissue architecture. Further, the understanding of
neurogenerative mechanisms is a crucial part, also in view of neurodegeneration. The
importance of not only multiscale, but also multimodal approaches, is emphasized
by the three steps of neuronal network development according to [161]: (i) axon
guidance to target areas (transcriptomes), (ii) synaptic coupling within these target
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areas (connectomes), and (iii) formation of functional synapses (transcriptomes and
interactomes), where in brackets the respective methodology is given.
Methodological advancements, as pointed out in [131], continuously help to deepen
the understanding and will raise questions which can not be imagined today.

1.2 The Pathological Brain

Beside healthy, human brain tissue affected by Alzheimer’s Disease or Multiple Sclero-
sis is studied in this work, in view of better quantifying the respective pathologies on
the cellular level.

1.2.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a neurodegenerative disorder with a complex and mutifac-
torial etiology [7]. Since neuropathological changes in the initial stages of the disease
are not reflected by clinical symptoms, a clear, three-step (AT-N) biological definition
based in novel biomarkers for in vivo diagnostics has been proposed recently [93]:
(A) the presence of beta-amyloid (A𝛽) plaques defines the Alzheimer’s continuum,
and if this is true, (T) the burden of tau tangles (𝜏) determines if AD is present, and
finally, (N) the severeness of AD is staged through neurogedenerative indicators or
cognitive syndroms. Note that this staging scheme is a suggestion, but not established
in clinical routine diagnostics. For ex vivo neuropathological diagnostics [126], the
(ABC) staging consists of assessing (A) the overall A𝛽 burden according to Thal [183],
(B) the presence of 𝜏-tangles following Braak [19], and (C) the actual plaques among
A𝛽 as per CERAD [124].

Under pathological conditions, the amyloid precursor protein (APP) is cleaved by the
𝛽 and 𝛾 secretases, releasing A𝛽-peptides of different lengths to the extracellular space
through 𝛽-secretase [204]. A𝛽-peptide monomers eventually misfold and aggregate
into oligomers, forming insoluble A𝛽-plaques, deposited extracellularly to neurons. In
Fig. 1.4(a,c,d), the brown-colored structures are A𝛽-plaques. Note that in the virtual
histology data in (c & d, right), no A𝛽-correlated increase in electron density can be
found, which has also been reported in [188].
In axons, the microtubules are stabilized by regulated phosphorylation of the 𝜏-protein
[150]. Under pathological conditions, 𝜏-hyperphosphorylation causes detachment
from the microtubules and formation of insoluble aggregates in neuronal cytosol,
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Fig. 1.4: Histology of hippocampal tissue affected by Alzheimer’s disease: (a & b) In
conventional histology, Tau (brown) & ki-m1p (blue) stain accentuates the (a) DG-cell
band with parts of CA4, and (b) pyramidal neurons in CA1 which show a dominant
𝜏-pathology. (c & d, left) Conventional histology of hippocampal tissue using A𝛽4
(brown) and ki-m1p (blue) stain, with (right) the correlative virtual histology (PC-CT
of the unstained and paraffin-embedded tissue, (c) laboratory µCT and (d) synchrotron
nanoCT). Scale bars: 100 µm.

referred to as 𝜏-tangles. In Fig. 1.4(b), affected neurons emerge with brown color.
Further, it has been proposed that 𝜏-tangles can propagate across synaptic junctions,
inducing misfolding of 𝜏-protein downstream. As part of inflammation, glia are also
involved [150]. Multiple factors may contribute to neurodegeneration: presumingly,
A𝛽-plaques occupy and terminate synaptic junctions, and further, the destabilization
of microtubules induces deformation and lack of nutritional supply [150]. Generally,
AD is considered as A𝛽-induced tauopathy.
Further, disease hypotheses involving chromatin have been posited [41, 58, 59, 63,
120]. In the cell nuclei, genetic information is encoded in deoxyribonucleic acid
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(DNA) molecules. The complex of DNA and histones is referred to as chromatin. Het-
erochromatin indicates a tight association of DNA to the histones, while in euchromatin,
DNA is loosely packed and genetic information is largely accessible [114]. Such
chromatin-related hypotheses regarding AD-pathology may be considered as “granular
pathology” and ascribed to similar basic concepts. 𝜏-protein is linked to the protection
of DNA by regulation of euchromatin gene expression, which in turn is reduced due to
𝜏-hyperphosphorylation and oxidative stress [63, 72]. It has been reported that while
75% of the DNA is packed as euchromatin in controls, it is only 55% in AD brains [41].
Potential subsequent DNA-damage may result in slowed metabolism or may induce
cell cycle re-entry, which leads to apoptosis for post-mitotic adult neurons (i.e. neu-
rodegeneration) [63, 72]. This concept can be expanded to the theory of laminopathy
[58]. In controls, the nuclear envelope is smooth, while mutations induce disruptions
and invaginations in the nuclei of diseased neurons. Since the nuclear envelope acts
as an anchor for heterochromatin, the nucleo-cytoskeleton organization is affected,
resulting in perturbations of the nucleoskeleton and neuronal death [58, 120]. Beyond
chromatin, subcellular organelles such as mitochondria are sought to be related with
early stages of AD [84].

1.2.2 Multiple Sclerosis

Multiple Sclerosis (MS) is an inflammatory and neurodegenerative disease with au-
toimmune origin, which is pathologically characterized by chronic inflammatory
demyelination, accompanied with axonal loss and glial scar formation [173]. Pathol-
ogy emerges most prominently in the densely myelinated WM tracts, while its staging
in GM is particularly challenging [173].

Inflammation induces astrocytic proliferation through upregulation of glial fibrillary
acidic protein (GFAP) [168]. Increased abundance of astrocytes is associated with
repair by uptake of excitotoxic substances and limitation of damage propagation by
rigidification of tissue as well as revascularization. When this reaction is dispropor-
tionate to the initial trigger, it becomes pathological and is referred to as astrogliosis
[173], defined as cellular hypertrophy and disruption of individual astrocytic domains,
i.e. glial scar [156, 168]. Furthermore, astrocytic factors impede the differentiation
of OD-progenitor cells [22]. Compromised myelination affects neuronal activity and
survival. Damage to the myelin sheath followed by scar formation is also referred to as
“MS-plaques”. Such regions with late MS plaques display some perivascular inflam-
matory infiltrates, newly formed myelin sheaths with reduced thickness and reduced
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Fig. 1.5: Conventional histology of Multiple Sclerosis diseased cortical tissue stained
with NABC1 antibody, biopsy collected during surgery: (a) in overview, where MS-
relevant areas (RM, NA) are labelled, (b & c) with zoom-ins thereof. NABC1 serves
the delineation of myelin, premyelinating and actively myelinating oligodendrocytes.
Scale bar: 0.5 cm.

axonal density [143]. Furthermore, macrophages and products of myelin degradation
are absent. Fig. 1.5(a,b) depicts histopathological images of such remyelinated regions
(RM), characterized by MS-plaques which show a reduced myelin density [143]. Note
that this is distinct from normally appearing (NA) tissue, which shows normal axon
myelination in immunohistochemistry, i.e. no plaques in a radius of ≥ 10 mm and
also no further signs of abnormality [55], as depicted in Fig. 1.5(a,c).

Various stages of MS can be defined according to the histopathological aspect of the
lesions. The early stages are characterized by active myelin degradation and phago-
cytosis, while late stages are characterized by the absence of inflammatory infiltrates
and the presence of chronically unmyelinated axons [108, 143], which all show axonal
degradation [22]. Following the histopathological stages, MS can be categorized as
acute or chronic, with chronic MS presenting more cortical demyelination and more
extensive spreading [173]. Further, while white matter MS pathology features pro-
nounced signs of inflammation and gliosis, cortical MS directly affects neuronal cell
bodies due to their direct proximity. Finally, MS can be additionally classified by the
degree of OD regeneration and remyelination [22, 143].
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1.2.3 Open Questions and Challenges

The preceding sections outline the complex and multi-factorial processes in AD and
MS, in which causalities are still elusive.
MS, for instance, is generally considered as an inflammatory demyelinating disease
leading to impairment of axonal function, but simultaneously shows phases of pro-
gressive neurodegeneration [173]. Also, the onset of MS-pathology in the GM is so
far unclear [31]. The roles of astrocytes, showing regional specificity [75], and of µG,
segregating cytokines which have been proven neurotoxic but also neuroprotective [92,
129], are unresolved. With regard to therapeutical strategies, the understanding of the
glial scar in function [168], and the individual-specific degree of remyelination present
challenges [143]. Beyond the pathological mechanisms, the ultimate cause of MS is
controversial. Hypothesis aiming to explain this disorder range from inflammation,
for instance with viral origin [121], and autoimmunity, to a degenerative disorder, and
can be summarized as “immunological convolution” [178]. As a consequence, in [173],
the authors explicitly ask for “more sensitive imaging techniques”.
Also inAD, the disease pattern is still unresolved. The correlation between neuropathol-
ogy and behavioural and cognitive symptoms is incoherent, in particular in view of
A𝛽-plaque formation [23, 24] and its link to neurofibrillary deposits [175]. As in MS,
µG show ambivalent impact on neural networks, with a possible relation to patient
age, and urge investigations in 3d (Ch. 3). µG close to A𝛽-plaques may potentially
curb neurotoxicity, while away from these they could induce neuronal damage [176].
Further open questions target for instance the microtubule-actin-interplay [196] or
the role of nucleoli in disease mechanism. With their cellular importance and patho-
morphological changes, nucleoli receive much attention in AD-research. Still, the
exact mechanisms and their link to clinical symptoms are unidentified [133].
As stated in Sec. 1.1.3, innovative investigation methodologies raise novel questions
and pinpoint new directions (Ch. 4). Likewise, data analysis schemes are under dis-
cussion in order to appropriately delineate diseases with such complex patterns.
In general, understanding disease mechanisms requires multilevel studies, in particu-
lar the association of post mortem with in vivo temporal findings [55]. Guidelines exist
to diagnose AD andMS in patients, based on respective biomarkers [93, 184]. However,
MRI-based misdiagnosis frequently occurs due to insufficiently defined diagnostic
criteria [55], calling for even more profound correlative imaging. The combination
of methodologies can also help to better understand the induced neurotoxicity by
accumulation of trace elements in the brain [34, 84]. A possible approach is outlined
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in Sec. A.1.
Beyond human in vivo studies, animal models based on targeted genetic modifications
have made a decisive contribution to the current state of knowledge in neurodegenera-
tive diseases [44, 97]. Frequently used animal models focus on single pathologies of a
disease, which would mimic APP-, A𝛽- or 𝜏-alterations for AD-related research. Such
models show overexpressed phenotypes on a confined region compared to humans.
General limitations of small animals include the reduced complexity of neuronal
circuits and glial network, deficiency of vascular and immunologic components, as
well as short life-time, reduced genetic diversity and intrinsic differences in brain
development and function [44]. Animal models are generally considered appropriate
to develop disease hypotheses, while their translation to humans often fails due to
poorly defined preclinical studies [44, 97]. Studying single pathologies is advantageous
to understand their precise and isolated functioning, but, at the same time, misses
the complex patterns of human diseases. Combinations of models show exceeding
complexity due to interrelationships between the models. Such interrelationships are
hardly distinguished from desired disease-related effects, and combinations of models
are hence less utilized [97]. Human-like phenotyping in models and human pheno-
typing itself require sensitive methods and multiomics approaches [7, 44]. Analysis
methods which attempt to capture the neurodegenerative disease complexity are part
of this work: (MS) Ch. 3, (AD) Ch. 4.

1.3 X-ray Interaction with Matter

In this thesis, neuronal tissues are studied by phase-contrast projection-imaging. Typi-
cally, such experiments are conducted with hard X-rays, i.e. on the order of 6-100 keV.
In this range, two interaction processes are significant: X-rays undergo photoelectric
absorption or Rayleigh scattering, with relative cross section depending on the energy
𝐸 of the probe and the atomic number 𝑍 of the object. Fig. 1.6a) shows their cross
sections for three materials relevant in this work taken as examples. The underlying
X-ray interaction processes serve a basis for quantitative understanding of the contrast
mechanisms in image formation, and can be found in more detail in [1, 138, 160].
However, the overall X-ray interaction with extended objects is better represented by
the complex refractive index, as defined in Sec. 1.3.1 and plotted in Fig. 1.6b). Sample
preparation protocols can be adjusted accordingly, which is described in Sec. 1.3.2.
Note that Compton scattering, which describes inelastic processes between photons
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and matter, is dominant at > 100 keV only and hence not relevant for this work.

Fig. 1.6: X-ray interaction for three exemplary materials: brain tissue (ICRP), paraffin
wax and OsO4. (a) Plot of the cross sections of photoelectric absorption (P.E.) and
Rayleigh scattering (R.S.), and their total. (b) Plot of the complex refractive index
increments 𝛿 and 𝛽. Values were taken from [166], using the NIST compound catalog.

Photoelectric Absorption In photoelectric absorption, atoms take up discrete pho-
ton quantiles, resulting in transitions of bound to unbound electron states and excessive
momentum, hence photoionization. Away from absorption edges, absorption occurs
with a cross section of

𝜎p.a. ∝ 𝑍𝑚

𝐸3 ,

with 𝑚 = 4.5 for light, 𝑚 = 4 for heavy atoms [160].

Rayleigh Scattering Elastic interaction between photons and stationary electrons
is referred to as Rayleigh scattering. It describes the phase response of oscillating
electrons which are disturbed by an incoming electromagnetic field. Note that the cross
section of Rayleigh scattering is related to 𝐸 via the form factor, but more importantly
it depends on the presence of electrons. At the level of detail considered in this work,
this scales up to the integrated electron density distribution 𝜌𝑒(𝑥, 𝑦, 𝑧)Δ𝑧𝑑𝑥𝑑𝑦 [138].
Further, Rayleigh scattering serves as a basis for the derivation of the refractive index.
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1.3.1 The Complex Index of Refraction

The complex index of refraction 𝑛 is defined as the ratio of the speed of light in vacuum
and its phase velocity in a given material [1, 160]

𝑛:= 𝑐
𝑣

= 1 − 𝑟𝑒𝜌𝑒
𝜆2 [1 + 𝑓 ′

𝑆(Δ𝑘⃗) + 𝑖𝑓″
𝑆(Δ𝑘⃗)]

= 1 − 𝛿𝐸 + 𝑖𝛽𝐸 , (1.1)

with the classical electron radius 𝑟𝑒 and the spatial frequency 𝑘⃗. In this presentation, 𝑛
is expressed in terms of electron density 𝜌𝑒 and the scattering length 𝑓𝑆 = 𝑓 ′

𝑆 + 𝑖 ⋅ 𝑓″
𝑆 .

Here, the decomposition into the real part 𝑓 ′
𝑆 and the complex part 𝑓″

𝑆 indicates the
induced phase shift and photon absorption, respectively. Fig. 1.6b) shows the real
and complex value increments 𝛿𝐸 and 𝛽𝐸 for three materials relevant in this work
taken as examples. 𝑛𝐸 indicates the energy-dependence of 𝑛, if relevant, implying
𝐸 = ℎ𝑐

𝜆 = ℎ𝑐𝑘
2𝜋 (ℎ: Planck’s constant, 𝜆: wave length, 𝑘: wave number).

Assume a single-material object which is sufficiently thin to fulfill both projection
approximation 2 and the first Born approximation 3. Then, away from absorption edges,
the real part of the refractive index is obtained as [1]

𝛿𝐸 = 𝜆2 ⋅ 𝑟𝑒𝜌𝑒
2𝜋

∝ 𝜌𝑒
𝐸2 , (1.2)

such that feature contrast forms as Δ𝛿𝐸 ∝ Δ𝜌𝑒. For the complex part, again away
from absorption edges,

𝛽𝐸 = 𝜆𝜇𝐸
4𝜋

∝ 𝜌atom
𝑍𝑚−1

𝐸4 (1.3)

can be found, with the absorption coefficient 𝜇𝐸 [160].

2In the projection approximation, the material is regarded as an extended, single scatterer, whose overall
scattering properties are the sum along its in-depth extensionΔ𝑧: ̄𝛿𝐸 = ∫ Δ𝑧𝛿𝐸𝑑𝑧 and ̄𝛽𝐸 = ∫ Δ𝑧𝛽𝐸𝑑𝑧.
Note that an alternative expression for ̄𝛿𝐸, ̄𝛽𝐸 can be found in the Alvarez-Macovski basis [2]. Further,
scattering events within the object, which change the optical path, are neglected [138, 195]. This
assumption holds in the regime of Δ𝑧 < 2Δ𝑥2

𝜆 , withΔ𝑥 the smallest resolution element. ForΔ𝑥 = 200
nm and 𝐸 = 8 keV, the maximum object thickness would be 516 µm, for 𝐸 = 13.8 keV it is 890 µm.

3In the first Born approximation, only single scattering events are considered, i.e. each photon of the
unperturbed incident wavefield is scattered once at most [138].
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1.3.2 Tuning the Interaction

Eq. (1.1), (1.2) and (1.3) convey that in radiography, the image contrast is formed
according to the complex refractive index, which is dependent on the probe energy 𝐸.
Since 𝛿𝐸 ∝ 𝐸−2 and 𝛽𝐸 ∝ 𝐸−4, an object can be sampled with relatively low 𝐸 and
close to absorption edges to exploit 𝛽𝐸 [106], or with increased𝐸 to elevate the relative
amount of phase shift 𝛿𝐸 compared to X-ray absorption 𝛽𝐸 [154, 180]. Apart from the
probe energy, X-ray interaction can be further directed by the choice of sample material
(cf. Fig. 1.6b)): (i) the electron density 𝜌𝑒 affects the real part of 𝑛 and (ii) the atomic
number 𝑍 the complex part. This can be exploited for targeted weighting of either or
both parts. In particular regarding biological specimens, many sample preparation
techniques exist, whose steps affect – intentionally or unintentionally – the feature
properties 𝜌𝑒 and 𝑍. For instance, procedures from conventional histology have been
adapted for PC-CT [25, 26, 127]. In the following, X-ray interaction is considered with
a special attention paid to the sample properties, i.e. to brain tissue.

Modification of the Electron Density Standard protocols from historically es-
tablished techniques, such as histology and electron microscopy, involve chemical
fixation, dehydration, optional staining, and embedding. The manipulation with che-
mical reagents comes with modifications in 𝜌𝑒 as a side effect, which can be exploited
in X-ray imaging. For one, it has been shown that fixation of brain tissue with formalin
induces a weight increase of about 3-40% [103, 109], depending on the solution con-
centration, the optional addition of salts and the temperature. This weight increase
is composed of an initial phase of shrinkage because of tonicity, followed by tissue
swelling due to a bunch of factors, one of which consists in osmotic effects in aqueous
media [8]. Fixation with osmium leads to an increase in diameter of nerve fibers by
2-7% [48, 88]. The additional volume correlates with the specific weight in the sample,
suggesting aggregation of heavy metal [8]. In dehydration, the degree of tissue shrink-
age is essentially conditioned by the solvent, and slightly affected by the succession of
dehydration [21]. It may also be bypassed completely, by choosingwater-based stains or
embeds [28]. Consequently, volumetric changes and solvent displacements affect the
electron density 𝜌𝑒. Tab. 1.1 outlines examples of reported tissue deformation during
preparation, in comparison with the solvents’ intrinsic electron density. Preparation
protocols can hence be adapted to direct 𝜌𝑒 and thereby 𝑛.
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Sample Type PBS Ethanol Paraffin

𝑑 (µm)
Purkinje Cells 15.8 14.7 14.7
Granular Cells 6.3 4.4 4

𝑉 (µm3)
Purkinje Cells 2065 1663 1663
Granular Cells 130.9 44.6 33.5

𝑉 /𝑉PBS (%)
Purkinje Cells 100 81 81
Granular Cells 100 34 26

𝑉 /𝑉PBS (%) Brain tissue 115∗1 80 68
𝑉 /𝑉PBS (%) Brain tissue 125∗2 90 87∗3

𝜌𝑒 (nm−3) 337 269 311
𝜌𝑒/𝜌𝑒, PBS (%) 100 80 92

∗1 Infiltration with formalin, ∗2 infiltration with osmium,
∗3 infiltration with methacrylate.

Table 1.1:Reported values on tissue deformation, (top) formurine
cerebellum tissue [187] under the assumption of spherical fea-
tures with diameter 𝑑 and volume 𝑉 = 𝜋

6 𝑑3, (center) for guinea
pig brain tissue (values have been read off the plots in [8]), and
(bottom) electron density 𝜌𝑒 for different solvents according to
[187].

Modification of the Atomic Number For brain tissue, relatively low atomic num-
bers 𝑍 ≈ 6 [107], with accordingly low degree of photoelectric absorption, are found.
Chemical compounds can be bound to sample features of interest with high specificity,
in order to elevate the absorption locally. Traditionally, from electron and light mi-
croscopy (EM, LM), such stains are applied as metal treatments, namely OsO4, PTA,
UA and HgS, which intrinsically show high molecular weights of 190.2, 183.9, 238.1,
and 232.7, respectively [78, 151]. In addition to contrasting, they also accomplish tissue
fixation.
Osmium tetroxide (OsO4) binds to phospholipid headgroups, emphasizing membrane-
rich cortical structures such as fiber tracts particularly [78]. Referred to as “rOTO”
(reduced OsO4, thiocarbohydrazide (TCH), OsO4) [122, 123, 198], protocols from EM
have been optimized for bulk tissue processing, resulting in adequate feature contrast
and uniform tissue penetration [86]. rOTO serves state-of-the-art connectomic studies
in SBF-SEM [79, 80] or X-ray tomography [105]. As a supplement to OsO4-preparation
or as a standalone, phosphotungstic acid (PTA) or uranyl acetate (UA) can be added
to contrast synaptic complexes, fibers or membranes [78]. The performance of both
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substances depends on parameters as pH-levels, impregnation duration, chemical
fixative, the stain being water- or alcohol-based, and temperature, each regulating
staining intensity. Compared to its dry state, tissue weight may double [89, 90].
Early neuronal connectivity studies with LM have been accomplished using the Golgi
method [65, 66, 67], elaborated in view of penetration to Golgi-Cox [43, 149]. In a
sequence involvingmercurid chloride, potassium chromate and potassium dichromate,
metallic mercuric sulfides (HgS) label about 3-10% of the neuronal axons and dendrites
[30].

1.3.3 Open Questions and Challenges

The goal of studying neuronal connectivity and structure in mm3-sized volumes at
the synaptic level in 3d imposes constraints on sample preparation at two levels: (i)
structural preservation and (ii) structural contrasting in view of the imaging method.
Concerning (i), special attention is given to the preservation of DNA, RNA, proteins and
lipids, to which end brain banks constantly question standard preparation protocols
[54]. Autolysis sets in shortly post mortem [37], where protein dephosphorylation can
be observed within minutes [54]. Conventional fixation of ex vivo tissues occurs by
infiltration, and relies on uniform tissue penetration by the fixative, and on sufficient
fixation capabilities by the fixative itself. Further, this has to be achieved in a reasonable
time. This approach is deficient in ultrastructure preservation, and perfusion or high-
pressure freezing can be utilized instead [157]. In this context, correlative imaging
can help to ensure the presence of delicate structures (cf. Ch. 5). Further, tissue
preparation protocols are often first developed for animals, and later translated to
human samples. In this context, ethics, the agonal state, post mortem delay, and
storage temperature are critical and limiting factors [54]. It is also important to bear
in mind that there are differences in protein degradation: they can be classified as
“resistant” (e.g. hyperphosphorylated 𝜏, present in AD) or “vulnerable” (e.g. normal
𝜏) [54]. On the cellular level, soft-tissue processing can induce feature deformation
(cf. Tab. 1.1, or a recent study in [155]), which is possibly also observed in Ch. 4, Fig.
4.14. Regarding (ii), it remains an open discussion whether it is preferential for phase-
contrast imaging to mix and elevate contributions from 𝛿𝐸 and 𝛽𝐸 by heavy-metal
staining, or to solely tune 𝛿𝐸 by embedding, for instance.
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1.4 Phase-sensitive Imaging

Contrast formation according to the real and the complex part of the refractive index 𝑛
leads to fringy intensity patterns4 caused by self-interfering wavefronts in the detector
plane, which are translated to the object plane by phase-retrieval algorithms. In this
work, phase-contrast is exploited in particular for imaging of unstained neuronal tissue
(low 𝑍).

1.4.1 Hologram Formation

The propagation of a monochromatic plane wave Ψ𝐸(𝑥, 𝑦, 𝑧) from 𝑧 = 𝑧01 = 0 to
𝑧 = 𝑧12 ≥ 0 in the three-dimensional space is described by the free-space Fresnel (aka.
diffraction or propagation) operator [138]

𝒟𝐹𝑟 [⋅] = ℱ−1
2 [exp(−𝑖|𝑘⃗⊥|2

2𝜋 ⋅ 𝐹𝑟
) ⋅ ℱ2 [⋅]] , (1.4)

where compared to [138], one part of the propagation factor is approximated to be
constant and hence disregarded. A further adaptation is to write eq. 1.4 in terms
of unitless quantities [74]: this affects the spatial frequency 𝑘⃗⊥ = ( 2𝜋𝑛𝑥

𝑁𝑥
, 2𝜋𝑛𝑦

𝑁𝑦
) and

the Fresnel number 𝐹𝑟 = Δ𝑥2

𝜆𝑧12
(𝑁𝑥, 𝑁𝑦: number of discrete sampling points, and

𝑛𝑖 ∈ [−𝑁𝑖/2, 𝑁𝑖/2], Δ𝑥: pixel size in the sample plane, 𝜆: X-ray wave length, and 𝑧12:
propagation distance). ℱ2[⋅] denotes the 2d-Fourier transform (cf. Sec. 1.5.1).
Importantly, 𝐹𝑟 classifies the optical regimes, which are (i) the contact regime for
𝐹𝑟 ≫ 1, (ii) the Fresnel regime for𝐹𝑟 ≲ 1, and (iii) the Fraunhofer regime for𝐹𝑟 ⋘ 1.
The relevant imaging regime in this thesis is the Fresnel regime, and which can be
further distinguished into the holographic (cf. Sec. 1.4.3) and the edge-enhancement
regime (cf. Sec. 1.4.4).
If an object is positioned at 𝑧01, the wavefield Ψ𝐸(𝑥, 𝑦, 𝑧01) is disturbed according to
the local optical properties 𝑛𝐸(𝑥, 𝑦, 𝑧) of the object. If this object is sufficiently thin,
the respective wavefield can then be described as

Ψ𝐸(𝑥, 𝑦, 𝑧12) = 𝒟𝐹𝑟 [Ψ𝐸(𝑥, 𝑦, 𝑧01) ⋅ exp(−𝜇𝐸(𝑥, 𝑦) − 𝑖Φ𝐸(𝑥, 𝑦))] ,

4Holographic intensity fringes are observed in the defocused detector plane, if phase-contrast CT is
implemented via free-space propagation, as introduced below.
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where the probe and the object transmission property𝜇𝐸(𝑥, 𝑦) = 2𝑘 ̄𝛽𝐸(𝑥, 𝑦) determine
the amplitude, and the diffraction the complex phase factor Φ𝐸(𝑥, 𝑦) = 𝑘 ̄𝛿𝐸(𝑥, 𝑦).
However, the phase property is not directly measurable, but, as predicted by Gabor’s
self-interference [60], encoded in the intensity pattern

𝐼𝐸(𝑥, 𝑦, 𝑧12) = |Ψ𝐸(𝑥, 𝑦, 𝑧12)|2. (1.5)

The propagator𝒟𝐹𝑟, eq. (1.4), forms the basis to develop a number of methods utilized
in this work in order to retrieve the phase Φ [74, 116, 160, 186].

The observation that for 𝑧12 = 0 follows 𝐹𝑟 → ∞ and the measured intensity
𝐼𝐸(𝑥, 𝑦, 𝑧12) = |Ψ𝐸(𝑥, 𝑦, 0)|2 ⋅ exp(−2 ̄𝜇𝐸(𝑥, 𝑦)) comprises only absorption informa-
tion of the object, and no phase, demonstrates the need for free-space propagation in
order to exploit contrast based on variations of 𝛿𝐸(𝑥, 𝑦) and hence 𝜌𝑒 in the object. Eq.
1.5 is a nonlinear mapping, which allows for more generic phase retrieval algorithms,
such as NLT and AP in Sec. 1.4.3.

Provided a slowly varying phase and weak absorption, the Fourier transform of eq. 1.5
can be approximated as the contrast-transfer function (CTF)

̂𝐼𝐸(𝑘⃗⊥, 𝜒)
̂𝐼0

= 2𝜋𝛿𝐷(𝑘⃗⊥) + 2 sin(𝜒)Φ̂𝐸(𝑘⃗⊥) − 1
2
cos(𝜒) ̂𝜇𝐸(𝑘⃗⊥), (1.6)

with 𝜒 = Δ𝑥2|𝑘⊥|2
4𝜋⋅𝐹𝑟 and ̂⋅ denotes the Fourier transform. The CTF serves as the basis

for the linearized phase-retrieval algorithm in Sec. 1.4.3, also referred to as “CTF-
approach”.

1.4.2 A Note on Coherence

At this point, a note on the energy spectrum, symbolized with index 𝐸, shall be made:
from the nature of sin-cos-behavior in eq. 1.6 (or as also found for the more general
case), where 𝜒, Φ and 𝜇 are energy-dependent, a polychromatic spectrum would
lead to poorly defined contrast. Monochromaticity is required in order to achieve
contrast according to eq. 1.5 or 1.6 (or see the respective phase-retrieval schemes in
Sec. 1.4.3), but not in order to observe interference per se. Hence, X-ray phase-contrast
experiments in the holographic regime find application in setups with considerable mo-
nochromaticity5, i.e. in synchrotron setups. Accelerator-based X-ray sources are often
5Monochromaticity is distinct from temporal coherence for pulsed radiation. Practically, also pink beams
(Δ𝐸 ≳ 10 keV) can show significant temporal coherence, referring to wave packets being “in phase”.
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utilized in combination with a Si(111) monochromator which reduces the bandwidth
Δ𝐸 (for instance, the P10 beamline at DESY has a bandwidth of Δ𝐸 = 1 eV at
10 keV [136]). In laboratory X-ray sources, the bandwidth can easily span Δ𝐸 =
35-100 keV. Hence, for phase-contrast imaging with polychromatic X-ray sources, the
assumption of holographic contrast formation (→ CTF) is not suitable. Instead, the
edge-enhancement regime (→ near-field TIE, transport of intensity equation) is more
appropriate: As described in Sec. 1.4.4, the TIE reveals a simple linear 1/𝐸-dependent
scaling, and otherwise encodes the X-ray energy only in 𝐼𝐸, such that spatial coherence
becomes much more important [140, 197].
Spatial coherence can be defined as 𝜉⊥ = 𝜆

2⋅𝑠/𝑧01
[1]: Due to the low divergence of

synchrotron radiation, coherence-beamlines have a source spot 𝑠 much smaller than
its distance to the endstation 𝑧01 (again, for P10 as an example of a primary source
at the GINIX-endstation in parallel-beam (PB) geometry: 𝑠 = 39 µm (h) or 𝑠 = 250
µm (v) [134], 𝑧01 ≈ 86.1 m, 𝐸 = 12 keV; or with a secondary source (waveguide, WG)
in cone-beam (CB) geometry: 𝑠 = 30 nm, 𝑧01 = 125 mm, 𝐸 = 8 keV [171]). They
exhibit high spatial coherence 𝜉⊥ = 114 µm (h, PB) or 𝜉⊥ = 323 µm (CB), respectively,
which is 100-1000 times the sampling length, allowing for deep-holographic imaging
at 𝐹𝑟 ≈ 10−4. Such small Fresnel numbers give access to more modulations in eq.
1.6 (or in its more general case), and allow for increased maximum spatial resolution.
Laboratory nanofocus setups, such as the TINa setup in Ch. 2, are typically operated
with 𝑠 = 300 nm and 𝑧01 = 1.1 mm (at 𝐸 = 11.46 keV), resulting in 𝜉⊥ = 198 nm ≪
𝜉⊥,GINIX. Laboratory 𝜉⊥ is on the order of the spatial sampling length, such that the
Fresnel regime is restricted to 𝐹𝑟 ≈ 1. Therefore, holographic applications are mostly
implemented at large-scale facilities, while edge-enhancement is implemented at both
accelerator-based and laboratory X-ray sources. For further readings on coherence
properties, [69, 138, 192] are suggested.

1.4.3 Wavefront Reconstruction I: Holographic Regime

In the holographic regime, i.e. for 𝐹𝑟 ≪ 1 or when sin(𝜒) ≠ 𝜒 in eq. 1.6, for instance,
CTF, NLT and AP phase retrieval find application in this work.

Contrast-Transfer Function (CTF) For homogeneous objects, a linear behavior
between absorption and phase shift within the object can be assumed: ̂𝜇𝐸 = 2𝛽𝐸

𝛿𝐸
Φ̂𝐸.

Provided that the object is further weakly absorbing and 𝛽𝐸
𝛿𝐸

is known, least-square
minimization relates the experimentally measured intensity 𝐼exp𝐸 (𝑥, 𝑦, 𝑧12) to the CTF-
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expression in eq. 1.6, and delivers a unique solution from which the phase is directly
accessible [40]:

ΦCTF
𝐸 (𝑥, 𝑦, 𝑧01) = ℱ−1

2

⎡
⎢
⎢
⎣

𝑁
∑
𝑛=1

(sin(𝜒𝑛) + 𝛽𝐸
𝛿𝐸

cos(𝜒𝑛)) ⋅ ℱ2 [𝐼exp𝐸 (𝑥, 𝑦, 𝑧𝑛) − 1]
𝑁
∑
𝑛=1

2(sin(𝜒𝑛) + 𝛽𝐸
𝛿𝐸

cos(𝜒𝑛))2 + 𝛼(𝑥, 𝑦)

⎤
⎥
⎥
⎦

.

This reconstruction scheme has been introduced by Peter Cloetens and colleagues,
and gained popularity due to its practicability (low cost at high quality for weakly

interacting objects). Note that
𝑁
∑
𝑛=1

serves the combination of data sets recorded at 𝑁

different 𝐹𝑟𝑛, by modification of 𝑧12. As also described in [40], reconstruction with a
range of 𝐹𝑟𝑛 is advisable in order to account for (i) zero-crossings in the CTF due to
the Talbot effect [39, 181], and (ii) the twin-image problem6, at best for four carefully
chosen 𝐹𝑟𝑛 [201]. In particular for 𝑁 = 1, a suitable choice of the two regularization
parameters in𝛼(𝑘⃗⊥) can account for residual absorption and poorly represented spatial
frequencies [38].

Non-Linear Tikhonov (NLT) For a more general case, which is based on the non-
linear version of eq. 1.6 but still assuming 𝛿𝐸

𝛽𝐸
-coupling (the homogeneous-object

assumption), or when the application of constraints is desirable (cf. next paragraph
on AP), the least-square minimization in phase reconstruction can be extended by
non-linear Tikhonov regularization, and is referred to as NLT. Such phase-retrieval
schemes require the integration of an iterative solver, due to the non-linearity in eq.
1.5 in contrast to the linear CTF (eq. 1.6). The choice of initialization determines
whether a local or global minimum will be reached. The 𝛿𝐸

𝛽𝐸
-coupling allows for the

exact computation of derivatives in gradient descent optimization, which makes the
algorithm particularly efficient in convergence and hence in computational effort. The
NLT is implemented in [115], while the publication by SimonMaretzke and colleagues
on this NLT-scheme is in preparation. Note that non-linear phase-retrieval schemes
are gaining in popularity, and that a similar approach has been developed by scientists
at the ID16A-beamline at ESRF, Grenoble (publication in preparation).

6Due to geometrical optics, there is not only the real image at 𝑧12, but also its virtual twin at −𝑧12. Phase
retrieval results in a sharp image in the object plane with, depending on the well-posedness of the
problem in terms of experimental parameters, an overlay of the defocused twin [68].
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Alternating Projections (AP) AP algorithms are generally used to compute a best
approximation point on two intersecting or non-intersecting sets (i.e. the experimental
data and the respective assumptions), by serial projecting onto these sets7 [18]. Hence,
the derivative is not computed analytically, but approached via these projections. The
AP phase-retrieval scheme is another example of iterative reconstruction algorithms,
and only the most basic representative of the group of projection algorithms. It recon-
structs wavefronts via

ΨAP
𝑛+1 = 𝑃𝑆 (𝑃𝑀 (Ψ𝑛)) ,

where the operator 𝑃𝑀(⋅) matches the iterated (guessed/computed) with the recorded
intensities, and 𝑃𝑆(⋅) comprises object-space constraints, including the support, or
some prior knowledge on phase or amplitude magnitude [73, 193].
For the holographic data in this thesis, AP-reconstruction may take 100-times more
iterations than NLT, at potentially “better quality”. AP is less restrictive on the phase
problem as it does not rely on the 𝛿𝐸

𝛽𝐸
-coupling, and therefore, the AP-initialization

should be reconsidered: initialization with ones (or random values) instead of the
CTF-solution can be advantageous to approach the global minimum, since it might
lead to optimization in a local side-minimum otherwise.

1.4.4 Wavefront Reconstruction II: Edge-enhancement Regime

The CTF-equation can be further simplified, by assuming small propagation distances
𝑧12 (i.e. sin(𝜒) ≈ 𝜒) and a weak and homogeneous object (i.e. ∇⊥𝐼𝐸 ≈ 0), resulting in
the near-field transport of intensity equation (TIE) [138, 182]:

𝐼𝐸( ⃗𝑘⊥, 𝑧12)
𝐼𝐸( ⃗𝑘⊥, 0)

= 1 − 𝑧12
𝑘

∇2
⊥Φ𝐸(𝑘⃗⊥, 𝑧12) . (1.7)

The near-field TIE provides the basis for phase retrieval in the edge-enhancement
regime.

Single-Material Object (SMO) Under the assumption of an object with a fixed
ratio 𝛿𝐸(𝑥, 𝑦)/𝛽𝐸(𝑥, 𝑦) = 𝛿𝐸/𝛽𝐸 in eq. (1.7), the SMO-equation according to David

7Here, “projection” refers to the dimensionality reduction in a purely mathematical sense and not in the
practical tomographic.
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Paganin and colleagues can be derived [139]:

ΦSMO
𝐸 (𝑥, 𝑦) = 𝛿𝐸

2𝛽𝐸
⋅ ln⎛⎜

⎝
ℱ−1

2
⎛⎜
⎝

ℱ2 ( 𝐼𝐸(𝑥,𝑦,𝑧12)
𝐼0

)
𝛿𝐸𝑘

2𝛽𝐸𝐹𝑟 ⋅ |𝑘⊥|2 + 1
⎞⎟
⎠

⎞⎟
⎠

.

Note that theoretically, 𝛿𝐸/𝛽𝐸 is selected specifically for each energy, but with broad
X-ray spectra in practice chosen as a single effective value 𝛿𝐸/𝛽𝐸 = 𝛿/𝛽. Depending
on the severeness of violating these presumptions, image quality may be degraded due
to smear.

Modified Bronnikov Algorithm (MBA) Proceeding from the near-field TIE with
the assumptions of a pure phase (i.e. 𝜇𝐸(𝑥, 𝑦) = 0) and weakly interacting object, and
a plane wave with initial intensity 𝐼0, the simplified TIE leads to

ΦMBA
𝐸 (𝑥, 𝑦) = 2𝜋 ⋅ 𝐹𝑟 ⋅ ℱ−1

2
⎛⎜
⎝

ℱ2 ( 𝐼𝐸(𝑥,𝑦,𝑧12)
𝐼0

− 1)
|𝑘⊥|2 + 𝛼

⎞⎟
⎠

,

according to Amela Groso and colleagues [70, 71]. From comparison with SMO, resid-
ual absorption can be incorporated in the MBA-approach, and a theoretical estimate
of 𝛼 = 4𝜋𝛽𝐸𝐹𝑟

𝛿𝐸
is found. However, as for SMO, mismatched assumptions in view of

object texture or X-ray spectrum still limit image quality.

Bronnikov-Aided Correction (BAC) Towards overcoming the idealized assump-
tions in object or experimental settings, the near-field TIE can again be consulted.
Based on a phase map and the intensity in the detector plane 𝑧12, the intensity in
the object plane 𝑧01 = 0 is computed (in analogy to back-propagation in holographic
reconstruction schemes) [46]:

𝐼BAC𝐸 (𝑥, 𝑦, 0) = 𝐼𝐸(𝑥, 𝑦, 𝑧12)
1 − 𝛾∇2

⊥Φ𝐸(𝑥, 𝑦)
,

with the regularization parameter 𝛾 = 𝑧12
𝑘 in the ideal case. Note that in this work,

Φ𝐸(𝑥, 𝑦) ≈ ΦMBA
𝐸 (𝑥, 𝑦) as suggested by Yoni DeWitte and colleagues [46]. Computing

ΦMBA
𝐸 (𝑥, 𝑦), which is valid for pure phase objects, and then correcting this phase map

by the BAC-ansatz which considers weak absorption, extends the applicability of phase-
contrast imaging in the edge-enhancement regime. Note that the MBA step resembles
a low-pass filter, while the additional BAC step corresponds to a high-pass filter. This
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results in sharper intensity maps compared to the SMO- and MBA-scheme. A similar
scheme has been developed recently, based on Paganin’s SMO-reconstruction, which
is referred to as “generalized Paganin” [141].

1.4.5 Open Questions and Challenges

While propagation-based phase-contrast imaging is under strong development, in
particular for studying biomedical objects, phase-retrieval algorithms are subject to
restrictive assumptions, as introduced above. Here, one may ask the question: Should
the experiment (including sample and setup) meet the algorithm or the algorithm the
experiment?
One idealization is the plane/spherical wave assumption in empty-beam correction
[85]. Finite spot sizes and aberrated optics (e.g. KB-mirrors) flaw the probe, such that
empty-beam correction may induce a diffuse haze in the reconstructed phase map.
Near-field ptychography addresses this problem by reconstructing probe and object
[153]. This technique is particularly suitable for high-resolution nanotomography,
beyond the weak object assumption (e.g. stained samples, cf. Sec. 1.3), and the re-
lated computational effort can benefit from advanced GPU architecture [171, 174].
Concerning near-field holography, the portfolio of iterative phase-retrieval methods
goes far beyond those presented above. Iterative schemes impose less restrictions
on the experiment, in general, but allow for selective specification of parameters by
constraints: Themodified Hybrid-Input-Output, for instance, has been demonstrated
to achieve spatial resolution on the order of 20 nm for biological samples [9, 62]. How-
ever, these results rely on the definition of a support to set a reference and solve the
twin-image problem. This is problematic for tissue samples which usually exceed
the field-of-view (FOV) at high geometric magnification. In such cases, the support
can be defined within the cleverly padded area [73], and the twin-image problem is
solved based on multi-shot recordings. The maximum suitable sample diameter which
would otherwise flaw the hologram is additionally limited by a number of factors: (i)
the projection approximation [138, 195], (ii) the uncertainty in the Fresnel number
when the sample covers an extended range of 𝑧01, and (iii) the Fresnel-scaling theorem
[138]. Under violation of these conditions, 3d multi-slice phase-retrieval can help,
which is already available for far-field ptychography [179], but yet to be developed
for near-field imaging. However, if (i) the projection approximation is fulfilled, 3d
near-field phase-retrieval schemes have been proposed in the TIE-approximation [185],
and for a more general case [159].
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In “standard” nanotomography conditions (i.e. in this work: moderate voxel size of
≳ 100 nm, 𝐹𝑟 ≈ 10−3-10−4, weak object), the CTF-scheme has proven adequate.
However, beyond the idealized assumptions in the CTF, iterative schemes perform
superiorly [73]. Also, multi-defocus reconstructions can flaw image quality due to
rescaling and registration of the datasets. Multi-energy reconstruction schemes address
this issue and retrieve more quantitative electron-density maps, and induce a variation
in Fresnel numbers by changing the energy instead of the propagation distance [11, 111,
154]. In order to access the 2d-map (𝛿𝐸,𝛽𝐸) of an object, spectral methods can also rely
on energy-selective detectors. They can be applied to setups with broad bandwidths,
such as laboratory sources, in particular in view of heavy-metal stainings [163].

1.5 Computed Tomography

In order to study neuronal tissue in three dimensions, computed tomography is utilized
in this work. The concepts of tomography are outlined in the following, including
the foundations, reconstruction schemes, sampling conditions, quality metrics and
relevant artifacts. The aspects are largely based on [29, 99, 160].

1.5.1 Foundations

Radon Transformation In tomography, an 𝑛d object 𝑓 is studied from different
angles ⃗𝜃 ∈ ℝ𝑛−1, and is reduced to 1d by summation of single resolution elements
along𝑛-1-dimensional hyperplanes 𝐿⃗ ⃗𝜃. These summations are referred to as projections
𝑝( ⃗𝜃, 𝑥′). Fig. 1.7(a) outlines this concept for 𝑛 = 2: an object 𝑓 in real space (𝑥,𝑧) is
sampled at the angle 𝜃 by a source-detector-system in (𝑥′), which records the object-

induced change8 of the probe 𝑠 along 𝐿⃗𝜃 = (
𝑥 cos(𝜃) + 𝑧 sin(𝜃)

−𝑥 sin(𝜃) + 𝑧 cos(𝜃)
), referred to as

Radon transformation9 [147]:

𝑝(𝜃, 𝑥′) = ℛ (𝑓(𝑥, 𝑧)) = ∫
⃗𝑟∈𝐿⃗𝜃

𝑓(𝑥, 𝑧) ⋅ 𝛿( ⃗𝑟 ⋅ ⃗𝑒𝑥 − 𝑥′)𝑑𝑥𝑑𝑧 .

The projection data 𝑝( ⃗𝜃, 𝑥′) which are collected at a number of projection angles 𝜃
during tomographic acquisition form a sinogram, see Fig. 1.7(c).
8It is presumed that the process of projecting is linear.
9From the nature of detector pixel arrays, discrete sampling suggests matrix notation: 𝑝 = 𝐴 ⋅ 𝑓, with the
system’s sampling matrix 𝐴. This representation will be helpful in algebraic reconstruction.
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Fig. 1.7: The principle of the Fourier-slice-theorem in 2d tomography. (a) An object
𝑓(𝑥, 𝑧) is sampled with a probe 𝑠 in the source-detector-system (𝑥′) at angle 𝜃. Voxel
elements of 𝑓(𝑥, 𝑧) are summed along the integration path 𝐿⃗𝜃. Its 1d-Fourier transform
ℱ1(𝑓(𝜃, 𝑥′)) = 𝑃(𝜃, 𝑥′) is plotted in blue and marked in (b) in Fourier space. In the
direct Fourier method, for a number of projection angles 𝜃, the 2d-Fourier domain
of 𝑓(𝑥, 𝑧) is filled up. (c) In the backprojection scheme, projection data are collected
in a sinogram 𝑝(𝜃, 𝑥′). Radon-backtransformation of 𝑝(𝜃, 𝑥′) yields the object 𝑓(𝑥, 𝑧)
(under consideration of a filter step, see FBP). Adapted from [29, 160].

Fourier Transformation The 𝑛d-Fourier transform of 𝑓 is defined as [29]

𝐹(𝑘⃗) = ℱ𝑛(𝑓( ⃗𝑟)):=∫
ℝ𝑛

𝑓( ⃗𝑟)𝑒−2𝜋𝑖𝑘⃗⋅ ⃗𝑟𝑑𝑛𝑟 ,

cf. Fig. 1.7(b). The Fourier transformation has a number of properties which are
detailed in e.g. [33], and the convolution theorem is of particular importance: it states
that the convolution of two signals in real space equals their multiplication in Fourier
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space.

Fourier-Slice-Theorem The Fourier-slice-theorem (FST) describes a fundamental
property of the Radon transformation [130]:

ℱ1 (ℛ (𝑓(𝑥, 𝑧))) = ℱ1 (𝑝(𝜃, 𝑥′)) = 𝑃(𝜃, 𝑘𝑥′) = 𝐹𝜃(𝑘𝑥, 𝑘𝑧) = ℱ2,𝜃 (𝑓(𝑥, 𝑧)) ,

where the index of ℱ(⋅) indicates the dimensionality. Fig. 1.7 illustrates the FST:
the Radon transform of an object 𝑓 at 𝜃 is Fourier-transformed, which is identical
to extracting the line through the 2d Fourier transform of 𝑓 at 𝜃. Hence, the direct
Fourier method is justified: the collection of lines 𝑃(𝜃, 𝑘𝑥′) at a number of angles 𝜃 in
2d Fourier space, allows for the retrieval of the object 𝑓 in real space (𝑥, 𝑧) by inverse
2d Fourier transformation.

The Regridding Problem with the Direct Fourier Method Fig. 1.8(a) visualizes
the circular tomographic sampling scheme of the direct Fourier method (red dots),
while in numerical implementations, the final output 𝑓(𝑘𝑥, 𝑘𝑧) is defined on a cartesian
grid (gray dots). This requires data interpolation in Fourier space, which can lead
to severe artifacts due to the operation on spatial frequencies instead of real space
coordinates. Instead, the backprojection scheme is preferably used in practice.

The Backprojection and the Sampling Problem In the backprojection (BP) meth-
od, tomographic projections are collected in real space, and smeared back along the
integration paths [99]. However, the Fourier space representation of the data sampling
in Fig. 1.8(a) demonstrates that the line density (sampling density) is higher for low
spatial frequencies. This sampling ramp introduces structure blurring. A prominent
solution to this problem is the introduction of a filtering step in Fourier space, referred
to as filtered backprojection (FBP).

1.5.2 Tomographic Reconstruction

The sampling problem introduced above has a negative impact on the spatial fre-
quency domains. Taking this into account, different approaches exist for tomographic
reconstruction [29, 99].
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Filtered Backprojection (FBP) and the FDK Scheme A simple, mathematically
consistent tomographic reconstruction scheme is the filtered backprojection (FBP),
which has also been independently proposed by Radon [147]. From the nature of BP
with its intrinsic point-spread function PSF(𝑘𝑥, 𝑘𝑦) = |(𝑘𝑥, 𝑘𝑦)|−1, it is conclusive to
implement a spatial frequency filter of |(𝑘𝑥, 𝑘𝑦)|. Since the inverse Fourier transform
of non-square-integrable functions does not exist, this filter is preferentially applied to
the projection data in Fourier space.
In general, tomographic reconstruction schemes are designed for parallel-beam (PB)
geometry, i.e. parallel line integrals. However, X-rays propagating in fan-beam (FB)
or cone-beam (CB) geometry10 may be preferred, either for the purpose of higher
throughput or finer sampling, or also due to the divergent nature of table-top X-ray
sources. With FDK, Feldkamp, Davis and Kress propose a method to rescale single
slices in CB-geometry to their FB-equivalents, exploiting the fact that a 2d-plane of a
cone beam is a tilted FB (tilted with respect to the tomographic axis) for small cone-
beam angles Ψ [53]. By rescaling, each projection is mimicked as if it was recorded in
10FB-geometry refers to divergent beam paths in the 2d-space, as sketched in Fig. 1.8(b), blue. Its 3d

extension is termed CB-geometry, with divergence not only in (𝑥′,𝑧′) but also in (𝑥′,𝑦′).

Fig. 1.8: Sampling in tomographic imaging. (a) Representation of tomography sam-
pling points (red) in Fourier space demonstrates that low spatial frequencies are re-
latively overrepresented. Specifically for the direct Fourier method, the mismatch
between the sampled datapoints (red) and the computation on a cartesian grid (gray)
requires interpolation in Fourier space, which is prone to artifacts. (b & c) Irradiation
discrepancies in (red) PB- and (blue) FB-geometry. (b) Compared to PB-geometry, sin-
gle FB-rays trespass different voxels at different path lengths. “COR” marks the center
of rotation. The extension to 3d divergent illumination (CB-geometry) is indicated by
the two detector lines 𝑥′. (c) These deviations result in a Radon space which is skewed
by the propagation opening angle Ψ (top: PB-geometry, bottom: FB- or central slice in
CB-geometry). Adapted from [29].
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the center along the 𝑥′-axis in FB-geometry. Subsequently, a modified FBP scheme
is applied. Fig. 1.8(b) shows the concept of PB-acquisition (red) in compliance with
FB-geometry (or central slice in CB; blue): divergent rays propagate with an opening
angle 2⋅Ψ, and result in a samplingmismatch (red-shaded areas). Hence, line integrals
in PB- and FB-geometry do not coincide, but the opening angleΨ induces a shift in the
sinogram compared to PB-geometry, see Fig. 1.8(c). The concept is detailed in [29, 99].

Algebraic Reconstruction As noted above, the projection scheme can be written in
matrix notation, as 𝑝𝑝𝑝 = 𝐴𝐴𝐴 ⋅ 𝑓𝑓𝑓. Here, the system matrix𝐴𝐴𝐴 comprises the entire expe-
rimental geometry, i.e. which object elements are traversed by a single line integral,
and by which amount. In realistic experimental implementations, this straightforward
definition is ill-posed for noise-flawed data and large detector arrays leading to𝐴𝐴𝐴 being
vastly singular. The object 𝑓 can hence be retrieved iteratively, minimizing a norm
||𝐴𝐴𝐴𝑓𝑓𝑓 − 𝑝𝑝𝑝||, with initialization 𝑓𝑓𝑓0 = 000 for instance. In the most basic approach, the
algebraic reconstruction technique (ART), based on [98], the solution 𝑓𝑓𝑓𝑚 is updated
at each iteration step 𝑚, under consideration of a relaxation parameter [50]. While
convergence is potentially fast, the result may suffer from noisy data and inappropriate
choice of relaxation parameter. In such cases, the simultaneous iterative reconstruction
technique (SIRT) can be used [64, 82]. Opposed to ART, in SIRT, higher consistency is
achieved by ART-reconstruction of single voxels, whose values 𝑓𝑓𝑓𝑚 are only updated
after consideration of all projection rays traversing the respective voxel. The update
results from the average suggested from all projection integrals. As a consequence, in
general, convergence with SIRT is slower than with ART. In literature, the simultane-
ous algebraic reconstruction technique (SART) is traded as a method to combine the
advantages from ART and SIRT: the procedure uses bilinear elements instead of voxels,
leading to smoother outputs, and further, the correction terms are applied ad-hoc,
under consideration of a Hamming window to weight the update locally [99]. An
example of SIRT-reconstructed CT-data after 400 iterations can be found in Ch. 3, Fig.
3.5(b.vii-viii).

1.5.3 Sampling Criteria

Angular Sampling Range in Cone-Beam Geometry In contrast to PB-geometry,
line integrals follow diverging paths in CB 11. This results in sampling discrepancies,

11This artifact can be likewise found in FB-geometry. Since CB-geometry is found in most experiments in
this work, which are rescaled to FB in FDK-reconstruction, here CB is referred to.
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which are indicated by red-shaded areas in Fig. 1.8(b). The respective sinograms
are plotted in (c). In order to sample the entire angular PB-range of 𝜃 ∈ [0, 180)
from CB-data, the acquisition range 𝜃 needs to be expanded by the CB-opening angle:
𝜃 ∈ [0∘, 180∘ + 𝜓) [29]. The CB-sampling issue can be extended to the third dimension,
i.e. along the rotation axis, and different techniques exist to cope with it [29]. According
to the Tuy-Smith’s sufficiency condition, an object is sufficiently sampled if all planes
which intersect the object in Radon space also traverse the X-ray source-detector path
at least once [29]. Note that in CB-geometry, sampling on a circular trajectory does
not fulfill this requirement, exhibiting so-called “shadow zones”12.

Angular Sampling Intervals According to the FST, the entire Fourier space may be
sampled from projections 𝑝(𝜃, 𝑥′) [29]. The Nyquist-limit gives the minimum number
of angular positions 𝑁𝑝 which is required such that the tomographic problem has
a unique solution: 𝑁𝑝 ≈ 𝜋

2 𝑁𝑥′ , with 𝑁𝑥′ denoting the number of detector pixels
in horizontal direction. A more abstract approach is provided by Orlov’s sufficiency
condition [160].

1.5.4 Tomographic Artifacts

In tomographic images, reconstruction artifacts are easily introduced for various causes.
Themost important ones in this thesis are briefly described in the following paragraphs
and exemplified in Fig. 1.9 for acquisitions covering 𝜃 ∈ [0, 180∘)with𝑁𝑝 = 540, using
the “dicty”-phantom from [115]. (a) shows the artifact-free tomographic reconstruction
of 𝑓(𝑥, 𝑧).

Center of Rotation When the position of the center of rotation during reconstruc-
tion does not match the one from the experiment, the line integrals are attributed to the
wrong voxel elements during backprojection. According to the amount of misplace-
ment Δ, structures at 𝜃 = 0∘ and 180∘ are smeared back with an offset of −Δ/2 and
+Δ/2 in object plane (𝑥,𝑧), respectively, resulting in so-called “half-moon artifacts”
(cf. Fig. 1.9(b)). For 𝜃 ∈ [0∘, 360∘) acquisitions, this artifact emerges as double-edged
structures.

Motion during Acquisition Motion during data acquisition implies that the source-
object-detector system has not been consistent but shows some additional temporal
12The effect of shadow zones along the rotation axis is observed in data from Ch. 2.
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translation. As a consequence, projection line integrals do not follow straight paths,
eventually leading to local half-moon artifacts (cf. Fig. 1.9(c)).

Insufficient Projection Sampling If the angular sampling criterion is not met, a
lack of spatial information leads to stripe artifacts along the missing line integrals.
Fig. 1.9(d) shows that this is particularly severe along edges, at which undersampling
results in dominant streak artifacts (red arrow).

Partial Volume Partial volume artifacts arise when the entire object exceeds the
field-of-view in tomographic projections. Fig. 1.9(e) depicts the resulting truncation
artifact. If this can not be averted, the sinogram can be edge-padded to mitigate the
artifact.

Fig. 1.9: Relevant artifacts in tomographic reconstruction, at the example of 𝜃 ∈
[0∘, 180∘). (a) Phantom, (b) reconstruction with mismatched center of rotation by 8
pixel, (c) motion-flawed reconstruction (successive motion according to the rising
edge of a Gaussian distribution with 𝜇 = 5 pixel, 𝜎 = 5 pixel), (d) reconstruction as
(a), but with only 10% of 𝑁𝑝, (e) partial volume acquisition of the subregion marked
by the blue circle in (a) shows truncation artifact without padding of the sinogram,
(f) reconstruction affected by (half-)ring artifacts, and (g) CB-reconstruction with
mismatched geometry (FDK-reconstruction with 𝑧02/𝑧01|rec

𝑧02/𝑧01|sim
= 0.95) leads to local half-

moon artifacts.
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Ring Artifacts Ring artifacts arise from persistent irregular values throughout the
tomographic acquisition. Mostly, the root of cause lies in the non-linear response of
single detector pixels, and can bemitigatedwith so-called outlier-filters as implemented
in [115], an additive-correction approach [102], or based on wavelet-filters [128]. In
𝜃 ∈ [0∘, 180∘) acquisitions, ring artifacts emerge as half-rings, as shown in Fig. 1.9(f).

Geometry Artifacts When the experimental parameters to compute the CB-opening
angle are ill-posed, line integrals do not follow straight but curved paths in FB, and the
effective, CB-to-FB paths are resampled incorrectly. Again, local half-moon artifacts
emerge (cf. Fig. 1.9(g)). The sameunderlying phenomenon causes artifacts if the center
of the cone-beam does not coincide with the center of the detector (“nick-angle”).

1.5.5 Image Quality Metrics

Different tools exist to access the quality of the reconstructed object information 𝑓,
which is conditioned by the system’s PSF ℎ.

Modulation-Transfer Function (MTF) The normalized Fourier transform of ℎ
yields theOpticalTransfer Function (OTF). TheMTF is defined as: MTF(𝑘 ⃗𝑟) = ∣ ℱ(ℎ( ⃗𝑟))

ℱ(ℎ(0)) ∣
[160]. From analyzing the MTF as a function of the spatial frequency 𝑘 ⃗𝑟, the spatial
resolution can be accessed.

Contrast-to-Noise Ratio (CNR) The CNR quantifies the degree of object-specific
signal contained in image data, namely its contrast [160]. Various definitions exist,
and in this work, it was used as: CNR = 𝜇ft−𝜇bg

𝜎bg
, with 𝜇ft and 𝜇bg the mean gray values

of the feature and the background, respectively, and 𝜎bg the standard deviation of the
background signal. The CNR has been studied for a range of PC-CT settings in Ch. 2.

Fourier-Shell-Correlation (FSC) The FSC is a metric to capture both the spatial
resolution and the contrast in 3d-data (2d-equivalent: Fourier-ring-correlation (FRC))
[160]. Its basic concept is to determine the degree of correlation, i.e. the signal consis-
tency, found in two independent image sets 𝐼1, 𝐼2 over shells 𝑘𝑖 in Fourier space. The
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FSC is defined as [77, 190]

FSC(𝑘𝑖) =
∑𝑘∈𝑘𝑖

ℱ3(𝐼1(𝑘)) ⋅ ℱ∗
3(𝐼2(𝑘))

√∑𝑘∈𝑘𝑖
|ℱ3(𝐼1(𝑘))|2 ⋅ ∑𝑘∈𝑘𝑖

|ℱ3(𝐼2(𝑘))|2
.

Note that the definition of the underlying threshold curve needs to be borne in mind
when inspecting the FSC-metric. In this work, the half-bit threshold criterion was
utilized:

𝑇1/2(𝑘𝑖) = 0.2071 + 1.9102 ⋅ 𝑛(𝑘𝑖)−1/2

1.2071 + 0.9102 ⋅ 𝑛(𝑘𝑖)−1/2 .

Further definitions can be found in [191]. In CT, two independent data sets are usually
achieved by splitting the projection data into two sets, and performing two tomographic
reconstructions, each with one of the half data sets. FSC-results hence give an upper
limit for the spatial resolution, and examples are given in Ch. 2 and 4.

1.5.6 Open Questions and Challenges

Recently, nanotomography using a transmission X-ray microscope (TXM) has been
reported to reveal 10.4 nm resolution (FSC 1/2-bit) in a reasonably short scan time, i.e.
in 250 min [45]. Achievement of such high-quality data requires particular stability
during acquisition and an advanced reconstruction scheme, which was iterative in this
case. Still, single components in the workflow can be further optimized: these include
a more efficient and higher-resolution detection system, and storage ring upgrades to
fourth generation synchrotron leading to elevated photon flux in a narrowed emission
angle.
Beyond iterative optimization techniques, machine- and deep-learning implementa-
tions are becomingmore popular in tomographic reconstruction in order to compensate
for missing data [49] or for noise reduction and resolution enhancement [56, 113]. To
this point, even such novel reconstruction schemes could not bridge the resolution
discrepancy between 2d and 3d images [45, 56], which is demanding but theoreti-
cally achievable. However, machine- or deep-learning schemes are limited to the
reconstruction of features which are included in the training data. Time-resolved
tomography acquisitions (4d) have a reduced photon yield due to short exposure times,
and can particularly benefit from noise-compensating or noise-robust methods [125,
158]. With continuous advancements in X-ray source and detector technologies, such
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as synchrotron storage ring upgrades, scan efficiency increases and hence both the
3d and 4d scan throughput. The implementation of reasonably fast tomographic re-
construction becomes increasingly important, both for post-acquisition and online
reconstruction [14, 27, 117].
Finally, an important point in nanotomography is made: for practical reasons, (biologi-
cal) samples mostly exceed the rather small FOV in nanoimaging (“ROI-problem”).
As a consequence, 𝑝(𝜃, 𝑥′) is not known for all hyperplanes in Radon space, such
that the tomographic problem is underdetermined and image quality is potentially
flawed [148]. Algorithms have been established to account for this [52, 152], which
include deep-learning implementations, or the joint reconstruction of overview- and
ROI-tomography [42]. Apart from algorithms, on the experimental side, continuous
acquisition during rotation instead of step-and-shoot can exploit blurring of structures
which are farther away from the center of rotation (cf. Ch. 4, Fig. 4.2(a)).

1.6 Data Analysis by Means of Optimal Transport

In the previous sections, the principles and challenges in neuronal PC-CT have been
addressed. Following sample preparation, data acquisition and tomographic recon-
struction of phase maps, post-processing often includes the segmentation of features
of interest. To this end, annotations can be made manually, using dedicated machine-
learning software such as Ilastik [12], or based on deep-learning V-net architecture as
in Ch. 4, for instance. Subsequently, optimal transport (OT) theory can find application
as an emerging tool for advanced statistical analysis. The high dimensionality in PC-CT
data, which is not restricted to the spatial dimensions, can be exploited by OT in order
to access successive changes in large point clouds, as presented in Ch. 4.

1.6.1 Foundations

OT-theory can be dated back to the 18th century, when Monge was confronted with
transitioning a sand pile with minimal effort, which is today referred to as a basic
“optimal transport problem” [104, 144]. Piles of sand grains, or more general data
point clouds, are probability measures, and can be approximated by Gaussians 𝛼𝛼𝛼 =
𝒩(𝜇𝜇𝜇𝛼,ΣΣΣ𝛼), 𝛽𝛽𝛽 = 𝒩(𝜇𝜇𝜇𝛽,ΣΣΣ𝛽) ∈ ℝ𝑑, with means 𝜇𝜇𝜇𝛼, 𝜇𝜇𝜇𝛽 ∈ ℝ𝑑 and covariance matrices
ΣΣΣ𝛼,ΣΣΣ𝛽 ∈ ℝ𝑑×𝑑 in the example of two. In this simplification [144], an analytical solution
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to the optimal transport problem exists, which is the transport plan T𝛼,𝛽 ∈ ℝ𝑑×𝑑
+ :

T𝛼,𝛽 ∶ 𝑥 ↦ 𝜇𝜇𝜇𝛽 + ΣΣΣ−1/2
𝛼 (ΣΣΣ1/2

𝛼 ΣΣΣ𝛽ΣΣΣ1/2
𝛼 )

1/2
ΣΣΣ−1/2

𝛼 ⋅ (𝑥 − 𝜇𝜇𝜇𝛼) . (1.8)

T𝛼,𝛽 is a deterministic transport map of single, specific data points, whose transport
cost is given by theWasserstein metric:

𝒲2(𝛼, 𝛽) = √||𝜇𝜇𝜇𝛼 − 𝜇𝜇𝜇𝛽||2 + ℬ(ΣΣΣ𝛼,ΣΣΣ𝛽)2 ,

with the Bures metric ℬ:

ℬ(ΣΣΣ𝛼,ΣΣΣ𝛽) = √𝑡𝑟 (ΣΣΣ𝛼 + ΣΣΣ𝛽 − 2 (ΣΣΣ1/2
𝛼 ΣΣΣ𝛽ΣΣΣ1/2

𝛼 )
1/2

) .

The field has been importantly shaped by Kantorovich in the 1940s [101], who sug-
gested to relax the picture of permutation of single, specific data points and their
deterministic transport map T, and instead consider a coupling matrix P ∈ ℝ𝑛×𝑚

+

of probabilistic mass flow [144]. This concept is also referred to as “mass splitting”,
and introduces data point clouds 𝛼𝛼𝛼 ∈ ℝ𝑚,𝛽𝛽𝛽 ∈ ℝ𝑛, with 𝑚, 𝑛 the number of data
points. The key geometric properties of the underlying ground space are preserved,
such that the distance between 𝛼𝛼𝛼 and 𝛽𝛽𝛽 is again defined by the Wasserstein metric
𝒲𝑝(𝛼𝛼𝛼,𝛽𝛽𝛽):=𝐿C,𝑝(𝛼𝛼𝛼,𝛽𝛽𝛽)1/𝑝 with 𝑝th moment and cost matrix C. The optimization prob-
lem is defined as [144]

LC(𝛼𝛼𝛼,𝛽𝛽𝛽):= min
P∈U(𝛼𝛼𝛼,𝛽𝛽𝛽)

⟨C,P⟩:=∑
𝑖,𝑗

C𝑖,𝑗P𝑖,𝑗 , (1.9)

with a set of maps connecting𝛼𝛼𝛼 and 𝛽𝛽𝛽 [144]:

U(𝛼𝛼𝛼,𝛽𝛽𝛽):= {P ∈ ℝ𝑛×𝑚
+ ∶ P𝟙𝑚 = 𝛼𝛼𝛼 and P𝑇𝟙𝑛 = 𝛽𝛽𝛽} ,

where P𝟙𝑚 = (∑𝑗 P𝑖,𝑗)
𝑖

∈ ℝ𝑛 and P𝑇𝟙𝑛 = (∑𝑖 P𝑖,𝑗)𝑗
∈ ℝ𝑚. Computational OT is

dedicated to the determination of the optimal transport plan T or P and its cost 𝒲𝑝.
In contrast to the Gaussian case which has an analytical solution (eq. 1.8), the general
OT-problem on point clouds in the Kantorovich formulation is approached numer-
ically. First of all, LC(𝛼𝛼𝛼,𝛽𝛽𝛽) is extended by the additive term −𝜖H(P), referred to as
“entropic regularization” [144]. As a consequence, the optimization problem has a
unique solution and is eligible for the application of simple alternate minimization
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algorithms [144]. In general, higher values of 𝜖 result in stronger smoothing and
elevated convergence, and approach the exact solution up to the 𝜖-induced inaccuracy.
The Sinkhorn algorithm is an established method to solve the regularized form of eq.
1.9 [169]. Note that today, it is applied with several modifications compared to its
original scheme [164]: iterations are conducted in the log-domain to prevent overflow,
further the kernel matrix is sparsed by adaptive truncation, and, finally, the iterations
are carried out in a top-down-approach with simultaneous 𝜖-adaptation.
Finally, for both cases (point clouds and Gaussians), each probability measure can be
described by a single data point. The ensemble of data points is a “set”, which together
with the “metric” 𝒲𝑝 on this set forms the “metric space” [101]. Note that in general,
the metric space is a Riemannian manifold and not cartesian. However, this particular
metric space shows properties of an ∞-dimensional, curved plane [135], on which
each probability measure is represented by the single data point. This property allows
for a local approximation of the metric space by a tangent space [101], and is readily
understandable described in [194]. Each point in this tangent space defines a direction
and a velocity with respect to the metric space. The operation from tangent to metric
space is referred to as “exponential map”, its inverse as “logarithmic map”. Hence,
based on the data points along a direction in the tangent space, the logarithmic map
can be used to yield a curve of data point clouds/Gaussians (since the point cloud/Gaus-
sian of each probability measure is reduced to a single data point). This concept is
also termed “geodesic” or “dynamic”, and allows the analysis of temporal evolution of
populations between𝛼𝛼𝛼 and 𝛽𝛽𝛽 [104, 144]. In this work, this concept has been exploited
to access the pathological trend from a normal state𝛼𝛼𝛼 towards a diseased state 𝛽𝛽𝛽 (Ch.
4, [Fig. 8(e)]). OT-analysis is particularly powerful as it is not only based on single
metrics such as size or gray values in images, but rather determines and discriminates
texture and shape properties in a broader sense [194].

1.6.2 Embedding of OT in a Practical Analysis Workflow

Suppose that we have data from 𝑁 probability measures (e.g. individuals in a medical
study), whichmay be assigned to either of two groups (e.g. diseased or control). Each of
these single individuals consists of any number of data points (point cloud), and each
data point has 𝑀 features (𝑀-dimensional feature space). Importantly, OT-analysis
allows for different numbers of data points among the individuals. Here, the question
arises on which path these point clouds can be transferred into each other. In the fol-
lowing, first the Gaussian case, and then the point cloud generalization are considered,
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supported by the illustration in Fig. 1.10 for 𝑁 = 4 and 𝑀 = 2.

Fig. 1.10: Illustration of a data analysis workflow with optimal transport, for an exam-
ple of four individuals and two features. (a) Data point clouds of the individuals are
plotted in a 2d feature space, with their Gaussian approximations (shaded ellipsoids).
(b) The set of probability measures and the Wasserstein metric 𝒲2 define the metric
space. Each individual is represented by one data point. Local linearization yields
the tangent space, (c) which is of dimension 𝑋. (d) PCA of this tangent space reveals
the modes of dominant difference between the individuals. Based on the prior group
classification, SVM (support vector machine) provides a hyperplane which separates
both groups. The angle 𝜃 between the normal on the hyperplane and the main PCA-
mode “pca1” indicates to which degree pca1 can serve group assignment without prior
group classification. (e) Logarithmic map and OT-plans bring the mode (normal on
SVM-hyperplane or pca1) back to feature space and make the OT-path along single
features accessible.

Gaussian Case As a first step, each point cloud is approximated by a𝑀-dimensional
Gaussian with 𝜇𝜇𝜇𝑛 andΣΣΣ𝑛, as introduced in Sec. 1.6.1 and exemplified in Fig. 1.10(a).
According to eq. 1.8, optimal transport plans T between these Gaussians are generated.
The costs related to the OT-plans are defined by the Wasserstein metric 𝒲2. The set,
in which each individual is represented by one data point, and the corresponding
distances 𝒲2 define themetric space. Fig. 1.10(b) shows a simplification of this metric
space, which resembles an ∞-dimensional, curved plane. Local linearization of the
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metric space leads to a 𝑀2 + 𝑀-dimensional13 subspace, i.e. the tangent space (cf.
Fig. 1.10(c)). Principal component analysis (PCA) reveals the dominant axes of the
tangent space, i.e. the modes of maximum change between the 𝑁 data points of the
individuals (cf. Fig. 1.10(d)). In order to relate this maximum change in tangent space
to the 𝑀-dimensional feature space, first the logarithmic map and finally the OT-maps
T are consulted. At this point, data are again available as probability measures on
the feature space, as plotted in Fig. 1.10(e). This step conveys that in the metric and
tangent space, each individual is described by a single point, and that each single point
in fact comprises a Gaussian distribution. Up to this point, no group classification has
been included in the analysis.

Point Cloud Generalization The workflow for point clouds is very similar to the
procedure for Gaussians introduced above. On the 𝑁 point clouds, transport plans can
be generated according to eq. 1.9. The coupling matrix P ∈ ℝ𝑛×𝑚

+ specifies how each
single data point in a cloud of 𝑚 points is transported to the other cloud of 𝑛 points,
and vice versa. As described in Sec. 1.6.1 and as for the Gaussian case, a metric space
is defined, which is locally approximated by a tangent space. Fig. 1.10(b) illustrates the
approximation of the metric space by the tangent space. The tangent space consists of
a direction and a velocity for each point. Fig. 1.10(c) indicates the high dimensionality
(𝑋) of the tangent space. As for the Gaussian case, PCA gives access to the main
modes of change in the tangent space, and can be associated with the feature space by
application of the logarithmicmap and theOT-plansP. Again, a single data point in the
metric and tangent space contains an entire point cloud in feature space. The analysis
of point clouds potentially reveals structural changes which can not be captured by
Gaussian distributions per se. However, for truly Gaussian-distributed point clouds,
OT-analysis in the Gaussian case leads to the exact same results as in the point cloud
case.

Classification of Groups The agreement between the prior group-classification and
the OT-analysis based on the 𝑀 selected features can be quantified. To this end, the
data points in PCA-space can be separated according to their group classification by a
hyperplane, using a (linear) support vector machine (SVM) [15, 170] as plotted in Fig.
1.10(d). The distance between a data point and the SVM-plane yields the SVM-score, i.e.
13The dimensionality of the tangent space results from the 𝑀 × 𝑀-dimensional covariance matrix, plus

𝑀 × 1-dimensional array of mean values. It is possible to reduce its dimensionality by taking advantage
of the symmetry of the covariance matrix, but computations on its full dimensionality are numerically
more straightforward.
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the separability of the individuals based on the 𝑀 features. Further, it is demonstrated
in Ch. 4 that the main PCA-mode can be in close agreement with the normal on the
SVM-hyperplane: in this way, groups can be classified purely based on the features,
without taking any prior group assignments into account. The agreement between the
main PCA-mode and the normal on the SVM-hyperplane can be quantified by their
scalar product (angle 𝜃 in Fig. 1.10(d)).



Bibliography

[1] J. Als-Nielsen and D. McMorrow. Elements of modern X-ray physics. JohnWiley
& Sons, 2011.

[2] R. E. Alvarez and A. Macovski. “Energy-selective reconstructions in x-ray
computerised tomography.” In: Physics inMedicine & Biology 21.5 (1976), p. 733.

[3] D. G. Amaral, H. E. Scharfman, and P. Lavenex. “The dentate gyrus: fundamen-
tal neuroanatomical organization.” In: The Dentate Gyrus: A Comprehensive
Guide to Structure, Function, and Clinical Implications. Elsevier, 2007, pp. 3–
790.

[4] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M.-É. Rousseau,
S. Bludau, P.-L. Bazin, L. B. Lewis, A.-M. Oros-Peusquens, et al. “BigBrain:
an ultrahigh-resolution 3D human brain model.” In: Science 340.6139 (2013),
pp. 1472–1475.

[5] T. Arakhamia, C. E. Lee,Y. Carlomagno, D.M.Duong, S. R. Kundinger, K.Wang,
D. Williams, M. DeTure, D. W. Dickson, C. N. Cook, et al. “Posttranslational
modifications mediate the structural diversity of tauopathy strains.” In: Cell
180.4 (2020), pp. 633–644.

[6] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E.
Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel. “Equal numbers of neu-
ronal and nonneuronal cells make the human brain an isometrically scaled-up
primate brain.” In: Journal of Comparative Neurology 513.5 (2009), pp. 532–541.

[7] A. Badhwar, G. P. McFall, S. Sapkota, S. E. Black, H. Chertkow, S. Duchesne,
M. Masellis, L. Li, R. A. Dixon, and P. Bellec. “A multiomics approach to
heterogeneity in Alzheimer’s disease: focused review and roadmap.” In: Brain
143.5 (2020), pp. 1315–1331.

[8] G. Bahr, G. Bloom, and U. Friberg. “Volume changes of tissues in physiolog-
ical fluids during fixation in osmium tetroxide or formaldehyde and during
subsequent treatment.” In: Experimental Cell Research 12.2 (1957), pp. 342–355.



44 Bibliography

[9] M. Bartels, M. Krenkel, J. Haber, R. Wilke, and T. Salditt. “X-ray holographic
imaging of hydrated biological cells in solution.” In: Physical Review Letters
114.4 (2015), p. 048103.

[10] D. S. Bassett and F. Siebenhühner. “Multiscale network organization in the
human brain.” In:Multiscale Analysis and Nonlinear Dynamics (2013), pp. 179–
204.

[11] M. Beltran,D.M. Paganin, K. Siu, A. Fouras, S.Hooper, D. Reser, andM.Kitchen.
“Interface-specific x-ray phase retrieval tomography of complex biological or-
gans.” In: Physics in Medicine & Biology 56.23 (2011), p. 7353.

[12] S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M.
Schiegg, J. Ales, T. Beier, M. Rudy, et al. “Ilastik: interactive machine learning
for (bio) image analysis.” In: Nature Methods 16 (2019), pp. 1–7.

[13] R. F. Betzel and D. S. Bassett. “Multi-scale brain networks.” In: NeuroImage
160 (2017), pp. 73–83.

[14] T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede, and F. De
Carlo. “Real-time data analysis and autonomous steering of synchrotron light
source experiments.” In: 2017 IEEE 13th International Conference on e-Science
(e-Science). IEEE. 2017, pp. 59–68.

[15] C. M. Bishop. “Pattern recognition.” In:Machine Learning 128.9 (2006).

[16] C. Bosch, T. Ackels, A. Pacureanu, Y. Zhang, C. J. Peddie, M. Berning, N.
Rzepka, M.-C. Zdora, I. Whiteley, M. Storm, et al. “Functional and multiscale
3D structural investigation of brain tissue through correlative in vivo physi-
ology, synchrotron micro-tomography and volume electron microscopy.” In:
bioRxiv (2021).

[17] C. Bosch, A. Martı́nez, N. Masachs, C. M. Teixeira, I. Fernaud, F. Ulloa, E.
Pérez-Martı́nez, C. Lois, J. X. Comella, J. DeFelipe, et al. “FIB/SEM technology
and high-throughput 3D reconstruction of dendritic spines and synapses in
GFP-labeled adult-generated neurons.” In: Frontiers in Neuroanatomy 9 (2015),
p. 60.

[18] S. Boyd, J. Dattorro, et al. “Alternating projections.” In: EE392o, Stanford Uni-
versity (2003).



Bibliography 45

[19] H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, and K. Del Tredici. “Stag-
ing of Alzheimer disease-associated neurofibrillary pathology using paraffin
sections and immunocytochemistry.” In: Acta Neuropathologica 112.4 (2006),
pp. 389–404.

[20] S. Brady, G. Siegel, R. W. Albers, and D. Price. Basic neurochemistry: principles
of molecular, cellular, and medical neurobiology. 7th ed. Academic press, 2011.

[21] M. Brown, R. Reed, and R. Henry. “Effects of dehydration mediums and tem-
perature on total dehydration time and tissue shrinkage.” In: Journal of the
International Society for Plastination 17 (2002), pp. 28–33.

[22] W. Brück and C. Stadelmann. “Inflammation and degeneration in multiple
sclerosis.” In: Neurological Sciences 24.5 (2003), s265–s267.

[23] M. A. Busche, X. Chen, H. A. Henning, J. Reichwald, M. Staufenbiel, B. Sak-
mann, and A. Konnerth. “Critical role of soluble amyloid-𝛽 for early hippocam-
pal hyperactivity in a mouse model of Alzheimer’s disease.” In: Proceedings of
the National Academy of Sciences 109.22 (2012), pp. 8740–8745.

[24] M. A. Busche, C. Grienberger, A. D. Keskin, B. Song, U. Neumann, M. Staufen-
biel, H. Förstl, and A. Konnerth. “Decreased amyloid-𝛽 and increased neuronal
hyperactivity by immunotherapy in Alzheimer’s models.” In: Nature Neuro-
science 18.12 (2015), pp. 1725–1727.

[25] M. Busse, J. P.Marciniszyn, S. Ferstl,M. A. Kimm, F. Pfeiffer, andT. Gulder. “3D-
Non-destructive Imaging through Heavy-Metal Eosin Salt Contrast Agents.”
In: Chemistry (Weinheim an der Bergstrasse, Germany) 27.14 (2021), p. 4561.

[26] M. Busse, M. Müller, M. A. Kimm, S. Ferstl, S. Allner, K. Achterhold, J. Herzen,
andF. Pfeiffer. “Three-dimensional virtual histology enabled through cytoplasm-
specific X-ray stain for microscopic and nanoscopic computed tomography.” In:
Proceedings of the National Academy of Sciences 115.10 (2018), pp. 2293–2298.

[27] J.-W. Buurlage, F. Marone, D. M. Pelt, W. J. Palenstijn, M. Stampanoni, K. J.
Batenburg, and C. M. Schlepütz. “Real-time reconstruction and visualisation
towards dynamic feedback control during time-resolved tomography experi-
ments at TOMCAT.” In: Scientific Reports 9.1 (2019), pp. 1–11.

[28] J. Buytaert, J. Goyens, D. De Greef, P. Aerts, and J. Dirckx. “Volume shrinkage
of bone, brain and muscle tissue in sample preparation for micro-CT and light
sheet fluorescence microscopy (LSFM).” In:Microscopy and Microanalysis 20.4
(2014), pp. 1208–1217.



46 Bibliography

[29] T. Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam
CT. Springer Berlin Heidelberg, 2008.

[30] S. Cajal. “¿Neuronismo o reticularismo? Las pruebas objetivas de la unidad
anatómica de las células nerviosas.” In: Arch. Neurobiol. 13 (1933), pp. 1–44.

[31] M. Calabrese, R.Magliozzi, O. Ciccarelli, J. J. Geurts, R. Reynolds, andR.Martin.
“Exploring the origins of grey matter damage in multiple sclerosis.” In: Nature
Reviews Neuroscience 16.3 (2015), pp. 147–158.

[32] E. Carboni, J.-D. Nicolas, M. Töpperwien, C. Stadelmann-Nessler, P. Lingor, and
T. Salditt. “Imaging of neuronal tissues by x-ray diffraction and x-ray fluores-
cencemicroscopy: evaluation of contrast and biomarkers for neurodegenerative
diseases.” In: Biomedical optics express 8.10 (2017), pp. 4331–4347.

[33] D. C. Champeney and D. Champeney. A handbook of Fourier theorems. Cam-
bridge University Press, 1987.

[34] P. Chen, M. R. Miah, and M. Aschner. “Metals and neurodegeneration.” In:
F1000Research 5 (2016).

[35] M. Chourrout, H. Rositi, E. Ong, V. Hubert, A. Paccalet, L. Foucault, A. Autret,
B. Fayard, C. Olivier, R. Bolbos, et al. “Brain virtual histology with X-ray phase-
contrast tomography Part I: whole-brainmyelinmapping inwhite-matter injury
models.” In: bioRxiv (2021).

[36] B. J. Claiborne,D.G.Amaral, andW.M.Cowan. “Quantitative, three-dimensional
analysis of granule cell dendrites in the rat dentate gyrus.” In: The Journal of
Comparative Neurology 302.2 (1990), pp. 206–219.

[37] M. A. Clark, M. B. Worrell, and J. E. Pless. “Postmortem changes in soft tis-
sues.” In: Forensic Taphonomy: the postmortem Fate of Human Remains (1997),
pp. 151–164.

[38] P. Cloetens. “Contribution to phase contrast imaging, reconstruction and to-
mography with hard synchrotron radiation: principles, implementation and
applications.” PhD thesis. VUB (Faculteit Toegepaste Wetenschappen), 1999.

[39] P. Cloetens, J. Guigay, C. DeMartino, J. Baruchel, andM. Schlenker. “Fractional
Talbot imaging of phase gratings with hard x rays.” In: Optics Letters 22.14
(1997), pp. 1059–1061.



Bibliography 47

[40] P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. Guigay,
and M. Schlenker. “Holotomography: Quantitative phase tomography with
micrometer resolution using hard synchrotron radiation x rays.” In: Applied
Physics Letters 75.19 (1999), pp. 2912–2914.

[41] D. Crapper, S. Quittkat, and U. De Boni. “Altered chromatin conformation in
Alzheimer’s disease.” In: Brain: a Journal of Neurology 102.3 (1979), p. 483.

[42] J. C. Da Silva, M. Guizar-Sicairos, M. Holler, A. Diaz, J. A. van Bokhoven,
O. Bunk, and A. Menzel. “Quantitative region-of-interest tomography using
variable field of view.” In: Optics Express 26.13 (2018), pp. 16752–16768.

[43] G. Das, K. Reuhl, and R. Zhou. “The golgi–coxmethod.” In:Neural Development.
Springer, 2013, pp. 313–321.

[44] T. M. Dawson, T. E. Golde, and C. Lagier-Tourenne. “Animal models of neu-
rodegenerative diseases.” In: Nature Neuroscience 21.10 (2018), pp. 1370–1379.

[45] V. De Andrade, V. Nikitin, M. Wojcik, A. Deriy, S. Bean, D. Shu, T. Mooney,
K. Peterson, P. Kc, K. Li, S. Ali, K. Fezzaa, D. Gürsoy, C. Arico, S. Ouendi, D.
Troadec, P. Simon, F. De Carlo, and C. Lethien. “Fast X-ray Nanotomography
with Sub-10 nmResolution as a Powerful ImagingTool for Nanotechnology and
Energy Storage Applications.” In: Advanced Materials 33.21 (2021), p. 2008653.

[46] Y. De Witte, M. Boone, J. Vlassenbroeck, M. Dierick, and L. Van Hoorebeke.
“Bronnikov-aided correction for x-ray computed tomography.” In: JOSA A 26.4
(2009), pp. 890–894.

[47] S.-L. Ding, J. J. Royall, S. M. Sunkin, L. Ng, B. A. Facer, P. Lesnar, A. Guillozet-
Bongaarts, B. McMurray, A. Szafer, T. A. Dolbeare, et al. “Comprehensive
cellular-resolution atlas of the adult human brain.” In: The Journal of Compar-
ative Neurology 525.2 (2017), p. 407.

[48] H. H. Donaldson and G. Hoke. “On the areas of the axis cylinder andmedullary
sheath as seen in cross sections of the spinal nerves of vertebrates.” In: Journal
of Comparative Neurology and Psychology 15.1 (1905), pp. 1–16.

[49] J. Dong, J. Fu, and Z. He. “A deep learning reconstruction framework for X-
ray computed tomography with incomplete data.” In: PloS one 14.11 (2019),
e0224426.

[50] P. P. B. Eggermont, G. T. Herman, and A. Lent. “Iterative algorithms for large
partitioned linear systems, with applications to image reconstruction.” In:
Linear Algebra and its Applications 40 (1981), pp. 37–67.



48 Bibliography

[51] S. Eyer. “Translation from Plato’s Republic 514b–518d (”Allegory of the Cave”).”
In: Ahiman: A Review of Masonic Culture and Tradition 1 (2009), pp. 73–78.

[52] A. Faridani, K. A. Buglione, P. Huabsomboon, O. D. Iancu, J. McGrath, et al.
“Introduction to local tomography.” In: Contemporary Mathematics 278 (2001),
pp. 29–48.

[53] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone-beam algorithm.”
In: Josa a 1.6 (1984), pp. 612–619.

[54] I. Ferrer, A. Martinez, S. Boluda, P. Parchi, and M. Barrachina. “Brain banks:
benefits, limitations and cautions concerning the use of post-mortem brain
tissue for molecular studies.” In: Cell and Tissue Banking 9.3 (2008), p. 181.

[55] M. Filippi,W. Brück, D. Chard, F. Fazekas, J. J. Geurts, C. Enzinger, S. Hametner,
T. Kuhlmann, P. Preziosa, À. Rovira, et al. “Association between pathological
and MRI findings in multiple sclerosis.” In: The Lancet Neurology 18.2 (2019),
pp. 198–210.

[56] S. Flenner, M. Storm, A. Kubec, E. Longo, F. Döring, D. M. Pelt, C. David, M.
Müller, and I. Greving. “Pushing the temporal resolution in absorption and
Zernike phase contrast nanotomography: enabling fast in situ experiments.”
In: Journal of Synchrotron Radiation 27.5 (2020).

[57] C. la Fougère, S. Grant, A. Kostikov, R. Schirrmacher, P. Gravel, H. M. Schipper,
A. Reader, A. Evans, and A. Thiel. “Where in-vivo imaging meets cytoarchi-
tectonics: the relationship between cortical thickness and neuronal density
measured with high-resolution [18F] flumazenil-PET.” In: NeuroImage 56.3
(2011), pp. 951–960.

[58] B. Frost. “Alzheimer’s disease: An acquired neurodegenerative laminopathy.”
In: Nucleus 7.3 (2016), pp. 275–283.

[59] B. Frost, M. Hemberg, J. Lewis, andM. B. Feany. “Tau promotes neurodegenera-
tion through global chromatin relaxation.” In: Nature Neuroscience 17.3 (2014),
pp. 357–366.

[60] D. Gabor. “A new microscopic principle.” In: Nature 161 (1948), pp. 777–778.

[61] F.H.Gage. “Mammalianneural stemcells.” In: Science 287.5457 (2000), pp. 1433–
1438.

[62] K. Giewekemeyer, S. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt.
“X-ray propagation microscopy of biological cells using waveguides as a quasi-
point source.” In: Physical Review A 83.2 (2011), p. 023804.



Bibliography 49

[63] L. Gil, S. A. Niño, E. Chi-Ahumada, I. Rodrı́guez-Leyva, C. Guerrero, A. B.
Rebolledo, J. A. Arias, and M. E. Jiménez-Capdeville. “Perinuclear Lamin
A and Nucleoplasmic Lamin B2 Characterize Two Types of Hippocampal
Neurons through Alzheimer’s Disease Progression.” In: International Journal
of Molecular Sciences 21.5 (2020), p. 1841.

[64] P. Gilbert. “Iterative methods for the three-dimensional reconstruction of an
object from projections.” In: Journal of Theoretical Biology 36.1 (1972), pp. 105–
117.

[65] C. Golgi. “Di una nuova reasione apparentemente nera delle cellule nervose
cerebrali ottenuta col bichloruro di mercurio.” In: Arch. Med. Sci. 3 (1879),
pp. 1–7.

[66] C. Golgi. “Modificazione del metodo di colorazione deli elementi nervosi col
bichloruru Di mercurio.” In: La Rivista Italiana della Medicina di Laboratorio 7
(1891), pp. 193–194.

[67] C. Golgi. “Sulla struttura della sostanza grigia del cervello.” In: Gazz. Med. Ital.
- Lombardia 6 (1873), pp. 244–246.

[68] J. W. Goodman. Introduction to Fourier optics. 4th ed. Roberts and Company
Publishers, 2005.

[69] J. W. Goodman. Statistical optics. JohnWiley & Sons, 2015.

[70] A. Groso, R. Abela, and M. Stampanoni. “Implementation of a fast method for
high resolution phase contrast tomography.” In: Optics Express 14.18 (2006),
pp. 8103–8110.

[71] A. Groso,M. Stampanoni, R. Abela, P. Schneider, S. Linga, andR.Müller. “Phase
contrast tomography: an alternative approach.” In: Applied Physics Letters 88.21
(2006), p. 214104.

[72] T. Guo,W. Noble, and D. P. Hanger. “Roles of tau protein in health and disease.”
In: Acta Neuropathologica 133.5 (2017), pp. 665–704.

[73] J. Hagemann, M. Töpperwien, and T. Salditt. “Phase retrieval for near-field
X-ray imaging beyond linearisation or compact support.” In: Applied Physics
Letters 113.4 (2018), p. 041109.

[74] J. Hagemann. Johannes Hagemann X Ray Near Field Holography: Beyond Ide-
alized Assumptions of the Probe. Vol. 24. Göttingen series in X-ray physics.
Universitätsverlag Göttingen, 2017.



50 Bibliography

[75] M. T. Haindl, U. Köck, M. Zeitelhofer-Adzemovic, F. Fazekas, and S. Hochmeis-
ter. “The formation of a glial scar does not prohibit remyelination in an animal
model of multiple sclerosis.” In: Glia 67.3 (2019), pp. 467–481.

[76] W. Han and N. Šestan. “Cortical projection neurons: sprung from the same
root.” In: Neuron 80.5 (2013), pp. 1103–1105.

[77] G. Harauz and M. van Heel. “Exact filters for general geometry three dimen-
sional reconstruction.” In: Optik 73.4 (1986), pp. 146–156.

[78] M. A. Hayat et al. Principles and techniques of electron microscopy. Biological
applications. Edward Arnold., 1981.

[79] M. Helmstaedter. “Cellular-resolution connectomics: challenges of dense neu-
ral circuit reconstruction.” In: Nature Methods 10.6 (2013), pp. 501–507.

[80] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W.
Denk. “Connectomic reconstruction of the inner plexiform layer in the mouse
retina.” In: Nature 500.7461 (2013), pp. 168–174.

[81] S. Herculano-Houzel. “The human brain in numbers: a linearly scaled-up
primate brain.” In: Frontiers in Human Neuroscience 3 (2009), p. 31.

[82] G. T. Herman. “Image reconstruction from projections.” In: The Fundamental
of Computerized Tomography (1980), pp. 260–276.

[83] S. E.Hieber, C. Bikis, A.Khimchenko,G. Schweighauser, J.Hench,N.Chicherova,
G. Schulz, and B. Müller. “Tomographic brain imaging with nucleolar detail
and automatic cell counting.” In: Scientific Reports 6.1 (2016), pp. 1–11.

[84] K. Hirai, G. Aliev, A. Nunomura, H. Fujioka, R. L. Russell, C. S. Atwood, A. B.
Johnson,Y. Kress, H.V.Vinters,M.Tabaton, et al. “Mitochondrial abnormalities
in Alzheimer’s disease.” In: Journal of Neuroscience 21.9 (2001), pp. 3017–3023.

[85] C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, and T. Salditt. “Validity of
the empty-beam correction in near-field imaging.” In: Physical Review A 91.1
(2015), p. 013821.

[86] Y. Hua, P. Laserstein, and M. Helmstaedter. “Large-volume en-bloc staining
for electron microscopy-based connectomics.” In: Nature Communications 6.1
(2015), p. 7923.

[87] E. G. Hughes, J. L. Orthmann-Murphy, A. J. Langseth, and D. E. Bergles.
“Myelin remodeling through experience-dependent oligodendrogenesis in the
adult somatosensory cortex.” In: Nature Neuroscience 21.5 (2018), pp. 696–706.



Bibliography 51

[88] J. Hursh. “Conduction velocity and diameter of nerve fibers.” In: American
Journal of Physiology-Legacy Content 127.1 (1939), pp. 131–139.

[89] H. Huxley. “Some aspects of staining of tissue for sectioning.” In: Journal of
the Royal Microscopical Society 78.1-2 (1958), pp. 30–34.

[90] H. Huxley and G. Zubay. “Preferential staining of nucleic acid-containing
structures for electron microscopy.” In: The Journal of Cell Biology 11.2 (1961),
pp. 273–296.

[91] J. B. Issa, B. D. Haeffele, A. Agarwal, D. E. Bergles, E. D. Young, and D. T. Yue.
“Multiscale optical Ca2+ imaging of tonal organization in mouse auditory
cortex.” In: Neuron 83.4 (2014), pp. 944–959.

[92] C. Jack, F. Ruffini, A. Bar-Or, and J. P. Antel. “Microglia andmultiple sclerosis.”
In: Journal of Neuroscience Research 81.3 (2005), pp. 363–373.

[93] C. R. Jack Jr, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Hae-
berlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, et al. “NIA-AA
research framework: toward a biological definition of Alzheimer’s disease.” In:
Alzheimer’s & Dementia 14.4 (2018), pp. 535–562.

[94] S. Jähne, F. Mikulasch, H. G. Heuer, S. Truckenbrodt, P. Agüi-Gonzalez, K.
Grewe, A. Vogts, S. O. Rizzoli, and V. Priesemann. “Presynaptic activity and
protein turnover are correlated at the single-synapse level.” In: Cell Reports
34.11 (2021), p. 108841.

[95] D. T. Jones, D. S. Knopman, J. L. Gunter, J. Graff-Radford, P. Vemuri, B. F. Boeve,
R. C. Petersen, M. W. Weiner, and C. R. Jack Jr. “Cascading network failure
across the Alzheimer’s disease spectrum.” In: Brain 139.2 (2016), pp. 547–562.

[96] K. Joppe, J.-D. Nicolas, T. A. Grünewald, M. Eckermann, T. Salditt, and P.
Lingor. “Elemental quantification and analysis of structural abnormalities in
neurons from Parkinson’s-diseased brains by X-ray fluorescence microscopy
and diffraction.” In: Biomedical Optics Express 11.7 (2020), pp. 3423–3443.

[97] M. Jucker. “The benefits and limitations of animal models for translational
research in neurodegenerative diseases.” In: Nature Medicine 16.11 (2010),
pp. 1210–1214.

[98] S. Kaczmarz. “Angenäherte Auflösung linearer Gleichungssysteme.” In: Bul-
letin International de l’Académie Polonaise des Sciences et des Lettres. Classe des
Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques (1937),
pp. 355–357.



52 Bibliography

[99] A. C. Kak, M. Slaney, and G. Wang. Principles of computerized tomographic
imaging. 2002.

[100] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, and
S. Mack. Principles of neural science. Vol. 4. McGraw-hill New York, 2000.

[101] L. Kantorovich. “On the transfer of masses (in Russian).” In:Doklady Akademii
Nauk. Vol. 37. 2. 1942, pp. 227–229.

[102] R. A. Ketcham. “New algorithms for ring artifact removal.” In: Proc. SPIE 6318
(2006), 63180O.

[103] H. D. King. “The effects of formaldehyde on the brain.” In: Journal of Compar-
ative Neurology 23 (1913), p. 283.

[104] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. “Optimal mass
transport: Signal processing and machine-learning applications.” In: IEEE
Signal Processing Magazine 34.4 (2017), pp. 43–59.

[105] A. T. Kuan, J. S. Phelps, L. A. Thomas, T. M. Nguyen, J. Han, C.-L. Chen, A. W.
Azevedo, J. C. Tuthill, J. Funke, P. Cloetens, et al. “Dense neuronal reconstruc-
tion through X-ray holographic nano-tomography.” In: Nature Neuroscience
23.12 (2020), pp. 1637–1643.

[106] S. Kulpe, M. Dierolf, B. Günther, J. Brantl, M. Busse, K. Achterhold, B. Gleich, F.
Pfeiffer, and D. Pfeiffer. “Dynamic K-edge Subtraction fluoroscopy at a compact
inverse-compton Synchrotron X-ray Source.” In: Scientific Reports 10.1 (2020),
pp. 1–9.

[107] M. Kurudirek. “Effective atomic numbers and electron densities of some
human tissues and dosimetric materials for mean energies of various radi-
ation sources relevant to radiotherapy and medical applications.” In: Radiation
Physics and Chemistry 102 (2014), pp. 139–146.

[108] A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann, W. Brück, H. Rauschka, M.
Bergmann, M. Schmidbauer, J. E. Parisi, and H. Lassmann. “Cortical demyeli-
nation and diffuse white matter injury in multiple sclerosis.” In: Brain 128.11
(2005), pp. 2705–2712.

[109] H. Lagerlöf and T. Torgersruud. “Zur Kenntnis der Gewichts-und Volumen-
veränderungen bei Formalinfixation von Gehirngewebe und der Einwirkung
von NaCl-Zusatz darauf.” In: J Psychol Neurol 46 (1934), pp. 178–188.



Bibliography 53

[110] H. M. Lai, A. K. L. Liu, H. H. M. Ng, M. H. Goldfinger, T. W. Chau, J. DeFelice,
B. S. Tilley, W. M. Wong, W.Wu, and S. M. Gentleman. “Next generation his-
tology methods for three-dimensional imaging of fresh and archival human
brain tissues.” In: Nature Communications 9.1 (2018), pp. 1–12.

[111] H. T. Li, F. Schaff, L. C. Croton, K. S. Morgan, and M. J. Kitchen. “Quantitative
material decomposition using linear iterative near-field phase retrieval dual-
energy x-ray imaging.” In: Physics in Medicine & Biology 65.18 (2020), p. 185014.

[112] Q. Li and B. A. Barres. “Microglia and macrophages in brain homeostasis and
disease.” In: Nature Reviews Immunology 18.4 (2018), pp. 225–242.

[113] Z. Liu, T. Bicer, R. Kettimuthu, D. Gürsoy, F. D. Carlo, and I. T. Foster. “Tomo-
GAN: Low-Dose X-Ray Tomography with Generative Adversarial Networks.”
In: CoRR abs/1902.07582 (2019).

[114] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell.
“Molecular cell biology.” In: Biochemistry and Molecular Biology Education
(2001).

[115] L. M. Lohse, A.-L. Robisch, M. Töpperwien, S. Maretzke, M. Krenkel, J. Hage-
mann, and T. Salditt. “A phase-retrieval toolbox for X-ray holography and
tomography.” In: Journal of Synchrotron Radiation 27.3 (2020).

[116] S. Maretzke. “Inverse Problems in Propagation-based X-ray Phase Contrast
Imaging and Tomography: Stability Analysis and Reconstruction Methods.”
PhD thesis. Niedersächsische Staats-und Universitätsbibliothek Göttingen,
2019.

[117] F. Marone and M. Stampanoni. “Regridding reconstruction algorithm for real-
time tomographic imaging.” In: Journal of Synchrotron Radiation 19.6 (2012),
pp. 1029–1037.

[118] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity.” In:TheBulletin of Mathematical Biophysics 5.4 (1943), pp. 115–
133.

[119] T. L. McHugh, A. J. Saykin, H. A. Wishart, L. A. Flashman, H. B. Cleavinger,
L. A. Rabin, A. C. Mamourian, and L. Shen. “Hippocampal Volume and Shape
Analysis in an Older Adult Population.” In: The Clinical Neuropsychologist 21.1
(2007), pp. 130–145.



54 Bibliography

[120] I. Méndez-López, I. Blanco-Luquin, J. Sánchez-Ruiz de Gordoa, A. Urdánoz-
Casado,M. Roldán, B. Acha, C. Echavarri, V. Zelaya, I. Jericó, andM.Mendioroz.
“Hippocampal LMNA Gene Expression is Increased in Late-Stage Alzheimer’s
Disease.” In: International Journal of Molecular Sciences 20.4 (2019), p. 878.

[121] A.-F. Mentis, E. Dardiotis, N. Grigoriadis, E. Petinaki, and G. Hadjigeorgiou.
“Viruses and endogenous retroviruses in multiple sclerosis: From correlation
to causation.” In: Acta Neurologica Scandinavica 136.6 (2017), pp. 606–616.

[122] S. Mikula and W. Denk. “High-resolution whole-brain staining for electron
microscopic circuit reconstruction.” In: Nature Methods 12.6 (2015), p. 541.

[123] S. Mikula, J. Binding, andW. Denk. “Staining and embedding the whole mouse
brain for electron microscopy.” In: Nature Methods 9.12 (2012), pp. 1198–1201.

[124] S. S. Mirra, A. Heyman, D. McKeel, S. Sumi, B. J. Crain, L. Brownlee, F. Vogel, J.
Hughes, G. Van Belle, L. Berg, et al. “The Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD): Part II. Standardization of the neuropathologic
assessment of Alzheimer’s disease.” In: Neurology 41.4 (1991), pp. 479–479.

[125] R. Mokso, F. Marone, D. Haberthür, J. Schittny, G. Mikuljan, A. Isenegger,
and M. Stampanoni. “Following dynamic processes by X-ray tomographic mi-
croscopy with sub-second temporal resolution.” In: AIP conference proceedings.
Vol. 1365. 1. American Institute of Physics. 2011, pp. 38–41.

[126] T. J. Montine, C. H. Phelps, T. G. Beach, E. H. Bigio, N. J. Cairns, D.W. Dickson,
C. Duyckaerts, M. P. Frosch, E. Masliah, S. S. Mirra, et al. “National Institute on
Aging–Alzheimer’s Association guidelines for the neuropathologic assessment
of Alzheimer’s disease: a practical approach.” In: Acta Neuropathologica 123.1
(2012), pp. 1–11.

[127] M. Müller, M. A. Kimm, S. Ferstl, S. Allner, K. Achterhold, J. Herzen, F. Pfeif-
fer, and M. Busse. “Nucleus-specific X-ray stain for 3D virtual histology.” In:
Scientific Reports 8.1 (2018), pp. 1–10.

[128] B. Münch, P. Trtik, F. Marone, and M. Stampanoni. “Stripe and ring artifact
removal with combined wavelet-Fourier filtering.” In: Optics Express 17.10
(2009), pp. 8567–8591.

[129] I. Napoli and H. Neumann. “Protective effects of microglia in multiple sclero-
sis.” In: Experimental Neurology 225.1 (2010), pp. 24–28.

[130] F. Natterer. The mathematics of computerized tomography. SIAM, 2001.



Bibliography 55

[131] J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs. From neuron to
brain. 4th ed. Vol. 271. Sinauer Associates Sunderland, MA, 2001.

[132] A. Nimmerjahn and D. E. Bergles. “Large-scale recording of astrocyte activity.”
In: Current Opinion in Neurobiology 32 (2015), pp. 95–106.

[133] C. Nyhus, M. Pihl, P. Hyttel, and V. J. Hall. “Evidence for nucleolar dysfunction
in Alzheimer’s disease.” In: Reviews in the Neurosciences 30.7 (2019), pp. 685–
700.

[134] M. Osterhoff. Wave optical simulations of x-ray nano-focusing optics. Vol. 9.
Universitätsverlag Göttingen, 2012.

[135] F. Otto. “The geometry of dissipative evolution equations: the porous medium
equation.” In: Comm. Partial Differential Equations 26.1-2 (2001), pp. 101–174.

[136] P10 - Coherence Application Beamline Unified Data Sheet. url: https: //
photon-science.desy.de/facilities/petra_iii/beamlines/p10_
coherence_applications/unified_data_sheet_p10/index_eng.html
(visited on 07/20/2021).

[137] A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste.
“Two-photon optogenetics of dendritic spines and neural circuits.” In: Nature
Methods 9.12 (2012), pp. 1202–1205.

[138] D. Paganin et al. Coherent X-ray optics. 6. Oxford University Press on Demand,
2006.

[139] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins. “Simul-
taneous phase and amplitude extraction from a single defocused image of a
homogeneous object.” In: Journal of Microscopy 206.1 (2002), pp. 33–40.

[140] D. Paganin andK. A. Nugent. “Noninterferometric phase imagingwith partially
coherent light.” In: Physical Review Letters 80.12 (1998), p. 2586.

[141] D. M. Paganin, V. Favre-Nicolin, A. Mirone, A. Rack, J. Villanova, M. P. Olbi-
nado, V. Fernandez, J. C. da Silva, and D. Pelliccia. “Boosting spatial resolution
by incorporating periodic boundary conditions into single-distance hard-x-ray
phase retrieval.” In: Journal of Optics 22.11 (2020), p. 115607.

[142] F. Palermo, N. Pieroni, L. Maugeri, G. B. Provinciali, A. Sanna, L. Massimi, M.
Catalano, M. P. Olbinado, I. Bukreeva, M. Fratini, et al. “X-ray Phase Contrast
Tomography Serves Preclinical Investigation of Neurodegenerative Diseases.”
In: Frontiers in Neuroscience 14 (2020), p. 1137.

https://photon-science.desy.de/facilities/petra_iii/beamlines/p10_coherence_applications/unified_data_sheet_p10/index_eng.html
https://photon-science.desy.de/facilities/petra_iii/beamlines/p10_coherence_applications/unified_data_sheet_p10/index_eng.html
https://photon-science.desy.de/facilities/petra_iii/beamlines/p10_coherence_applications/unified_data_sheet_p10/index_eng.html


56 Bibliography

[143] P. Patrikios, C. Stadelmann, A. Kutzelnigg, H. Rauschka, M. Schmidbauer, H.
Laursen, P. S. Sorensen, W. Brück, C. Lucchinetti, and H. Lassmann. “Remyeli-
nation is extensive in a subset of multiple sclerosis patients.” In: Brain 129.12
(2006), pp. 3165–3172.

[144] G. Peyré, M. Cuturi, et al. “Computational optimal transport: With applications
to data science.” In: Foundations andTrends® inMachine Learning 11.5-6 (2019),
pp. 355–607.

[145] B. R. Pinzer, M. Cacquevel, P. Modregger, S. McDonald, J. Bensadoun, T. Thuer-
ing, P. Aebischer, andM. Stampanoni. “Imaging brain amyloid deposition using
grating-based differential phase contrast tomography.” In: NeuroImage 61.4
(2012), pp. 1336–1346.

[146] J.-F. Poulin, B. Tasic, J. Hjerling-Leffler, J. M. Trimarchi, and R. Awatramani.
“Disentangling neural cell diversity using single-cell transcriptomics.” In: Na-
ture Neuroscience 19.9 (2016), pp. 1131–1141.

[147] J. Radon. “Über die Bestimmung von Funktionen durch ihre Integralwere
längs gewisser Mannigfaltigkeiten.[On the determination of functions from
their integrals along certain manifolds].” In: SBLeipzig 29 (1917), p. 69.

[148] A. G. Ramm and A. I. Katsevich. The Radon transform and local tomography.
CRC press, 2020.

[149] E. Ramón-Moliner. “The Golgi-Cox Technique.” In: Contemporary Research
Methods in Neuroanatomy. Springer Berlin Heidelberg, 1970, pp. 32–55.

[150] W. J. Ray and V. Buggia-Prevot. “Novel Targets for Alzheimer’s Disease: A View
Beyond Amyloid.” In: Annual Review of Medicine 72 (2021).

[151] W. L. Roberts, T. J. Campbell, G. R. Rapp, et al. Encyclopedia of minerals. Van
Nostrand Reinhold, 1990.

[152] A. Robisch, J. Frohn, and T. Salditt. “Iterative micro-tomography of biopsy
samples from truncated projections with quantitative gray values.” In: Physics
in Medicine & Biology 65.23 (2020), p. 235034.

[153] A. Robisch, K. Kröger, A. Rack, and T. Salditt. “Near-field ptychography using
lateral and longitudinal shifts.” In:New Journal of Physics 17.7 (2015), p. 073033.

[154] A.-L. Robisch, M. Eckermann, M. Töpperwien, F. van der Meer, C. Stadelmann-
Nessler, and T. Salditt. “Nanoscale x-ray holotomography of human brain tissue
with phase retrieval based on multienergy recordings.” In: Journal of Medical
Imaging 7.1 (2020), p. 013501.



Bibliography 57

[155] G. Rodgers, C. Tanner, G. Schulz, A. Migga, T. Weitkamp, W. Kuo, M. Scheel,
M. Osterwalder, V. Kurtcuoglu, and B. Müller. “Impact of fixation and paraffin
embedding on mouse brain morphology: a synchrotron radiation-based tomog-
raphy study.” In: Developments in X-Ray Tomography XIII. International Society
for Optics and Photonics. 2021.

[156] A. Rolls, R. Shechter, and M. Schwartz. “The bright side of the glial scar in CNS
repair.” In: Nature Reviews Neuroscience 10.3 (2009), pp. 235–241.

[157] P. Rostaing, E. Real, L. Siksou, J.-P. Lechaire, T. Boudier, T. M. Boeckers, F.
Gertler, E. D. Gundelfinger, A. Triller, and S. Marty. “Analysis of synaptic
ultrastructure without fixative using high-pressure freezing and tomography.”
In: European Journal of Neuroscience 24.12 (2006), pp. 3463–3474.

[158] A. Ruhlandt, M. Töpperwien, M. Krenkel, R. Mokso, and T. Salditt. “Four
dimensional material movies: High speed phase-contrast tomography by back-
projection along dynamically curved paths.” In: Scientific Reports 7.1 (2017),
pp. 1–9.

[159] A. Ruhlandt and T. Salditt. “Three-dimensional propagation in near-field tomo-
graphicX-ray phase retrieval.” In:ActaCrystallographica SectionA: Foundations
and Advances 72.2 (2016), pp. 215–221.

[160] T. Salditt, T. Aspelmeier, and S. Aeffner. Biomedical Imaging: Principles of
Radiography, Tomography and Medical Physics. Walter de Gruyter GmbH & Co
KG, 2017.

[161] J. R. Sanes and S. L. Zipursky. “Synaptic specificity, recognition molecules, and
assembly of neural circuits.” In: Cell 181.3 (2020), pp. 536–556.

[162] A. Sartori-Rupp, D. C. Cervantes, A. Pepe, K. Gousset, E. Delage, S. Corroyer-
Dulmont, C. Schmitt, J. Krijnse-Locker, and C. Zurzolo. “Correlative cryo-
electron microscopy reveals the structure of TNTs in neuronal cells.” In:Nature
Communications 10.1 (2019), pp. 1–16.

[163] F. Schaff, K. S.Morgan, D.M. Paganin, andM. J. Kitchen. “Spectral propagation-
based x-ray phase-contrast imaging.” In: Developments in X-Ray Tomography
XIII. International Society for Optics and Photonics. 2021.

[164] B. Schmitzer. “Stabilized sparse scaling algorithms for entropy regularized
transport problems.” In: SIAM Journal on Scientific Computing 41.3 (2019),
A1443–A1481.



58 Bibliography

[165] D. Schmucker, J. C. Clemens, H. Shu, C. A.Worby, J. Xiao, M. Muda, J. E. Dixon,
and S. L. Zipursky. “Drosophila Dscam is an axon guidance receptor exhibiting
extraordinary molecular diversity.” In: Cell 101.6 (2000), pp. 671–684.

[166] T. Schoonjans, A. Brunetti, B. Golosio, M. S. del Rio, V. A. Solé, C. Ferrero, and
L. Vincze. “The xraylib library for X-ray–matter interactions. Recent develop-
ments.” In: Spectrochimica Acta Part B: Atomic Spectroscopy 66.11-12 (2011),
pp. 776–784.

[167] A. Siegel and H. N. Sapru. Essential neuroscience. 2nd ed. Lippincott Williams
&Wilkins, 2006.

[168] J. Silver and J. H.Miller. “Regeneration beyond the glial scar.” In:Nature Reviews
Neuroscience 5.2 (2004), pp. 146–156.

[169] R. Sinkhorn and P. Knopp. “Concerning nonnegative matrices and doubly
stochastic matrices.” In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–
348.

[170] A. J. Smola and B. Schölkopf. “A tutorial on support vector regression.” In:
Statistics and Computing 14.3 (2004), pp. 199–222.

[171] J. Soltau, M. Vassholz, M. Osterhoff, and T. Salditt. “Inline holography with
hard x-rays at sub-15 nm resolution.” In: Optica 8 (2021), pp. 818–823.

[172] O. Sporns and J. D. Zwi. “The small world of the cerebral cortex.” In: Neuroin-
formatics 2.2 (2004), pp. 145–162.

[173] C. Stadelmann, M. Albert, C. Wegner, and W. Brück. “Cortical pathology in
multiple sclerosis.” In: Current Opinion in Neurology 21.3 (2008), pp. 229–234.

[174] M. Stockmar, M. Hubert, M. Dierolf, B. Enders, R. Clare, S. Allner, A. Fehringer,
I. Zanette, J. Villanova, J. Laurencin, et al. “X-ray nanotomography using near-
field ptychography.” In: Optics Express 23.10 (2015), pp. 12720–12731.

[175] W. J. Streit, H. Braak, K. Del Tredici, J. Leyh, J. Lier, H. Khoshbouei, C. Eisen-
löffel, W. Müller, and I. Bechmann. “Microglial activation occurs late during
preclinical Alzheimer’s disease.” In: Glia 66.12 (2018), pp. 2550–2562.

[176] W. J. Streit, H. Braak, Q.-S. Xue, and I. Bechmann. “Dystrophic (senescent)
rather than activated microglial cells are associated with tau pathology and
likely precede neurodegeneration in Alzheimer’s disease.” In: Acta Neuropatho-
logica 118.4 (2009), pp. 475–485.



Bibliography 59

[177] N. L. Strominger, R. J. Demarest, and L. B. Laemle. Noback’s human nervous
system: structure and function. Springer Science & Business Media, 2012.

[178] P. K. Stys, G.W. Zamponi, J. VanMinnen, and J. J. Geurts. “Will the realmultiple
sclerosis please stand up?” In:Nature Reviews Neuroscience 13.7 (2012), pp. 507–
514.

[179] A. Suzuki, S. Furutaku, K. Shimomura, K. Yamauchi, Y. Kohmura, T. Ishikawa,
and Y. Takahashi. “High-resolution multislice x-ray ptychography of extended
thick objects.” In: Physical Review Letters 112.5 (2014), p. 053903.

[180] A. Sztrókay, P. Diemoz, T. Schlossbauer, E. Brun, F. Bamberg, D.Mayr,M. Reiser,
A. Bravin, and P. Coan. “High-resolution breast tomography at high energy: a
feasibility study of phase contrast imaging on a whole breast.” In: Physics in
Medicine & Biology 57.10 (2012), p. 2931.

[181] H. F. Talbot. “LXXVI. Facts relating to optical science. No. IV.” In: The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9.56
(1836), pp. 401–407.

[182] M. R. Teague. “Deterministic phase retrieval: a Green’s function solution.” In:
JOSA 73.11 (1983), pp. 1434–1441.

[183] D. R. Thal, U. Rüb, M. Orantes, and H. Braak. “Phases of A𝛽-deposition in the
human brain and its relevance for the development of AD.” In: Neurology 58.12
(2002), pp. 1791–1800.

[184] A. J. Thompson, B. L. Banwell, F. Barkhof, W. M. Carroll, T. Coetzee, G. Comi,
J. Correale, F. Fazekas, M. Filippi, M. S. Freedman, et al. “Diagnosis of multiple
sclerosis: 2017 revisions of the McDonald criteria.” In: The Lancet Neurology
17.2 (2018), pp. 162–173.

[185] D. A. Thompson, Y. I. Nesterets, K. M. Pavlov, and T. E. Gureyev. “Fast three-
dimensional phase retrieval in propagation-based X-ray tomography.” In: Jour-
nal of Synchrotron Radiation 26.3 (2019), pp. 825–838.

[186] M. Töpperwien. 3d virtual histology of neuronal tissue by propagation-based
x-ray phase-contrast tomography. Vol. 25. Göttingen series in X-ray physics.
Universitätsverlag Göttingen, 2018.

[187] M. Töpperwien, A. Markus, F. Alves, and T. Salditt. “Contrast enhancement
for visualizing neuronal cytoarchitecture by propagation-based x-ray phase-
contrast tomography.” In: NeuroImage 199 (2019), pp. 70–80.



60 Bibliography

[188] M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt. “Correlative
x-ray phase-contrast tomography and histology of human brain tissue affected
by Alzheimer’s disease.” In: NeuroImage 210 (2020), p. 116523.

[189] M.Töpperwien, F. van derMeer, C. Stadelmann, andT. Salditt. “Three-dimensional
virtual histology of human cerebellum byX-ray phase-contrast tomography.” In:
Proceedings of the National Academy of Sciences 115.27 (2018), pp. 6940–6945.

[190] M. Van Heel. “Similarity measures between images.” In: Ultramicroscopy 21.1
(1987), pp. 95–100.

[191] M. Van Heel and M. Schatz. “Fourier shell correlation threshold criteria.” In:
Journal of Structural Biology 151.3 (2005), pp. 250–262.

[192] I. A. Vartanyants and A. Singer. “Coherence properties of hard x-ray syn-
chrotron sources and x-ray free-electron lasers.” In: New Journal of Physics
12.3 (2010), p. 035004.

[193] J. Von Neumann. “On rings of operators. Reduction theory.” In: Annals of
Mathematics (1949), pp. 401–485.

[194] W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde. “A linear optimal
transportation framework for quantifying and visualizing variations in sets of
images.” In: International Journal of Computer Vision 101.2 (2013), pp. 254–269.

[195] U. Weierstall, Q. Chen, J. Spence, M. Howells, M. Isaacson, and R. Panepucci.
“Image reconstruction from electron and X-ray diffraction patterns using itera-
tive algorithms: experiment and simulation.” In: Ultramicroscopy 90.2-3 (2002),
pp. 171–195.

[196] I. T. Whiteman, L. S. Minamide, D. L. Goh, J. R. Bamburg, and C. Goldsbury.
“Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-
actin rods primarily recruit microtubule binding domain epitopes.” In: PLoS
One 6.6 (2011), e20878.

[197] S. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. Stevenson. “Phase-contrast
imaging using polychromatic hard X-rays.” In:Nature 384.6607 (1996), pp. 335–
338.

[198] M.C.WillinghamandA.V. Rutherford. “Theuse of osmium-thiocarbohydrazide-
osmium (OTO) and ferrocyanide-reduced osmium methods to enhance mem-
brane contrast and preservation in cultured cells.” In: Journal of Histochemistry
and Cytochemistry 32.4 (1984), pp. 455–460.



Bibliography 61

[199] D. Wu and J. Zhang. “In vivo mapping of macroscopic neuronal projections in
the mouse hippocampus using high-resolution diffusion MRI.” In: NeuroImage
125 (2016), pp. 84–93.

[200] S. Xu, Q. Xiao, F. Cosmanescu, A. P. Sergeeva, J. Yoo, Y. Lin, P. S. Katsamba,
G. Ahlsen, J. Kaufman, N. T. Linaval, et al. “Interactions between the Ig-
Superfamily proteins DIP-𝛼 and Dpr6/10 regulate assembly of neural circuits.”
In: Neuron 100.6 (2018), pp. 1369–1384.

[201] S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, andM. Schlenker. “Optimization
of phase contrast imaging using hard x rays.” In: Review of Scientific Instruments
76.7 (2005), p. 073705.

[202] M.-C. Zdora, P. Thibault, W. Kuo, V. Fernandez, H. Deyhle, J. Vila-Comamala,
M. P. Olbinado, A. Rack, P. M. Lackie, O. L. Katsamenis, et al. “X-ray phase
tomography with near-field speckles for three-dimensional virtual histology.”
In: Optica 7.9 (2020), pp. 1221–1227.

[203] H. Zeng and J. R. Sanes. “Neuronal cell-type classification: challenges, oppor-
tunities and the path forward.” In: Nature Reviews Neuroscience 18.9 (2017),
pp. 530–546.

[204] X. Zhang andW. Song. “The role of APP and BACE1 trafficking in APP process-
ing and amyloid-𝛽 generation.” In: Alzheimer’s Research & Therapy 5.5 (2013),
pp. 1–8.





Phase-contrast X-ray Tomography
of Neuronal Tissue at Laboratory
Sources with Submicron Resolution 2
Marina Eckermann, Mareike Töpperwien, Anna-Lena Robisch, Franziska van der Meer,
Christine Stadelmann and Tim Salditt

Reproduced from Journal of Medical Imaging (2020), 7(1), 013502.

Purpose: Recently, progress has been achieved in implementing phase-con-
trast tomography of soft biological tissues at laboratory sources. This opens
upopportunities for three-dimensional (3d)histologybasedonx-ray computed
tomography (µ- and nanoCT) in direct vicinity of hospitals and biomedical re-
search institutions. Combiningadvancedx-ray generationanddetection tech-
niques with phase reconstruction algorithms, 3d histology can be obtained
even of unstained tissue of the central nervous system, as shown for exam-
ple for biopsies and autopsies of human cerebellum. Depending on the setup,
i.e. source, detector, andgeometric parameters, laboratory-based tomography
can be implemented at very different sizes and length scales.
Here, we investigate to which extent 3d histology of neuronal tissue can ex-
ploit the cone-beam geometry at high magnification 𝑀𝑀𝑀 using a nanofocus
transmission x-ray tubes (nanotube) with 300300300 nm minimal spot size (Excil-
lum), combined with a single-photon counting camera. Tightly approaching
the source spotwith the biopsy punch,we achievehigh𝑀 ≈ 101𝑀 ≈ 101𝑀 ≈ 101-102102102, highflux
density and exploit the superior efficiency of this detector technology.
Approach: Different nanotube configurations such as spot size and flux,𝑀𝑀𝑀 as
well as exposure time, Fresnel number and coherence are varied and selected
in view of resolution, field of view, and/or phase contrast requirements.

https://doi.org/10.1117/1.JMI.7.1.013502
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Results: The data show that the information content for the cyto-architecture
is enhanced by the phase effect. Comparison of results to those obtained at a
microfocus rotating-anode x-ray tomography setup with a high resolution de-
tector, i.e. at low-𝑀𝑀𝑀 geometry, reveals similar to slightly superior data quality
for the nanotube setup. Besides its compactness, reduced power consump-
tion by a factor of 103103103 and shorter scan duration, the particular advantage of
the nanotube setup also lies in its suitability with pixel detector technology,
enabling an increased range of opportunities for applications in laboratory
phase-contrast x-ray tomography.
Conclusions: The phase retrieval scheme utilized here mixes amplitude and
phase contrast, with results being robust with respect to reconstruction pa-
rameters. Structural information content is comparable to previous results
achievedwith amicrofocus rotating-anode setup, but can be obtained in shor-
ter scan time. Beyond advantages as compactness, lowered power consump-
tion and flexibility, the nanotube setup’s scalability in view of progress in
pixel detector technology is particularly beneficial. Further progress is thus
likely tobring 3dvirtualhistology to theperformance in scan timeand through-
put required for clinical practice in neuropathology.

2.1 Introduction

Phase-contrast x-ray tomography offers a unique potential to realize 3d virtual his-
tology, with cellular and even sub-cellular resolution, and for 3d volumes which are
inaccessible by more established techniques. While volume and throughput in conven-
tional histology are limited by slicing and staining, volume penetration for both light-
and electron-based microscopy techniques is unsuitable for larger tissue volumes. A
substantial amount of propagation-based x-ray phase-contrast tomography studies
with synchrotron radiation has demonstrated this potential, both for stained [3, 31, 34]
and unstained [29, 37] soft tissues, and including mouse models [36] as well as human
tissue [19, 37]. Many different types of tissues have been imaged, including heart and
cardiovascular systems[9, 11, 40], skin [42], cancerous tissue in particular for mamma
[43], the peripheral nervous system [3, 30], and tissues of the central nervous system
(CNS) [18, 19, 20, 21].

Towards a broader accessibility and use of the technique in a clinical setting, translation
from synchrotron to laboratory sources is an important goal of ongoing technique and
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instrumentation development. Laboratory-based phase-contrast µCT has already been
implemented at different sources: transmission microfocus sealed tubes [27], liquid
metal-jet anodes [4, 21, 38, 39, 44], as well as microfocus rotating-anode sources [28,
32]. The detection technology has been equally diverse. Nanotubes offer yet another
opportunity to implement phase-contrast tomography, with possible advantages in
particular in view of increased spatial coherence length. For stained tissue, high reso-
lution tomography of different tissues has been demonstrated in [5, 23]. A particular
challenge is to reach sufficient image quality for unstained soft tissues with laboratory
radiation. To this end, we have recently demonstrated the capabilities of optimized
image acquisition (by geometry and detection) and reconstruction, using liquid-anode
metal jet sources as well as a microfocus rotating-anode sources [28, 33].

In this work, we want to investigate the suitability of a home-built setup installed at
a nanotube (NanoTube N1 60kV, Excillum AB, Stockholm, Sweden) for 3d histology
of unstained post mortem human brain tissue. As in our earlier study [37], we chose
cerebellar tissue, as a reference structure for phase-contrast tomography data evalu-
ation, due to its well-known anatomy and features covering various relevant length
scales and 𝑒−-densities. Fig. 2.1 illustrates its basic anatomical features, in order to
place the tomographic results obtained on biopsy punches from paraffin-embedded
tissue blocks with typical diameter of a mm into proper anatomical perspective. The
white matter (WM) consists of myelinated neuronal structures as axons in fiber tracts
(FT). From there, fibers traverse the granular layer (GL), consisting of granular cells
(GC) and Golgi cells (GgC). Bounding the GL, a single layer of Purkinje cells (PC, PCL)
with sparse occurrences of basket cells (BC) is situated. PC’s long, planar and widely
branched dendritic trees reach into the molecular layer (ML), which distinguishes
itself from the GL by themolecular cells (MC), being more sparsely spread neurons
and having larger nuclei.

The manuscript is organized as follows: after this introduction, the setup realization
and data processing of the nanotube x-ray source are outlined in 2.2.1, complemented
by a brief presentation of a yetwell-established rotating-anodemicrofocus setup in 2.2.2.
The results section 2.3 start with the inspection of commissioning test measurements
regarding stability and spectrum in 2.3.1. However, the analysis of the tomographic
data occupies the main part of this work, for one being devoted to the variation of
physical parameters as source spot size, lateral coherence length, dose or Fresnel
number in 2.3.2.1 and 2.3.2.2, but also to the comparison with a yet well-established
microfocus setup in 2.3.2.3. This manuscript closes with a summary and outlook in
2.4.
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Fig. 2.1: Depiction of the cerebellum anatomy, giving a rathermacroscopic perspective
on the left and a zoom-in to the cellular scale on the right. Notations correspond to
the ones defined in the text.

2.2 Methods

2.2.1 NanoTube Implementation

Experimental Setup We have designed a nanofocus x-ray setup for propagation-
based x-ray phase-contrast tomography, depicted in Fig. 2.2. Its central component is
the NanoTube N1 60 kV (Excillum AB) x-ray source, with two-dimensional (2d) spatial
resolution down to 150 nm, according to manufacturer (lines-and-spaces, metal test
objects in absorption contrast). The source is operated at 60 keV, with a power between
0.2 and 1.2W, depending on the spot size. The NanoTube system was calibrated for
three different spot sizes 𝑠 (full width at half maximum, FWHM): “big spot, high flux”
at 1 µm, “middle spot, middle flux” at 0.5 µm and “small spot, low flux” at 0.3 µm
(FWHM). Fig. 2.2a) shows the schematic of the transmission-anode target, which
consists of a 0.50 µm tungsten-film (chemical symbol “W”) providing a rather high
e--stopping power 𝑆 (𝑆 = 54.4MeV/cm[22]) on a 100 µm-layer of diamond, serving
as carrier layer and for heat mitigation at fewer e--interactions (𝑆 = 18.1MeV/cm).
As shown in the zoomed optical micrograph in Fig. 2.2c), samples can be positioned
in direct proximity to the target, since it also serves as vacuum exit window. The cone-
shaped front end of the NanoTube allows to position the sample tower underneath the
X-ray target, and to achieve small source-to-sample distances down to 𝑧01 ≥ 100 µm.
Due to the small sub-µm spot size 𝑠, high geometrical magnification𝑀 = 𝑧02/𝑧01 ≫ 1
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can be realized without source blurring, making it possible to use direct (photon-
counting) pixel detectors, which are available only with relatively large pixel size 𝑝𝑥.
Accordingly, the effective pixel size in the sample plane is reduced to [25]

𝑝𝑥eff = 1
𝑀

⋅ 𝑝𝑥 = 𝑧01
𝑧02

⋅ 𝑝𝑥 .

At the same time, phase contrast is still feasible, since small 𝑠 also assures the spatial
coherence length 𝜁[2] to be of the same order of magnitude as 𝑝𝑥eff

𝜁 = 𝜆 ⋅ 𝑧01
𝑠

≥ 𝑝𝑥eff ,

where 𝜆 denotes the x-ray wavelength. The sample tower is equipped with three
translational motors at the bottom (x,y,z), to position the tomographic rotation axis.
The FOV on the sample is selected by two further translational motors (x,z) on top of
the rotation, enabling automated alignment routines as described in [28]. For high-
resolution optical monitoring of the sample environment, a Manta camera (Allied
Vision Technologies GmbH, Stadtroda, Germany) is installed with a view along the
x-axis, as shown in 2.2(b) & (c). Broad overviews of the scene are provided by an
Axis camera (Axis Communications AB, Lund, Sweden). A single-photon counting
Timepix Hexa H05-W0154 detector (XIE, Freiburg, Germany) was used, with a 500 µm
Si-sensor, 𝑝𝑥 = 55 µm and 768 x 512 pixels (w xh) distributed over six modules, to
record the 2d projections.

Data recording settings For tomographic acquisition, 2d X-ray projections were
recorded at 1201 rotation angles, equally distributed over 192∘1, with sets of 25 flat field
images before and after each scan. 𝑧02 ≈ 20 cm was kept fixed, varying 𝑧01 and 𝑠. The
detector was operated with a lower-limit cut-off energy of 4 keV. The acquisition time
was adjusted depending on the spot size 𝑠 to avoid overexposure, which is at maximum
counts of 11 810 ph. Most scans were split into four consecutive tomographic scans
with 1

4 exposure time each, and then recombined via cross-correlation in Fourier
space[14]. Thus, for these cases, four different exposures were recorded and averaged
for each projection. All scan parameters are tabulated in Tab. 2.1, 2.2 and 2.3. This
acquisition schemewas found to reduce ring artifacts arising from a statistically varying
response of the modules.

1Due to the cone-beam angle being 12∘, an increased angular sampling range was required.
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Fig. 2.2: Illustration of the nanotube setup: a) Schematic of the transmission target X-
ray source. b) Recording geometry: the cone-shaped front end of the nanotube allows
for small distances 𝑧01 between source s and the sample. The detector is aligned at 𝑧02
from the source. The axis camera allows for visual inspection of the setup in general,
while the manta camera gives a microscopic control of the tight 𝑧01 environment, see
exemplary view in c).

Phase retrieval The data are recorded in the direct contrast or edge enhancement
regime at Fresnel numbers

𝐹 =
𝑝𝑥2

eff
𝑧eff𝜆

= 𝑝𝑥2

𝑧12𝑀𝜆
≈ 1,

where 𝑝𝑥eff = 𝑝𝑥/𝑀 for the effective pixel size, and 𝑧eff = 𝑧12/𝑀 for the effective
propagation distance have been used (Fresnel scaling theorem [25]). As demonstrated
in [4, 35], in this regime, even data from low coherence sources can be successfully
reconstructed based on the Bronnikov-aided correction (BAC) scheme. To this end, the
transport of intensity equation (TIE) serves a starting point to describe the propagation
of a paraxial wave along ⃗𝑧 with intensity 𝐼( ⃗𝑟) and phase distribution 𝜙( ⃗𝑟): ∇⊥(𝐼( ⃗𝑟) ⋅
∇⊥𝜙( ⃗𝑟)) = −𝑘𝜕𝑧𝐼( ⃗𝑟), 𝑘 being the wavenumber. Under the assumption of small
propagation distances 𝑧eff and a purely phase shifting object, the TIE can be linearized,
and an approximate phase ̃𝜙 can be computed as [12, 13]

̃𝜙( ⃗𝑟⊥) = 2𝜋𝐹 ⋅ ℱ−1
⊥

⎡⎢
⎣

ℱ⊥ [ 𝐼( ⃗𝑟⊥,𝑧)
𝐼0

− 1]

|𝑘⃗⊥|2 + 𝛼
⎤⎥
⎦

,

where ℱ denotes the Fourier transform and 𝐼0 the (uniform) intensity distribution.
The parameter 𝛼 is introduced to regularize the singularity at zero spatial frequencies,
and in practice is chosen such that edge enhancement is cancelled. In a second step,
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the approximate phase ̃𝜙 is used to compute a (corrected) sharp intensity distribution
in the object exit plane, according to [8]

𝐼( ⃗𝑟⊥, 𝑧 = 0) = 𝐼( ⃗𝑟⊥, 𝑧)
1 − 𝛾∇2

⊥
̃𝜙( ⃗𝑟⊥)

.

In practice, the art of using the BAC is to choose the two regularization parameters 𝛼
and 𝛾 such that the resulting somewhat hypothetical intensity distribution contains
contributions from intensity and phase contrast, even though expressed only in terms
of transmitted intensity. As for reconstructions assuming a homogeneous object, the
two contributions cannot be separated. For high resolution laboratory µ- and nanoCT,
this scheme yields unparalleled image quality. After, the phase-retrieved 2d projection
data are processed for ring artifact mitigation according to [24] and then recombined
to a 3d volume using the ASTRA-toolbox[1, 26]. Visualization was done with Avizo
(Thermo Fisher Scientific, Waltham MA, USA).

2.2.2 Rotating-Anode Setup

For comparison, the samples were also scanned at a (home-built) laboratory µCT setup
installed at a rotating Cu-anode x-ray source (Rigaku, Tokyo, Japan) with main line
8.048 keV (K𝛼) and source size 𝑠 = 70 µm [28]. It was operated at 40 keV and 30mA. A
high resolution, lens-coupled single crystal scintillator CCD detector (Xsight, Rigaku,
Prague, Czech Republic), with 𝑝𝑥 = 0.54 µm was used. Images were recorded at
𝑀 = 500mm

494mm ≈ 1 to achieve a spatial coherence 𝜁 ≈ 1 µm reasonable for 𝜇m-resolution
(after 2x2 pixel-binning).
The number of projection angles was identical to that of the nanotube scans, distributed
over an angular range of 180∘ from the cone-beam angle being ≈ 0∘. The exposure
time, however, needed to be increased significantly due to the very different detector
technology, i.e. to 50 s. In addition to the flat fields, 10 dark images were recorded prior
to each scan, to account for the dark current of the CCD. With 𝐹 = 1.24, BAC applies
also here.
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2.3 Results

2.3.1 Commissioning Tests

Prior to performing high-resolution tomography scans, the stability of the source
and its environment was verified. To this end, the source was operated at spot size
𝑠 = 0.56 µm, and images of a custom-fabricated JIMA target (1.5 µmW; ZonePlates
Ltd, London, UK) positioned at 𝑧01 = 19.6mm, were recorded at 𝑧02 = 900mm, using
a sCMOS camera (Photonic Science, UK) with a 5 µm Gadox scintillator 2208 x 2744
pixels (w xh) and 𝑝𝑥 = 4.54 µm. As indicated in Fig. 2.3(a), images of 600 nm lines-
and-spaces were acquired every 12min for 5min of exposure over the course of 6.6 h.
Fig. 2.3(b) shows themodulations of the lines-and-spaces corresponding to themarked
area in a) after 0 h, 3 h and 6 h (from top to bottom). Only a minor shift on the order of
30 nm/h is observed. At the same time, the variations of the total intensity (integrated
flat fields) shown in (c) are about 0.6% (rms-value).
Next, the spectrum of the X-ray source was assessed using an energy-resolving XR-
100CdTe detector (Amptek, Bedford, USA) with a sensor thickness of 1mm, positioned
at 𝑧02 = 1.2m to avoid saturation. Spectral bins were calibrated based on the 𝐾𝛼 and
𝐾𝛽 fluorescence signals of Mo, Ni and Ag foils. The spectrum is plotted in red in
Fig. 2.3(d). The counts-weighted mean energy of this spectrum 𝐸w is 21.40 keV.
However, at the given distance, absorption in air is already substantial, and has to be
corrected for using the tabulated values (Henke tables), accessed through the CXRO
data base[17] and matched to the detector bins with a Matlab-implementation of
shape-preserving piecewise cubic extrapolation. The resulted corrected curve is shown
in yellow, representing the source emission spectrum, with a correspondingly lower
mean energy 𝐸w = 11.46 keV. Since the detector for the tomographic scans had a
500 µm Si-sensor, and hence reduced sensitivity at high photon energy, this was also
corrected[22], along with the absorption in air, for the corresponding detector position
𝑧02 ≈ 20 cm, see the blue curve. It is characterized by 𝐸w = 9.11 keV, and therefore
represents the mean photon energy for the tomography data (without taking beam
hardening in the sample into account).
The photon flux is dependent of 𝑠 and the actual, specific source calibration. For
𝑠 = 0.95 µm, it was found to be in the order of ∼2 ⋅ 1011ph/s in 2𝜋-space,∼4 ⋅ 1010ph/s
for 𝑠 = 0.51 µm and ∼1 ⋅ 1010ph/s for 𝑠 = 0.30 µm.
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Fig. 2.3: Pre-characterization of the imaging setup. (a-c) Test of stability by recording
a time series for a test pattern, recorded at 𝑠 = 0.56 µm and pxeff = 0.099 µm. (a)
Image of the JIMA-target (1.5 µm W). The annotation “600” refers to the structure
measured, i.e. 600 nm lines and 600 nm spaces. The red rectangle indicates the area,
for which line profiles are shown in (b) at three time points: (top) 0h, (center) 3h, and
(bottom) 6h. (c) Integrated intensity over time. (d) Source spectrum: (red) measured
data (detector output), (yellow) corrected for absorption in air, and (blue) the spectrum
taking into account the energy dependence in the quantum efficiency of the detector
used for the tomographic scans.
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2.3.2 Phase-Contrast Tomography of Unstained Human Brain
Tissue

In this work, paraffin-embedded human cerebellum was used to investigate suitability
of the setup for 3d virtual histology and neuropathology. From the tissue block, a
0.5mm biopsy punch was extracted and transferred into a 0.5mm polyimide tube
(Professional Plastics, Fullerton CA, USA) on a custom-fabricated Huber brass pin
(Huber Diffraktionstechnik GmbH & Co. KG, Rimsting, Germany), as illustrated in
Fig. 2.2.

2.3.2.1 Variation of 𝑠/𝜁 at Constant 𝐹

We have first investigated the influence of the lateral coherence length 𝜁 on the to-
mographic image quality, by setting two different spot sizes (I) 𝑠 = 0.95 µm and (II)
𝑠 = 0.51 µm, respectively, while keeping 𝐹 ≈ 2.0 constant, and the dose also ap-
proximately at the same level. Hence the larger source size resulted in a significantly
reduced total scan time. All experimental and phase reconstruction parameters are
listed in Tab. 2.1. In this work, radiation dose was calculated combining the photon
counts from the projection data with the spectra in Fig. 2.3. Fig. 2.4 illustrates data
reconstruction steps, from projection to orthoslices through the reconstructed volume.
The projections in (a) reveal slight edge enhancement in both cases, especially for
the polyimide-air-interface, as plotted in (b). As expected, the higher coherence for
the 0.501 µm source spot yields a more pronounced edge enhancement compared to
0.934 µm. In the same plot, the blue curves show the profiles after phase retrieval, and
the respective 2d images are given in (c). Virtual slices through the same position in
the xz-plane and xy-plane are shown in (d) and (f), respectively, with a corresponding
zoom shown in (e). Data for (I) were recorded as a single tomographic scan, acqui-
sition for (II) was split into four as described in 2.2.1. By fractionating the dose over
four scans, ring artifacts were found to be reduced. Based on visual inspection, both
data sets appear to be of very similar quality. Different cerebellum-specific regions
as outlined in Fig. 2.1 are clearly identifiable: as for the zoom-ins (I.e) and (II.e),
the cell-dense GL on the right and the ML on the left are separated by the sparsely-
distributed, bold PCL-cells (red arrows). The resolution was quantified exploiting
Fourier-Shell-Correlation (FSC) [15, 41]. In this analysis scheme, two independently
recorded Kaiser-Bessel-filtered data are evaluated for their consistency, defined via
the intersection of the cross-correlation in Fourier space with a threshold criteria,
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𝑠 𝐹 𝑧01 pxeff 𝜁 Exp. time (s) P (W) Scan Dose
(µm) (mm) (µm) (µm) time (h) (kGy)
0.95 1.97 3.5 0.959 0.501 1 ⋅ 3.5 = 3.5 1.18 2.0 10.6
0.51 1.96 3.5 1.067 0.934 4 ⋅ 5 = 20 0.24 8.0 14.3

𝑠 𝐹 𝛼BAC 𝛾BAC
FSC CNR

(µm) (µm) GCL PCn PCb
0.95 1.97 0.12 0.16 1.83 5.46 5.49 0.74
0.51 1.96 0.10 0.16 1.76 6.39 9.25 2.74

Table 2.1: Parameters and quality measured for the tomographic scans at fixed 𝐹: (top)
experimental parameters, (bottom) quality measures.Exposure times also indicate
whether the scan was performed as a single or multiple ones. Fourier-shell correlation
(FSC) is based on volumes of 4003 voxels, with a Kaiser-Bessel window of 7 pixels[6].
The signal-to-noise ration (CNR) was calculated as (𝜇ft − 𝜇bg)/𝜎bg on 5 GCs, 4 PC
bodies (PCb) and their nuclei (PCn), respectively. Scan time refers to the full scan,
including readout and motor positioning.

being 1/2-bit in this case[16]. Therefore, FSC-values are not only governed by spatial
resolution, but also the overall noise level. In this work, two independent data sets are
reached performing the tomographic reconstruction twice, using half of the angular
projections each. Hence, FSC-based resolution evaluation serves as an upper limit
estimate. For both scans inspected here, the analysis results in similar values of around
1.8µm. However, case (I) for 𝑠 = 0.51 µm has superior feature contrast, see Tab. 2.1.

2.3.2.2 Variations of 𝐹 at Constant Source Spot Size 𝑠

Next we investigate the influence of 𝐹 on tomographic image quality, as controlled
by the source-to-sample distance 𝑧01, while keeping 𝑧02 fixed. Hence 𝑝𝑥eff (Eq. 2.2.1)
and 𝜁 (Eq. 2.2.1) vary accordingly. Most scans were recorded at 𝑠 = 0.51 µm = const.
In addition we include a scan at the minimally achievable 𝑠 = 0.30 µm, as well as
at 𝑠 = 0.95 µm. For the latter, the 0.95 µm-scan from Tab. 2.1 was repeated four
times to reach an equal overall scan time of 8 h. All parameters are detailed in Tab.
2.2. Fig. 2.5 shows the virtual slices along the xy-plane through the reconstruction
volume, in similar positions. By repeating the 2 h-0.95 µm-scan from Tab. 2.1 four
times, and increasing the dose accordingly, the 3d resolution (FSC) is increased to
1.00 µm, i.e. close to the voxel size. The CNR also increased for GCs and PC nuclei, but
only marginally for PC bodies. In order to increase the CNR of PC bodies substantially,
it was necessary to double 𝜁 (via reduction of 𝑠) at constant 𝐹 (constant 𝑧01). Despite
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Fig. 2.4: (caption next page)
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Fig. 2.4 (previous page): Data from tomography scans at fixed Fresnel number of
2.0, at (I) 𝑠 = 0.95 µm (𝜁 = 0.501 µm) and (II) 0.51 µm (𝜁 = 0.934 µm). (a) Respective
flat-field corrected projections and (c) BAC-reconstructed projections. Colored bars
indicate the position of the profiles shown in (b). The same virtual slice (d) in the
xz-plane with a zoom-in in (e) and (f) in the xy-plane. Red arrows mark PCs. Data
from quantitative analysis are summarized in table 2.1. Scale bars: 100 µm.

𝑠 𝐹 𝑧01 pxeff 𝜁 Exp. time (s) P (W) Scan Dose
(µm) (mm) (µm) (µm) time (h) (kGy)
0.95 1.97 3.5 0.959 0.501 4 ⋅ 3.5 = 14 0.91 8.0 40.5
0.51 1.96 3.5 1.067 0.934 4 ⋅ 5 = 20 0.24 8.0 14.3
0.51 1.40 2.5 0.687 0.667 4 ⋅ 5 = 20 0.22 8.0 26.0
0.51 0.83 1.5 0.410 0.400 4 ⋅ 5 = 20 0.24 8.0 77.1
0.30 0.60 1.1 0.300 0.680 4 ⋅ 20 = 80 0.91 32.5 189.2

𝑠 𝐹 𝛼BAC 𝛾BAC
FSC CNR

(µm) (µm) GCL PCn PCb
0.95 1.97 0.12 0.16 1.00𝐾=100 6.47 5.93 0.86
0.51 1.96 0.10 0.16 1.76𝐾=400 6.39 9.25 2.74
0.51 1.40 0.03 0.16 1.13𝐾=130 6.18 6.91 1.24
0.51 0.83 0.015 0.16 1.19𝐾=200 5.57 5.52 1.38
0.30 0.60 0.015 0.16 1.02𝐾=200 3.82 3.81 0.83

Table 2.2: Analysis of image quality as a function of 𝑠 and 𝐹: (top) experimental,
(bottom) image quality parameters. Exposure times also indicate whether the scan
was performed as a single or multiple ones. FSC evaluation is based on volumes
of 𝐾3 voxels, with a Kaiser-Bessel window of 7 pixels[6]. CNR was calculated as
(𝜇ft − 𝜇bg)/𝜎bg on 5 GCs, 4 PC bodies (PCb) and their nuclei (PCn), respectively.

the significantly lower dose, which compromised resolution, the contrast for the rather
large cell bodies is higher. As an overall trend, reducing 𝐹 (via 𝑧01) results in increased
resolution, which is expected based on higher dose (smaller 𝑝𝑥eff). At the same time,
despite rise in dose, the CNRs are lower, indicating that the increase in 𝜁 is more
important, in particular for intrinsically low-contrasted features such as PC bodies.
This conclusion is also confirmed by comparing the results in Tab. 2.2 for 𝑠 = 0.95 µm
and 𝑠 = 0.30 µm. In these scans, a roughly similar coherence length 𝜁 ≈ 0.5-0.7 µm
results in a constant CNR≈ 0.83-0.86 for PC bodies, even though the radiation dose
deviates by more than a factor of four.
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Fig. 2.5: Virtual xy-slices through the tomographic reconstruction, at similar positions
in the biopsy punch, for (a) spot size of 0.95 µm, (b-d) 0.51 µm and (e) 0.30 µm and
Fresnel numbers of (from (a) to (e)) 1.97, 1.96, 1.40, 0.83 and 0.60. Note the rise in
geometrical magnification from (a&b) to (e). The respective analysis parameters are
given in table 2.2. Scale bars: 50 µm.
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𝑠 𝐹 𝑧01 pxeff 𝜁 Exp. time (s) P (W) Scan
(µm) (mm) (µm) (µm) time (h)
0.51 1.96 3.5 1.067 0.934 4 ⋅ 5 = 20 0.24 8.0
70.0 1.24 494.0 1.070 1.094 1 ⋅ 50 = 50 1400 16.7

𝑠 𝐹 𝛼BAC 𝛾BAC
FSC CNR

(µm) (µm) GCL PCn PCb
0.51 1.96 0.10 0.16 1.76 6.39 9.25 2.74
70.0 1.24 0.07 0.16 1.82 5.36 6.80 2.55

Table 2.3: Analysis of the tomographic scans for the nanofocus setup with pxeff ≈
1.07𝜇m, in comparison to a rotating anode scan with the same pxeff: (top) experimental
parameters, (bottom) image quality parameters. Exposure times also indicate whether
the scan was performed as a single or multiple ones. FSC-analysis is based on volumes
of 4003 voxels, with a Kaiser-Bessel window of 7 pixels[6]. CNR was calculated as
(𝜇ft − 𝜇bg)/𝜎bg on 5 GCs, 4 PC bodies (PCb) and their nuclei (PCn), respectively.

2.3.2.3 Comparison with Data from a Microfocus Laboratory Setup

In order put the NanoTube results into perspective with earlier implementations
of 3d histology with laboratory x-ray phase-contrast tomography, Fig. 2.6 and Tab.
2.3 presents a comparison to a reconstruction obtained at the microfocus rotating-
anode x-ray source, with instrumentation described in 2.2.2. For the comparison,
we selected the NanoTube dataset recorded for 𝑠 = 0.51 µm and 𝐹 = 1.96, in order
to achieve similar effective pixel size 𝑝𝑥eff ≈ 1.07 µm and coherence length 𝜁 ≈
0.93-1.09 µm. The NanoTube setup achieves slightly higher resolution (FSC-based)
and increased CNRs (for the features considered), but requires only half of the scan
time. However, as directly apparent from Fig. 2.6(a), this comes at the cost of reduced
FOV, reflecting the different detector technologies. For sufficiently narrow samples,
this could be compensated for by scanning two volumes consecutively and stacking
them, which would result in similar overall scan time for both setups. The plots
in (b) show profiles across the capillary edges indicated in (a). The two setups give
very similar intensity profiles; absorption and edge enhancement is slightly more
pronounced for the microfocus rotating-anode data. Finally, (c) and (d) show virtual
slices through the xz- and xy-plane to judge image quality by visual inspection.
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Fig. 2.6: (caption next page)
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Fig. 2.6 (previous page): Comparison of (I) nanotube tomography with (II) microfo-
cus rotating-anode results. Settings were chosen such that pxeff ≈ 1.07𝜇m same for
both data sets. (a) Flat-field corrected projections. The colored bars show the position
of the intensity profile plots in (b). Note the identical ranges of the y-axis. Virtual
slices through the same position in the reconstructed sample volume are shown in (c)
for the xz-plane and (d) the xy-plane. Scale bars: 100 µm.

2.4 Summary and Outlook

In summary, we have successfully demonstrated phase-contrast tomography of un-
stained neuronal tissue, using a home-built laboratory setup with a nanofocus x-ray
transmission tube (nanotube) and a photon counting pixel detector. Sufficient image
quality for the detection of neurons and hence representation of the cyto-architecture
was achieved. In particular, FSC analysis indicated a resolution of 0.90 µm for a source
setting of 𝑠 = 0.30 µm. The phase retrieval and reconstruction scheme presented
here mixes amplitude and phase information, but is very suited to visualize the small
electron density differences in unstained tissue and hence the cyto-architecture, for
example of neuronal tissue. Final results can be represented as 𝛽 or 𝛿 up to a fac-
tor of 𝑘, expressing the amplitude (real-valued transmission function) or the phase
shift, respectively. Importantly, the information content for the cyto-architecture is
enhanced by the phase effect, as evidenced by the variation of 𝐹, see also Fig. 2.7.
Experimental determination of 𝛼BAC as illustrated in Fig. 2.7 is unproblematic and
results are robust with respect to variations up to about±40%. Sincemagnification and
cone-beam angle are high, cone-beam tomographic reconstruction according to [10] is
required. Effects of the cone-beam geometry can easily appear in form of distortions,
such as at the edges of the source-facing side of the reconstructed volume (cf. Fig.
2.6 (I.d) & (II.d)). Compared to a microfocus rotating-anode setup, data quality and
information content appear to be on a similar level. However, the particular advantage
of the nanotube setup (apart from its more compact size and much reduced power
consumption) is in its scalability with respect to progress in pixel detector technol-
ogy. While already performing on the same level for a relatively thin silicon sensor,
future replacement by 1mm thick 𝑆𝑖 sensors or even 𝐺𝑎𝐴𝑠 sensors, along with an
increase in the detection panels may result in significantly reduced scan times. We
also note that new pixel detector technology allows for registration of counting with
sub-pixel registration and for photon energy determination [7], opening up an entirely
new opportunity for laboratory phase-contrast tomography. Further progress is hence
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Fig. 2.7: Edge enhancement and choice of reconstruction parameters. The plots cor-
respond to the data shown in Fig. 2.5 and give the image profiles before reconstruction
(red) exhibiting pronounced edge enhancement between air and kapton tubes as a
hallmark of phase contrast. In addition, profiles are shown after BAC-reconstruction,
carried out for three different values of 𝛼BAC, to illustrate the process of finding the
best suited parameter value.

likely to bring virtual 3d histology to the performance in scan time and throughput
required for clinical practice in neuropathology. This, however, would be useful only
in combination with automated evaluation of cyto-architecture as in [37] and more
knowledge on alterations associated with pathologies. Importantly, the demonstrated
laboratory-based image quality would already be sufficient for this task.
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In this work, we optimize the setups and experimental parameters of X-ray
phase-contrast computed-tomography for three-dimensional imaging of the
cyto- and myeloarchitecture of cerebral cortex, including both human and
murine tissue. Wepresent examples for different optical configurationsusing
state-of-the art synchrotron instruments for holographic tomography, aswell
as compact laboratory setups for phase-contrast tomography in the direct con-
trast (edge-enhancement) regime. Apart from unstained and paraffin-em-
bedded tissue, we tested hydrated tissue, as well as heavy metal stained and
resin-embedded tissue using two different protocols. Further, we show that
the image quality achieved allows to assess the neuropathology of multiple
sclerosis in a biopsy sample collected during surgery.

3.1 Introduction

The human brain is formed by a complex and rapidly interacting network, with informa-
tion processing within and across specialized subregions [66]. In order to decipher how
the brain functions and how function is compromised in different pathological states,
structural information is required, covering many length scales. On the macro- and
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microscale, the cytoarchitecture and myeloarchitecture account for the different types,
morphologies, and concentrations of neurons, glial cells and connective fibers, and
their connectivity, and is typically assessed by optical microscopy based on histological
thin section or cultured tissue slices [36, 37, 47, 56]. Optical microscopy in combination
with immunohistochemistry constitutes a routine technique of neuropathology and
pre-clinical research, for example in neurodegenerative diseases. Small-angle X-ray
scattering has also proven to be suitable for studying the myelostructure in murine and
human brain tissue [32, 33]. On the nanoscale level, neuronal circuits can be probed
by modern electron microscopy (EM), in particular serial block face scanning electron
microscopy (SBEM) [26, 27] or volume-EM by automated transmission-EM (TEM)
[50], enabled by advanced heavy metal staining, notably the adapted rOTO-protocols
[31, 44, 45].

More recently, X-ray phase-contrast computed-tomography (PC-CT) has joined the
toolset to study human brain tissue [5, 18, 25, 53, 78], as well as small animal models
of mammalian brain tissue [13, 29, 72, 73, 77]. Similar to conventional CT, PC-CT
offers three-dimensional (3d) reconstructions without any need for sectioning, while
offering much higher contrast to soft tissues and also resolution, when free-wave
propagation is exploited for contrast formation. PC-CT can be implemented both with
synchrotron radiation (SR) and compact laboratory sources (µCT). Tissue volumes
can be scanned with adjustable field-of-view and resolution. For larger overviews,
parallel-beam (PB) illumination is most efficient, scanning entire biopsy punches
within minutes [24] at a resolution limited by the detector pixels size (i.e. down to the
sub-µm range). Selected subregions can then be probed in cone-beam (CB) geometry
down to the sub-100 nm range, below the diffraction limit of optical microscopy. Here,
a resolution given by the half-width of the source spot can be achieved, i.e. at the
level of the focused synchrotron radiation. Applications of PC-CT in human brain
sample imaging, in particular of unstained formalin-fixed and paraffin-embedded
(FFPE) tissues, have recently been demonstrated. Cellular and sub-cellular structural
details can be observed in these preparations [20, 35, 75]. Further sample preparation
techniques for PC-CT of unstained neuronal tissue exist, including formalin-fixed,
dehydrated or hydrated tissue in solution or tissue fixed and embedded in paraffin
[2, 3, 55, 73]. In order to create enhanced contrast for small cellular features and in
particular nerve fibers, osmium-based protocols have also been used for PC-CT of
tissue from the central nervous system of murine and from the peripheral nervous
system both of human and murine tissue [4, 21, 70, 71].

Following preceding PC-CT studies on human cerebellum and hippocampus [74, 75],
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the main goal of the current work is to explore to which extent PC-CT could contribute
to imaging of the cerebral cortex of the mammalian brain, and in particular of the
human brain, which shows a complex neuroanatomy with 1015 neuronal connections
[66]. We include the corpus callosum (CC), which is the major tract of commissural
fibers, with 108 nerve filaments connecting both hemispheres of the brain [1]. For the
essential neuroscience background, we refer to [58, 66]. In this context, we ask towhich
degree advanced staining protocols can help to increase contrast and resolution. In
view of the aforementioned recent progress in heavy metal staining and the preceding
advent of SBEM, which has made it possible to address the connectivity problem in
small brain volumes [17, 34, 61], the question arises whether PC-CT can extend this
toolset towards larger brain volumes. If so, it may contribute in future to integrate
data from different smaller volumes scanned by SBEM. A recent proof-of-concept
demonstrates the potential of PC-CT in this context [11, 39]. Here, we investigate
which instrumental and optical settings, both at synchrotron and inhouse laboratory
sources, can take advantage of different stains: To this end, both conventional-OsO4

and rOTO staining protocols are applied. At the same time, we further include un-
stained hydrated, (partially) dehydrated, and FFPE-tissue of the cerebral cortex, as
well as OsO4-stained and epon-embedded sample blocks (cf. Fig. 3.1 (d) and Fig. 3.1
(e & f), and supplemental document for experimental concepts of data acquisition).

Fig. 3.1 shows a schematic of the cortical regions, from which tissue autopsies and
biopsies are scanned in the present PC-CT study. The sagittal view in Fig. 3.1 (a)
shows the CC in cross section, while its frontal view is depicted in (b). Various types
of neurons exist throughout the cerebral cortex, detailed in [42]. 80% of the cortical
neurons are projection neurons, and they are responsible both for short- and long-range
signaling. Fig. 3.1 (c) shows a sketch of such a projection neuron, which receives
input through its dendrites (top), and processes via its myelinated axon to the axon
terminal (bottom). Close to the neuron’s dendrites, microglial cells are sketched (µG).
µG ensure brain maintenance, and target for example misfolded proteins leading to
plaques, or damaged neuronal portions. Astrocytes serve the physical organization of
the brain, and together with oligodendrocytes (OD) provide the metabolic supply of
synapses. Importantly, ODs wrap axons with concentric myelin sheaths.

Apart from neuroimaging of healthy brain tissue, we also want to focus on the assess-
ment of PC-CT for studies in neurodegenerative diseases. Following our recent PC-CT
works on human hippocampal tissue affected by Alzheimer’s disease, we here include
first scans of human brain tissue biopsies obtained during surgery of a patient suffering
fromMultiple Sclerosis (MS). MS is an inflammatory and neurodegenerative disease,
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which is pathologically characterized by chronic inflammatory demyelination, accom-
panied with axonal loss and glial scar formation [67]. Glial scar can occur in any type
of brain damage, not restricted to inflammation, and reflects an increased number of
astrocytes through hyper-proliferation, which rigidifies the tissue. While white matter
lesions are rather prominent with clinical routine imaging techniques, pathologies in
gray matter emerge unobtrusively. Pathohistological assessment thereof remains a
technical challenge [67]. To-date, the insufficient feature contrast is eluded by special
myelin protein immunohistochemistry, but also PC-CT could be a potential tool. The
astrocyte proliferation is a reaction to stabilize lesions and to keep inflammatory cell

Fig. 3.1: Basic anatomy, structural features of interest, sample preparation, and mea-
surement principle. (a) Schematic of the human brain in sagittal plane, yellow colors
indicate relevant cortical regions for this work: Frontal cortex, visual cortex, and corpus
callosum, which is also outlined in coronal plane (b). (c) Schematic of selected cortical
structures on a cellular level: neuron with a myelinated axon, microglial cells (µG)
in the vicinity of the dendritic tree, oligodendrocytes (OD), and astrocytes (Astroc.).
(d) A range of sample preparation protocols are applied, ranging from solely chemi-
cal fixation, (partial) dehydration, to (un-)stained solid embedding. PC-CT data are
collected (e) in parallel-beam (PB) mode to quickly scan rather large tissue volumes
(cf. supplemental document), or (f) exploiting geometrical magnification to zoom into
selected regions of interest in cone-beam (CB) geometry (cf. methods in supplemental
document). Note that setup-characteristic parameters are indicated: (z01) source-
to-sample distance, (z02) source-to-detector distance, and (z12) sample-to-detector
distance.
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from spreading, but at the same time is believed to hinder new neuronal growth [60,
62]. Furthermore, astrocytic factors impede the differentiation of OD-progenitor cells.
Signs of glial scar formation are completed by increased emergence of µG, resulting
in angiogenesis and fibrosis. Damage of the myelin sheath followed by scar forma-
tion is also referred to as ”MS-plaques”. Overall, various forms (chronic, acute) and
stages of MS exist [8, 40], in which OD even regenerate and remyelinate. According
to the definition in [23], normally appearing white matter (WM) refers to tissue with
normal axon myelination, without plaques in a radius of ≥ 10 mm and no further
signs of abnormality, while normally appearing gray matter (GM) shows no signs of
demyelination using immunohistochemistry. Normally appearing tissue is distinct
from remyelination region, in which shadow plaques (plaques with myelin sheath,
”remyelinated lesions”) and newly formed myelin sheaths with reduced thickness are
found [49]. Here we want to investigate, at which quality structural features can be
identified in PC-CT reconstructions.

Next, we briefly introduce the topics of relevance in this work: instrumentation and
optics for synchrotron and laboratory PC-CT, sample preparation including unstained,
hydrated, and heavy metal stained tissues, and the important role of mouse models,
notwithstanding the fact that human brain tissue remains the main incentive of this
work.

Laboratory µCT In view of future applications in pathohistology, it is important
to assess to which extent phase-contrast imaging of unstained human tissue can be
implemented with laboratory µCT. With recent advancements in both reconstruction
schemes suitable for low coherence and novel instrumentation, such as transmission-
anode X-ray sources with small source spots and sufficient power (for example approx.
300 nmand 0.3W, respectively, for theN2NanoTube, Excillum Inc.), partially-coherent
illumination can now be implemented at compact laboratory setups for 3d virtual
histology analysis [20], even without liquid-jet anode technology which was used in
[71, 75] or a compact laser-driven synchrotron source [22]. Details on implementations
can be found in the supplemental document.

Synchrotron Radiation The much higher brilliance and in particular spatial coher-
ence enables focusing to spot sizes in the 10-100 nm range, while preserving high
photon flux, now routinely exceeding > 109 ph/s [14, 54, 59, 63, 68]. Synchrotron
scans in such a cone-beam geometry (SR-CB) with nanometric virtual source offer
the highest resolution and potential for further scaling. Due to the correspondingly
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smaller effective pixel size in the sample plane, data acquisition typically takes place
in the so-called deep holographic regime, defined by a very small Fresnel number
𝐹 ≪ 1 (cf. supplemental document). Further, using monochromatic illumination,
this regime offers highest sensitivity to small phase differences. Consequently, it al-
lows for quantitative interpretation of reconstructed density, based on well-defined
optical constants. For recordings in the holographic regime, these are decisive advan-
tages of SR, where single X-ray energies are selected based on multilayer or crystal
monochromators, while laboratory PC is always restricted to broad bandpass due to
its limited brilliance. Also filtered white or pink SR can be used for PC-CT, offering
elevated photon flux. Most SR parallel-beam data (SR-PB) are recorded in the so-called
direct contrast regime (𝐹 ≤ 1), which is compatible with broad bandpass. However,
for high-resolution studies in the holographic regime, a higher monochromaticity is
required. Furthermore, radiation damage can occur more easily for pink beams.

Hydrated and in Solution In conventional histopathological analysis, FFPE-sample
blocks are prepared by chemical fixation, gradual dehydration and subsequent paraffin
infiltration, and further processed through slicing, rehydration, and staining before
inspection by optical microscopy. Aside from its 3d capability, virtual histology and
pathohistology based on PC-CT can be motivated by the following properties: a dif-
ferent and complementary image contrast based on electron density, compatibility
with sample preparations beyond the standard FFPE-scheme, which is known to be
associated with pronounced tissue modifications [7, 10, 38], and finally the wish to
reduce effort and time in sample preparation. To this end, the image quality and
performance of PC-CT for liquid-embedded samples has to be further assessed.

Heavy-metal Staining Beyond the contrast based on (native) electron density ob-
tained from unstained tissues, feature-specific contrast can be achieved by staining.
Osmium tetroxide (OsO4), for instance, binds to the phospholipid headgroups, and
hence gives particular contrast to plasma membranes, multi-vesicular structures, ribo-
somes and Golgi complexes. Membrane-rich cortical structures such as fiber tracts
should therefore emerge particularly. Further to contrast enhancement, chemical
fixation of sample tissue is an important property of OsO4 [51]. Sophisticated classical
OsO4-based protocols exist for EM applications, and have been finetuned for bulk tis-
sue staining, notably as adapted rOTO (”reduced osmium, thiocarbohydrazide (TCH),
osmium”) [44, 45], resulting in contrast levels compatible with SBF-SEM connectomic
studies [26, 27]. Reducing agents, such as potassium ferrocyanide, are one key aspect of
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rOTO, converting Os𝑉 𝐼𝐼𝐼 to reduced oxidation states [31]. As a result, larger amounts
of osmium are deposited onto the membrane. However, in conventional rOTO [81],
the penetration depth typically does not exceed 200 µm. In order to overcome this
limitation, the reducing agent can be applied only right after deep osmium penetration.
Consequently, this rOTO modification [31] can surmount staining rings at the tissue
periphery and limited penetration depth, making it possible to process mm-thick tissue
blocks. While this is well-established for EM, for PC-CT, osmium-based staining gave
good results for tissue of the peripheral nervous system [4, 15, 69, 79], and, to some
extent, of the central nervous system [3, 6, 21, 43, 48]. However, staining protocols
specifically optimized for PC-CT, i.e. in view of volume suitability and contrast agent
density, are still lacking. Recently, well-established procedures from conventional
histology have been adapted for PC-CT [9, 46]. Regarding heavy metal protocols from
EM, it is less clear how heavy metals are the most suitable approach for PC-CT. There
are still many open questions regarding the most suitable protocols for given tissue
type, photon energy, instrumentation (SR versus laboratory µCT) and phase retrieval
approach. First findings demonstrate that the modified rOTO protocol from [31] is
also well suited for SR-PC [39]. Still, to-date, PC-CT applications using heavy metal
stains for tissue of the central nervous system have been reported only for small animal
models, and not for human tissue.

Murine Brain Tissue The mouse brain is an indispensable example for the neurobi-
ology of themammalian brain in order to unravel mechanisms of different neurodegen-
erative diseases in genetically well-controlled mutants. As far as imaging is concerned,
small animal models offer some advantages in tissue preparations as compared to
human tissues. Optimized fixation, such as perfusion of the mouse brain and more
control of the preparation protocol, can be expected to result in better preservation
of the tissue’s ultrastructure [65]. At the same time, neurons of the mouse brain are
smaller and of lower (native) electron density, compared to human, which can pose
a greater challenge for PC-CT, see for example the image quality of human [75] and
murine cerebellum [73] for recordings of similar experimental settings. Furthermore,
studies of murine brain tissue are adequate to develop and refine sample preparation
protocols, which can later be partially translated to human tissue, under the constraints
given by clinical pathology.

At the end of this introduction, we briefly outline the further organization of this
manuscript. In the following results section, we first address unstained human brain
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tissue, comparing paraffin-embedded and hydrated samples, as well as results obtained
with synchrotron radiation (SR) and laboratory instrumentation (µCT), before we
focus on heavy metal stains both in human and murine cortical tissue. We close with
a discussion section presenting the main conclusions and an application outlook.

3.2 Results

First, we turn to PC-CT results obtained for unstained tissue of the human cortex,
comparing formalin-fixed, dehydrated and paraffin-embedded (FFPE) with hydrated
samples, as well as synchrotron radiation (SR) and compact laboratory sources (µCT).
The image quality and volume information in each image configuration can be assessed
in view of future applications for histopathological inspection and analysis. For these
and all further datasets, details on sample preparation and experimental setups are
given in the supplemental document, with data acquisition and reconstruction settings
listed in Tab. S1-S3.

Fig. 3.2 presents an overview over PC-CT reconstructions and segmentation of neurons
from parallel and cone-beam synchrotron radiation (SR1-PB and SR1-CB configuration,
cf. supplemental document). All samples are unstained and embedded in paraffin,
collected as 1 mm biopsy punches from FFPE-tissue blocks. While all panels indicated
by (a) refer to tissue collected during post mortem routine autopsy from a (neuropatho-
logically) normal subject, panels indicated by (b & c) refer to biopsy tissues samples
from a patient diagnosed with MS, and collected during surgery. Notably, sample (c)
has been extracted from a region of normal appearing gray matter, and (b) from a
remyelinated region of an individual with MS, as defined in the introduction. With
regard to the feature pathology in the remyelinated region, the normally appearing
sample can be considered as a control presenting the same subject-specific and tissue
processing conditions, while (a) represents a control in a wider-range pathological
sense. Fig. 3.2 (a-c.i) shows overview orthoslices from the 1 mm biopsy punches,
recorded in SR1-PB configuration, with (a-c.ii) showing corresponding volume render-
ings of neuronal structures, and (a-c.iii) planar slices. For the remyelinated sample,
(b.iv) shows a region-of-interest (ROI) corresponding to the marked region in (b.i),
which has subsequently been scanned in SR1-CB configuration. (b.v & vi) present
volume renderings of the ROI, with neuron shapes and axons showing a strong ori-
entation. In the two lower rows, single neurons are highlighted, recorded in SR1-CB
configuration for all three samples. In each data set, neurons with both a particularly
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Fig. 3.2: (caption next page)

high and low electron density can be found. Axonal fibers are well-contrasted based
on their native electron density, and even the dendrites can be distinguished in some
cases. Further, for the control sample data shown in (a.iv), the spatially oriented fibers
emerge with a lower electron density (lighter color) compared to the surrounding
tissue, as opposed to the biopsy samples. In all three samples, the image quality and
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Fig. 3.2 (previous page): Human cortical tissue, unstained FFPE-preparation, SR1
scans. (a) cortex control tissue sample, collected post mortem, (b & c) cortex tissue sam-
ples collected from a subject diagnosed withMultiple Sclerosis (MS) during surgery: (b)
from a remyelination region, (c) from normally appearing cortex. Top three rows show
slices and volume renderings of neurons from SR1 data: (a.i-iii,b.i-iii,c.i-iii) present
reconstructions from SR1-PB scans, (otherwise) higher resolution reconstruction from
a SR1-CB scan of the regionmarked in (b.i). Fiber structures and neurons with delicate
dendrites (exemplary highlighted by arrows), and associated cells are depicted as single
slices or Maximum Intensity Projections (MIPs), with projection thickness given by:
(a.iv & v, c.iv-inset) 2 µm, (b.vii & ix) 1 µm, (c.v) 1.6 µm. (a.vi, b.xi, c.vi) Volume
renderings of four representative neurons and microglia. Scale bars: (a.iii, b.iii, c.iii)
300 µm, (b.vi) 100 µm, (otherwise) 30 µm.

resolution is sufficient for gray-value based segmentation, as illustrated by selected
segmentations of neurons along with smaller bordering cells, which can tentatively be
identified as microglias. The corresponding renderings (a.vi,b.xi,c.vi) were all obtained
manually using Avizo Lite (Thermo Fisher Sci.).

As discussed in the introduction, it is of interest to explore to which extent PC-CT
can be applied to unstained tissue beyond the standard FFPE-scheme, which can
suffer from dehydration artifacts, and for which more preparation steps are required
compared to simple fixation and embedding of tissue in buffer or solvent. Here we
examine the image quality and performance of PC-CT for liquid-embedded human
cortical tissue, following up our previous work on cerebellum [73]. To this end, Fig.
3.3 presents results obtained for cortical tissue of a single human (control), scanned in
SR1-CB configuration in three different liquids, representing a dehydration series: (a)
fully hydrated in PBS (0% dehydration), (b) 30% PBS 70% ethanol, and finally (c) in
100% ethanol. Overview slices in (a-c.i) show reasonable tissue contrast for all steps of
preparation. Fig. 3.3 (middle row) features single cells: cell bodies, nuclei and nucleoli
can be clearly distinguished, and even also cellular dendrites. Inspection of the data
gives an impression of cellular shrinkage with increasing ethanol infiltration. Overall
tissue volume reduction from dehydration is well-known. However, the observation
also depends on the exact cellular type. For example, cells marked in (a.ii) and (c.iii)
both emerge particularly strong and with similar size despite the different solvents.
In Fig. 3.3 (lower row), the pronounced impact of dehydration on vessel architecture
stands out.
Next, we assess to which extent phase-contrast of unstained human tissue can be



3.2 Results 99

Fig. 3.3: Human cortical tissue, unstained in liquid, SR1 scans: (a) Fully hydrated in
PBS (0% dehydration), (b) in 30% PBS 70% ethanol, and (c) in 100% ethanol. (Top row)
Depiction of the overall tissue structure, (middle row) selected regions highlighting
single cells and dendritic structures, (bottom row) vasculature changing appearance
during dehydration. Scale bars: (a-c.i) 100 µm, (otherwise) 30 µm.

exploited in laboratory µCT (cf. supplemental document). Fig. 3.4 demonstrates that
this approach can indeed yield convincing image quality for unstained human cortical
tissue, with sufficient contrast for neurons and axons. Note that this example is pre-
sented for the biopsy samples collected during surgery, pointing out the potential for
future use of PC-CT in clinical pathological diagnostics. Both setups yield very similar
feature visibility and comparatively high resolution, owing to the sub-µm spot size
of both sources, but differ in the detector technology, i.e. indirect fibre-coupled CCD
(µCT1) versus direct detection with a single-photon counting pixel detector (µCT2).
This also accounts for the observed differences in the ring artifacts, observed in µCT2
data, which can be attributed to the inter-module gaps of the single-photon counting
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detector.
We move from unstained tissue, i.e. PC-CT with contrast based on (native) electron
density, to contrast-enhancement from heavy metal staining. Previous PC-CT studies
of the central nervous system using heavy metal stains have been reported only for
small animal models, and not for human tissue. In Fig. 3.5, the conventional OsO4-
staining procedure (cf. supplemental document) has been applied to human post
mortem tissue, notably (a) gray and (b) white matter (GM,WM). (a.i & ii) show volume
renderings of myelinated structures and corresponding virtual sections. By adjusting
geometric magnification and source size, the tissue was scanned at 350 nm voxel size,
see (a.iii-iv) for examples with µCT1. A tool developed for segmentation of single
myelinated axons in synchrotron nanotomography data [15] was also applied here for

Fig. 3.4: Human cortical biopsies, unstained FFPE-preparation, laboratory-based
PC-CT. Reconstructions are shown for a tissue biopsy collected during surgery from
the remyelinated region of a subject diagnosed with MS. (a) Comparison between
SR and laboratory: reconstruction of the same regions from (a.i) SR1-CB data, and
(a.ii) L2-data, both represented as Maximum Intensity Projections (MIPs) over 1.4
µm thickness. (b) Overview scans and ROIs, reconstructed from (b.i & ii) µCT1 data.
Squares mark regions recorded with 350 nm voxel size, using µCT2, pasted into the
µCT1 reconstruction as an inset. (b.iii & iv) MIPs with 6 µm thickness of the same
region, scanned with µCT1 & µCT2, respectively. Scale bars: (b.ii) 140 µm, (otherwise)
100 µm.
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Fig. 3.5: Human cortical tissue, OsO4-stained, SR1-PB, SR1-CB, µCT2. The examples
show post mortem human cortical tissues from: (a) GM and (b) WM. After overview
scans recorded at (a.i-ii & b.i) the µCT1, (b.ii-iii) the µCT2, and (b.iv-v) the SR1-PB
setup, more detailed scans were recorded with (a.iii-iv) µCT1 and (b.vi-viii) SR1-CB
configuration. (a.i) Volume rendering of stained fibrous structures within the entire
punch. In (a.iv), a neuron was tracked and segmented based on its contrasted myelin
sheath. MIPs over (b.i) 11.5 µm, (b.v) 2 µm, (b.vii) 0.35 µm, (b.viii) 0.5 µm thickness.
Scale bars: (b.v) 300 µm, (b.vi-viii) 50 µm, (otherwise) 100 µm.
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a proof-of-concept that fiber tracing can be performed at the level of quality achievable
from laboratory PC-CT of stained tissue, see the rendering in (a.iv). OsO4-stained
human WM is shown in Fig. 3.5(b), for data from (b.i) µCT2 (0.99 µm voxels), and
from (b.iv-v) SR1-PB, and in more detail for (b.ii-iii) data obtained at µCT2 (0.65 µm
voxels) and (b.vi-viii) SR1-CB. Even in rather large FOV-scans, the delicate myelinated
fibers which are on the order of a few microns in width can be identified based on
the contrast provided by the conventional OsO4-stain. Note that in (b.vii & viii), the
source-to-sample-distance has been decreased, affecting the geometric magnification
of single resolution elements from 159 nm to 49 nm.

After having presented examples of human tissue above, we now turn to PC-CT of
small animal models, more explicitly murine tissue of the central nervous system. In
particular, we present PC-CT results of murine brain tissue for the conventional-OsO4

protocol, and the rOTO-technique, both applied to K&S-fixed murine cortical tissue
(cf. supplemental document). As expected, the heavy metal staining helps to extend
the application range of laboratory µCT.
Fig. 3.6 shows reconstructions from laboratory µCT1-data, for (a) rOTO- and (b)
conventional-OsO4 staining. The samples depicted in (a.i-b.ii) have been extracted
along the craniocaudal axis, and comprise a number of different brain regions. With
the CC as the most massive part of the commissural fibers, it emerges particularly
contrasted. This region is further depicted in Fig. 3.6 (middle & bottom row), with
(a.iii-b.iv) showing virtual sections, and (a & b.v) reconstructed volumes rendered
purely based on the voxel gray-values. With high-resolution settings for setup µCT1,
inter-layer connections are studied locally in (a.vi-b.vii).
Heavy-metal stains can also help to increase resolution and image contrast in syn-
chrotron PC-CT. Fig. 3.7 presents an overview of SR1-PB (parallel-beam) and SR1-CB
(cone-beam configuration) data obtained on the same murine samples as in Fig. 3.6,
again labeled (a) for rOTO-protocol and (b) for conventional OsO4-staining. Panels
(a-b.i) have been acquired with the SR1-PB setting. The fibroid nature of the CC is
very clearly represented already on larger scale for rOTO. Neuronal cell bodies emerge
with lighter contrast in both protocols. In (a.ii & b.ii-iii) and (a.iii-iv & b.iv) higher
resolution scans are presented, acquired in the SR1-CB and SR2 setup, respectively.
In these reconstructions, the cylindrical myelin sheath around the axons is clearly
resolved and single axons can be traced in 3d. Not all myelinated fibers in the CC are
oriented along the same direction, as exemplary indicated by the elongated arrows. In
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Fig. 3.6: Murine brain tissue, different heavy metal stains, laboratory CT. Virtual
sections, MIPs and volume renderings are shown for (a) rOTO-protocol, and (b) con-
ventional OsO4-staining. (a.ii & b.ii) MIP over 100 µm, (a.vi) MIP 20 over µm, and
(a.vii, b.vi & vii) MIP over 35 µm thickness. (a.v & b.v) volume renderings, (otherwise)
virtual sections. Scale bars: 300 µm.
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Fig. 3.7: Murine corpus callosum (CC), stained with the (a) rOTO protocol and (b)
conventional-OsO4 (cf. supplemental document), using (a.i & b.i) the SR1-PB, (a.ii &
b.ii-iii) SR1-CB and (a.iii-iv & b.iv) SR2. Elongated arrows indicate the general fiber
orientation, accentuating the cross-fiber organization of the CC, and bold arrows mark
cell body membrane with axonal extensions. Scale bars: (a.iv) 5 µm, (otherwise) 50
µm.
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the scans shown in (a.iv), the voxel size was further reduced from 130 nm to 50 nm.
The myelinated axon shapes are well-resolved and contrasted. They are recognized
in longitudinal section, and in cross-sectional view, as marked by arrows. Further,
pronounced variations in electron density are resolved in the nucleus, indicative of
heterochromatin. Again, the exact settings of all scans are listed in Tab. S1 & S2.

Finally, Fig. 3.8 closes the presentation by highlighting the results obtained for the
rOTO-stain at high magnification, both with synchrotron radiation (SR1-CB, SR2),
and high resolution laboratory (µCT1). Panels (a) and (b) show two virtual sections of
rOTO-stained murine CC tissue, while (c) presents a rendering of a µCT1 laboratory
dataset (visualization with NVIDIA IndeX). The wealth of neural cell bodies and the
complex fiber structures in the CC, jointly with negatively contrasted vasculature,
emerge particularly in this presentation.

3.3 Discussion

In summary, the examples presented above demonstrate the capability of PC-CT to
cover mm3-sized tissue volumes with convincing image details regarding the neuronal
cyto- andmyeloarchitecture. Different imaging demands require different field-of-view,
voxel size and resolution, as well as contrast. In most general terms, this can be met by
adaptation of the tissue preparation, staining, choice of photon energy and flux, the
instrumental and geometric settings, and reconstruction algorithms. The present work
gives some examples how settings and parameters can hence be tuned and shifted
accordingly. We draw the following conclusions:

• Following previous PC-CT of human cerebellum and hippocampus, the present
work demonstrates that the technique is well-suited to address also the highly-
structured and interconnected cytoarchitecture of human cerebral cortex, see
Fig. 3.2-3.5.

• Beyond post mortem autopsies, biopsies of human brain tissue collected during
surgery can be scanned for histopathological assessment, see Fig. 3.4.

• Hydrated neuronal tissue can be reconstructed with considerable image qual-
ity, see Fig. 3.3. Liquid embedding requires the SR1 setting, and is currently
incompatible with vacuum settings such as in SR2.

• The higher photon energy of 17.1 keV possible at SR2 in combination with
elevated photon flux of 2 ⋅ 1011 ph/s allows for very convincing scans of neuronal
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tissue stained according to the rOTO protocol. Rather than SR1, these properties
allow for more reasonable cross sections in the range of 300-400 µm.

• Staining can augment laboratory µCT to the sub-µm range.

• The instrumental stability and unprecedented high flux in KB nanofocus results
in less noise and higher resolution for SR2 compared to SR1, see for example the
highly resolved neuronal nuclei in Fig. 3.7 (a.iv).

• The high coherence (longitudinal and spatial due toWG filtering) at SR1 enables
reconstruction at favorable dose-to-resolution ratios, and is particularly well-
suited for unstained tissue, also based on its lower photon energy. Dose estimates
are given in Tab. S2.

• A major asset of SR, apart frommuch smaller scan times and higher throughput,
is monochromaticity, and the resulting quantitative contrast based on meeting
the assumptions of phase retrieval algorithms [53].

• At the same time, laboratory µCT becomes quite competitive for larger scan
volumes and stained specimen, as in Fig. 3.6, since the broad bandpass enables
a versatile image contrast, with contributions both from phase and absorption.

• The full potential of SR for PC-CT of neuronal tissue could best be exploited
by combining the full-field CT acquisition with further stitching protocols. The
goal to increase the volume up to three orders of magnitude seems not unrealis-
tic, if dose-induced sample degradation and local tomography errors could be
mitigated, e.g. by advanced local tomography algorithms [52].

• Shifting the measurement window in the other direction, the resolution of SR-
CB recordings should be further scaled up, for example by the super-resolution
holography approach and pixel detectors [63].

Concerning applications, we note down the following reflections:

• For neuropathology and pre-clinical research, in particular on neurodegenera-
tive diseases, unstained FFPE- or solvent-embedded tissue is suitable, and the
laboratory CT can be a valuable tool.

• For research in neuroscience, and in particular for addressing the connectivity
problem, PC-CT requires high-magnification and high-resolution SR-CB settings,
and has to be further scaled up in performance. The challenge is to achieve higher
resolution and contrast to identify synapses while maintaining a field-of-view
which offers an advantage with respect to EM.

• For the current datasets at high resolution, synapses should be visible, but the
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Fig. 3.8: Murine CC, rOTO-stained, recorded with (a) SR1-CB, (b) SR2 and (c) µCT1.
Arrows indicate general fiber orientation in the section, emphasizing the organization
of the CC, and circles exemplary highlight single neurons. Scale bars: 50 µm.

identification would require guidance and validations by correlative imaging,
in particular by EM. Datasets of the current work will be made available upon
request for independent inspection.

Note that all of the above statements have to be taken with a grain of salt. They
also reflect the choices and preferences of the authors in view for future work and
directions, based on the presented results. Of course, we expect that other valuable
perspectives and ideas will be expressed in the field, and that technical progress in
optics, instrumentation, reconstruction algorithms and finally sample preparation will
provide further progress in the near future.
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3.4 Supplemental Document

Sample Preparation

Human Hippocampal Tissue Human hippocampal tissue was retrieved by surgery
or routine autopsy, in agreement with the ethics committee of the University Medical
Center Göttingen. Following established clinical pathology protocols, autopsy dissec-
tion blocks were fixed in 10% PFA.
For unstained tissue preparations, samples were subsequently dehydrated and paraffin-
embedded (FFPE) (if applicable, for non-liquid embedding of samples). A single
FFPE-block measured about 2 × 3 × 0.3 cm3. In all cases, cylindrical samples for
PC-CT were extracted using a 1 mm-biopsy punch and inserted into polyimide tubes.
For heavy metal staining, tissue blocks were incubated in 1 % OsO4 (1-2 h at room
temperature, RT), and then infiltrated with propylene oxide in PBS in an increasing
series. For embedding, tissue samples were placed in Renlam resin in propylene oxide
(1:1, 2:1) prior to incubation in pure resin and polymerization (twice overnight).

Murine Brain Tissue Male C57Bl6N mice at the age of 10 days were sacrificed
in agreement with the ethics committee of Max-Planck-Institute for Experimental
Medicine by cervical dislocation. Tissue was fixed by immersion in solution containing
2.5% glutaraldehyde, 4% formaldehyde and 0.5% NaCl in 0.1 M phosphate buffer (PB).
Staining procedure followed either the conventional-OsO4 protocol [80], or a modifica-
tion referred to as reduced osmium, thiocarbohydrazide, osmium (rOTO), which further
elevates membrane penetration of OsO4 [31]. The so-called conventional protocol
comprised following steps and parameters: Samples were washed in 0.1 M PB (3 × 10
min at 4∘C). After post-fixation and staining in 2% OsO4 in 0.1MPB (4 h at 4∘C), tissue
samples then were washed, dehydrated with increasing concentrations of acetone in
water (30%, 50%, 70% and 90%, for 20mins each at RT), and incubated in 100% acetone
(3 × 15 min). For embedding, tissues were incubated with increasing concentrations
of EPON resin mixed with acetone (2:1, 1:1 1:2, for 2 h each at RT) prior to incubation
with pure EPON resin (overnight at RT) and polymerization (24 h at 60∘C), for which
the sample was mounted in a 1 mm-kapton tube.
The rOTO protocol has been conducted as follows: Samples were washed in 0.1 M PB
buffer (3 × 15 mins at 4∘C), and then incubated in 2% OsO4 and 0.25% K4[Fe(CN)6]
(3 h at 4∘C) to reduce the OsO4 to OsO2. After washing with ddH2O, samples were
incubated with 0.1% thiocarbohydrazide (in ddH2O, for 1 h at RT). Samples were
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Fig. 3.9: Annotated photographs of the experimental setups. (Green) marks the X-ray
focal plane, (orange) the sample stage, (blue) the detectors. (a) GINIX endstation at
P10 beamline, DESY, Hamburg (SR1). In PB-configuration, the PCO.Edge-detector is
used (”Detector PB”). The inset shows the detector stage approx. 5 m down stream
(”Detector CB” sCMOS-cameras, Photonic Science & Andor). (b) ID16A beamline,
ESRF, Grenoble (SR2). (c) EasyTom Nano setup (RX Solutions), with the CCD-camera
in use (µCT1). (d) Home-built nanoPC-CT setup TINa, with Excillum NanoTube N2
X-ray source and a single photon counting detector (Timepix) (µCT2).

subsequently treated with 2% OsO4 (90 min), and after washing with ddH2O, further
contrasted with 2.5% uranyl acetate (overnight at 4∘C), followed by several washes
with ddH2O. Samples were then dehydrated and resin-embedded, as for the rOTO-
preparation.
The sample preparation techniques are illustrated in Fig. 1(d).

Experimental Setups - Synchrotron Beamlines

The synchrotron-based data presented in this work were collected at two beamlines
dedicated to propagation-based holo-tomography: (SR1) the GINIX endstation of the
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P10 beamline, Petra III, DESY, Hamburg [54], and (SR2) the nano-imaging beamline
ID16A, ESRF, Grenoble [14, 59], cf. Fig. 3.9(a & b).

• SR1: GINIX is equipped with two different setups for PC-CT. Overview scans
covering FOVs of about 1.5 mm are scanned in parallel-beam configuration (PB)
[24], depicted in Fig. 1(e). In a continuous rotation, 3000 projections and 200
flat images are recorded with the PCO.edge detector (50 µm Lu:Ag scintillator,
𝑝𝑥 = 0.65 µm 10× objective,𝑀 = 1) in a full 360∘ rotation. With 35ms exposure
time, a total scan takes about 70 s. Opposing projections are used for projection
correction in order to mitigate ring-artifacts, and 1500 processed projections
serve tomographic reconstruction to fullfill the sampling criteria. In the data
shown here, 𝑧12 ≈ 40 mm and the further settings detailed in Tab. 3.1 were
used. Fig. 1(f) depicts the cone-beam geometry (CB), serving high-resolution
data acquisition using a compound optics of KB-mirrors and X-ray waveguides
(WG). Data were recorded with a fiber-plate CCD-camera with a 15 µm thick
Gadox-scintillator at 𝑧02 ≈ 5 m. By changing the distance 𝑧01 betweenWG and
sample, the geometric magnification𝑀 is adjusted: with𝑀 ≈ 40...138, different
voxel sizes between 𝑝𝑥 ≃ 200 nm and 𝑝𝑥 ≃ 50 nm were chosen in this work.
Scan-specific details are given in Tab. 3.2.

Human, unstained Mouse Mouse HumanWM
FFPE OsO4 conv. rOTO OsO4

Figure 2 7(a.i) 7(b.i) 5(b.iv-v)
𝐸 (keV) 13.8 10.8 21.0 10.8

𝜏 (s) 0.035 0.035 0.035 0.035
𝑧12 (mm) 41 40 17.5 17.5
𝑝𝑥 (µm) 0.65 0.65 0.65 0.65

FOV (mm2) (h×v) 1.7 × 1.3 1.7 × 1.3 1.7 × 1.3 1.7 × 1.3
𝑑 (⋅10−3 m) 3.0 0.2 3.6 0.2
𝐷 (⋅104 Gy) 1.1 2.4 0.2 2.4

F 0.1148 0.0920 0.4089 0.0898
Phase retrieval NLT NLT NLT NLT

lim1 8 ⋅ 10−4 8 ⋅ 10−4 8 ⋅ 10−4 8 ⋅ 10−4

lim2 0.05 0.05 0.05 0.05
𝛿/𝛽 30 15 15 10

Table 3.1: Scan and reconstruction parameters of GINIX-data recorded in SR1-PB
configuration. 𝐸 denotes the X-ray energy, 𝜏 the exposure time, 𝑧12 the sample-to-
detector distance, 𝑝𝑥 the pixel size, FOV the field-of-view in the sample plane, 𝑑
the attenuation length, 𝐷 the estimated radiation dose, and 𝐹 the Fresnel number.
lim1/2 are the regularization parameters, and 𝛿/𝛽 the ratio of dispersion to absorption
decrement of the refractive index.
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Table 3.2: Experimental and reconstruction settings and parameters for (top) SR1-CB
and (bottom) SR2 data, recorded in CB-configuration. 𝐸 denotes the X-ray energy, 𝜏
the exposure time, 𝑧01 the source-to-sample and 𝑧02 the sample-to-detector distance,
𝑝𝑥 the pixel size, FOV the field-of-view in the sample plane, 𝑑 the attenuation length,𝐷
the estimated radiation dose, and 𝐹 the Fresnel number. lim1/2 are the regularization
parameters, and 𝛿/𝛽 the ratio of dispersion to absorption decrement of the refractive
index.
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• SR2: ID16A beamline is specialized in nano-holotomography, with voxel sizes
down to 10 nm. X-rays are provided either at 17.1 or 33.6 keV photon energy,
and focused by KB-mirrors. Here we used 17.1 keV and a propagation distance
𝑧12 = 1.2 m in cone-beam geometry (cf. Fig. 1(f)). Magnified projections were
recorded by a lens-coupled FReLoN CCD-camera (23 µm GGG:Eu scintillator).
The acquisitions can take advantage of a particularly high flux (approx. 2 ⋅ 1011

ph/s) and a cryo environment under vacuum. The present study was conducted
at room temperature under vacuum. Further details are listed in Tab. 3.2, and
the experiment is referenced as [19].

Dose Estimation The accumulated dose 𝐷 in the sample-FOV was estimated as

𝐷 = 𝐼0𝜏𝐸
𝑑𝜌𝑚FOV

,

with the usual approximations as discussed in [30, 57], based on photon flux 𝐼0, which
was approximated as 𝐼0 ≈ 5 ⋅ 1011 ph/s for SR1-PB, 𝐼0 ≈ 109 ph/s for SR1-CB and
𝐼0 ≈ 2 ⋅ 1011 ph/s for SR2, exposure time 𝜏, X-ray energy 𝐸, attenuation length 𝑑,
mass density 𝜌𝑚. For paraffin-embedded samples 𝜌𝑚 = 2.2 g/cm3 was used, and 𝑑 as
computed by [28] for a representative protein and tissue composite with stochiometry
𝐶50𝐶30𝑁9𝑂10𝑆1 [30]. For stained samples, 𝜌𝑚 was kept constant, since the dose-
damage relationship refers to the energy uptake per tissue mass, rather than label
mass. To this end, however. we neglect the additional dose uptake by photoelectrons
of larger range, emitted from heavy atom labels into their environment. Instead,
the attenuation length 𝑑 was calculated from the measured X-ray transmission 𝑇
in the respective projections, based on 𝑑FFPE for unstained FFPE-preparations, i.e.
𝑑stain = log(𝑇FFPE)

log(𝑇stain) ⋅ 𝑑FFPE.

Experimental Setups - Laboratory Implementations

Laboratory PC-CT (µCT) was conducted with two setups configured for sub-µm imag-
ing: (µCT1) the commercial EasyTom Nano (RX Solutions) [64], and (µCT2) the
home-built TINa-setup [20], cf. Fig. 3.9(c & d).

• µCT1:WithEasyTomNano, X-rayswere generated by aHamamatsu transmission-
target source (W), and projections were recorded by a CCD-camera (Gadox-
scintillator, 9 µm pixels, 2 × 2-binning) with magnification in the range 𝑀 ≈
18...52. Best feature contrast was found at 60 kV acceleration voltage. This setup
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was used in overview alignment, with px=0.99 µm and middle focal spot mode,
or for highermagnification, with px=0.35 µm and small focal spot mode. Further
experimental details are given in Tab. 3.3.

• µCT2: With the TINa-setup, the Excillum NanoTube N2 and a Timepix detector
(500 µm Si, 55 µm pixels) were used. Also here, the acceleration voltage was set
to 60 kV. The source-to-sample distance was particularly small (𝑧01 = 1.4 mm),
resulting in 𝑀 ≈ 157 (as required by the larger detector pixel size). Further
details are given in Tab. 3.3.

µCT1, Overview µCT1, ROI µCT2, ROI
# projections 1568 3008 1201

𝑧01 (mm) 5 5 1.4
𝑧02 (mm) 98 278 218
𝑝𝑥 (µm) 0.99 0.35 0.35

FOV (mm2) (h×v) 2.0 × 0.14∗ 0.7 × 0.47 0.27 × 0.18
𝜏 (s) 12 × 1.7 5 × 10 14 × 9

Source spot mode middle small 0.3 µm
Total scan time (h) 9 46 46

Table 3.3: Experimental and reconstruction parameters for µCT scans. 𝑧01 denotes
the source-to-sample and 𝑧02 the sample-to-detector distance, 𝑝𝑥 the pixel size, FOV
the field-of-view in the sample plane, and 𝜏 the exposure time. No pre-filtering of the
beams was used. ∗ denotes the FOV of a single tomographic scan; multiple scans have
been acquired and combined in this work.

Holographic & Tomographic Reconstruction

Projections were first corrected for empty beam and dark images. For synchrotron-
based datasets, phase retrieval was carried out using either the linearized contrast-
transfer-function (CTF) algorithm [12] or a non-linear implementation thereof, both
assuming homogeneous object composition. At (SR1), this is implemented via the
non-linear Tikhonov (NLT) scheme [41], while at (SR2), a conjugate gradient approach
is used [82]. These phase retrieval approaches are well-suited for reconstruction of
holographic images at small Fresnel numbers 𝐹 = 𝑝𝑥2

𝑧eff𝜆 ≪ 1, with wavelength 𝜆, and
the effective propagation distance 𝑧eff = 𝑧12/𝑀. Note that these algorithms provide
optimal image quality when applied to data sets recorded at four slightly different
Fresnel numbers, i.e. at four different defocus distances as indicated in Fig. 1(f)
[83]. Phase reconstruction of laboratory data was performed (µCT1) with a simple
phase filter (provided by RX-Solutions software), or (µCT2) using the Bronnikov-aided
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correction (BAC) [16], as also implemented in [41]. Reconstruction parameters are
listed in Tab. 3.1, 3.2 and 3.3.
Phase-retrieved projections were used for tomographic reconstruction, performed
either by filtered back-projection (FBP, PB-configuration), or a cone-beam (FDK, CB-
configuration) algorithm. Note that the GINIX-dataset recorded at 𝑝𝑥 = 49.2 nm (cf.
Tab 3.2) was reconstructed with the simultaneous iterations reconstruction technique
(SIRT, 400 iterations). All three tomographic reconstruction schemes are implemented
in the ASTRA-toolbox [76].
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We have studied the three-dimensional (3d) cytoarchitecture of the human
hippocampus in neuropathologically healthy and Alzheimer’s disease (AD)
individuals, based onphase-contrastX-ray computed-tomographyof postmor-
tem human tissue punch biopsies. In view of recent findings suggesting a nu-
clear origin of AD,we target in particular the nuclear structure of the dentate
gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and
evaluated using a highly-automated approach of measurement and analysis,
combiningmultiscale recordings, optimizedphase retrieval, segmentationby
machine learning, representation of structural properties in a feature space,
and classification based on the theory of optimal transport. Accordingly, we
find that the prototypical transformation between a structure representing
healthy granule cells and the pathological state involves a decrease in the vol-
ume of granule cell nuclei, as well as an increase in the electron density, and
its spatial heterogeneity. The latter can be explained by a higher ratio of hete-
rochromatin to euchromatin. Similarly,many other structural properties can
be derived from the data, reflecting both the natural polydispersity of the hip-
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pocampal cytoarchitecture betweendifferent individuals in the physiological
context, and the structural effects associated with AD-pathology.

Significance Statement Wedemonstratemultiscale phase-contrast X-ray computed
tomography (CT) of post mortem human brain tissue. Large tissue volumes can be
covered by parallel-beam CT, and combined with sub-cellular detail for selected re-
gions scanned at high magnification. This has been repeated identically for a larger
number of individuals, including both Alzheimer’s diseased patients and a control
group. Optimized phase retrieval, followed by automated segmentation based on
machine learning, as well as feature identification and classification based on optimal
transport theory indicates a pathway from healthy to pathological structure without
prior hypothesis. This study provides a blueprint for studying the cytoarchitecture of
the human brain and its alterations associated with neurodegenerative diseases.

4.1 Introduction

Brainmappings of the cyto- andmyeloarchitecture in larger brain areas performed post
mortem are required to advance our understanding of the human brain in quantitative
terms. Beyond refinements of a brain atlas, they are also essential for later integration
of in vivo functional observationswith high-resolution structural data [2, 4, 5]. Mapping
the brain, however, requires additional imaging approaches, which can visualize and
quantify the three-dimensional (3d) architectonics, including data from more than a
single individual [4]. The potential of phase-contrast X-ray tomography also known as
phase-contrast computed-tomography (PC-CT) for 3d brain imaging has been recently
demonstrated, both for small animals models [22, 24, 40, 45, 72], and the human brain
[35, 37, 73, 74]. Since the entire 3d architecture on all scales is relevant for physiological
functions and pathological mechanisms, multiscale implementations of PC-CT [27]
are particularly suitable for brain mapping.

Complementary to genomics, proteomics and metabolics, structural data are also re-
quired to unravel mechanisms of neurodegenerative diseases. Such data must be com-
prehensive (large patient- and control-groups), quantitative and fully digital, amenable
to advanced analysis including deep learning, and intrinsically three-dimensional.
Alzheimer’s disease (AD) is a case in point: Evidence for morphological changes in the
hippocampus upon aging and disease can be found already in vivo with MRI. To inter-



4.1 Introduction 129

pret such data based on a reference model, a 3d probabilistic atlas of the hippocampus
was put forward in [2], combining post mortemMRI with histology. The authors con-
cluded that, to test the hypothesis of differential involvement of hippocampal subfields
in AD, a “more granular study” of the hippocampus in aging and disease would be
required and hence higher-resolution and truly 3d data.

Fig. 4.1: Human hippocampus overview. (a & b) Schematics of the human hippocam-
pus (gold) and its location, (a) in sagittal and (b) in frontal view. (c) Virtual slice
through overview PC-CT data in EB-configuration. The different neuronal layers are
outlined: dentate gyrus (DG); cornu ammonis (CA) differentiated into CA1, CA2, CA3
and CA4; white matter (WM); gray matter (GM) as well as the entorhinal cortex (EC).
A region with calcified blood vessels (BV) is also indicated. (d & e) High-resolution
PC-CT data from an AD patient. (d) Volume rendering of calcified plaques (blue) in
close proximity to the DG (gold). (e) Calcified 𝛽-amyloid-plaques (P) and calcified
BVs are observed only to one side of the DG, as shown here in a maximum intensity
projection (16.2 µm thickness). Red arrows indicate the vascular connections between
plaques. Scale bars: (c) 1 mm, (e) 30 µm.

To this end, we here present an advanced and multiscale implementation of PC-CT in
combination with automated segmentation and statistical analysis of morphological
features. In this way, a much-needed complement to conventional 2d histology is
provided, sparing sample sectioning and staining. The signal is generated by the
spatial variation of the real-valued part of the X-ray index of refraction 𝑛 = 1 − 𝛿 + 𝑖𝛽,
with 𝛿 being proportional to the electron density. Importantly, the advantage of PC-CT
derives from the real-valued decrement being significantly larger than the imaginary,
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absorption-accounting component 𝛽, i.e. 𝛿/𝛽 ≈ 103 in the hard-X-ray regime. Image
contrast is then efficiently formed by free-space propagation, i.e. self-interference of
a partially coherent beam behind the object. The fact that this does not require any
additional optics between the object and the detector provides a benefit both for dose
efficiency and for resolution. Several PC-CT studies have already targeted hippocampal
cytoarchitecture in transgenic mouse models for AD [6, 20, 45, 55, 59], which exhibit
considerable contrast for a typical hallmark associated with this disease, namely 𝛽-
amyloid plaques. In a recent study, we could also demonstrate the potential of PC-CT
on paraffin-embedded hippocampal human tissue affected by AD, and evaluate its
capability to visualize different pathologies, including plaques, depletion of neurons
or possible recruitment of microglia to affected sites [73].

In thiswork, we study the 3d cytoarchitecture of the humanhippocampus, which serves
the formation of declarative long-termmemory, i.e. remote episodic or remote semantic
memory, but may also affect recent memory, emotions and vegetative functions [70].
Pathologically, the hippocampus is one of the regions first affected in AD [14]. As
we show here, the throughput of PC-CT measurement, reconstruction, segmentation
and analysis is sufficiently high to treat data from a larger pool, here consisting of
post mortem paraffin embedded tissue blocks of several individuals, both of an AD
and a control group (CTRL), categorized by neuropathological assessment based on
the National Institute of Aging – Alzheimer’s Association (NIA-AA)-recommended
ABC-staging [50]. [51]We specifically target the dentate gyrus (DG), and its AD-caused
structural alterations. As recently shown, hippocampal neurogenesis and plasticity of
the entire hippocampal circuitry are linked to the DG and are found to sharply drop in
AD [51]. Further, we deliberately do not focus on plaques and tangles in AD, which
have already been targeted by a high number of studies, but address in particular
the nuclear structure of the DG-neurons, since recent evidence points to a nuclear
origin of AD [30] including chromatin structures [78]. In addition, we also include 3d
imaging examples of other parts and structures of the hippocampus, and provide the
corresponding statistical analysis.

Fig. 4.1 shows a schematic of the hippocampus that is embedded in both left and
right temporal lobe of the cerebal cortex, as a part of the limbic system. In (a), the
hippocampus is sketched in the sagittal plane, where it forms an elongated structure
of about 4 to 5.2 cm in length [46]. In (b), the frontal plane is shown, in which
the appearance is often denoted as snail-shaped. Its characteristic functional units
are shown in (c), most prominently including the cornu ammonis (CA) and the DG,
which is a dense zone of granule cells. In the polysynaptic signal pathway relevant
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in semantic memory formation, input signals from the entorhinal cortex (EC) reach
first the DG, which is composed of elliptically shaped granular cells with millimeter-
long dendrites. Connected through mossy fibers, information is further processed
in the CA, whose neurons are characterized by their pyramidal-shaped bodies. The
compartmentalization of the CAwith commonly attributed sub-regions CA1 to 4 is not
entirely standardized. The information exits the hippocampus to the inferior temporal
cortex, the temporal pole and the prefrontal cortex, constituting the gray matter (GM).
There are further pathways of information processing, involving myelinated tracts
in the white matter (WM) that link the hippocampus to further brain regions. The
physiological relevance of the hippocampus, with respect to several important signal
pathways and its pivotal role in memory function and neurodegenerative diseases, in
particular in AD, underpin the necessity to study its 3d structure with cellular and
sub-cellular resolution.

To cover the hippocampal cytoarchitecture in a larger patient cohort, we increase
the sample throughput with respect to earlier work [73] by an optimized recording
strategy enabling a large sample pool at high and comparable data quality, and we
implement a multiscale PC-CT workflow for human brain tissue, based on parallel-
beam (PB) recordings at high field-of-view (FOV) combined with zooms into region-of-
interest (ROI) scanned at high magnification based on cone beam geometry. We then
use machine learning based on the V-net architecture to segment neurons, followed
by optimal transport (OT) theory to unravel pathological alterations. Note that OT
enables us to identify ‘movement’ in a patient cohort based on transport metrics in
a structural feature space, which we define in the image segmentation step. OT also
offers significant advantages over standard statistical tools such as t-testing of a single
parameter, since it can compare the entire neuron population, by metrics quantifying
changes in their distribution.

The implementation of PC-CT, notably regarding the multiscale configuration that
comprises different zoom-levels, is detailed in Materials and Methods. Beginning with
overview scans with a FOV of several millimeters in expanded-beam (EB) configu-
ration as in Fig. 4.1 or in PB, sub-regions of the hippocampus are presented at the
different zoom-levels in Results I: Multiscale Tomography of the Hippocampus. The
structure of granule cell nuclei in the DG is then investigated in volumes of 108 to 109

µm3 at voxel size of 𝑝𝑥 ≈ 160 nm, and in some cases even at 𝑝𝑥 ≈ 50 nm, based on
geometric magnification using a divergent and highly coherent beam exiting an X-ray
waveguide (WG). In the high-resolution reconstructions, neurons and in particular
DG-cell nuclei are segmented. Based on the segmentation masks, histograms of mor-
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phological features are obtained, containing results on the order of 10, 000 neurons for
each tissue sample. Histograms of five selected features in autopsies of 20 individuals
(11 subjects with intermediate to high AD neuropathologic change according to ref. 20,
in the following referred to as AD; 7 controls; and 2 with diffuse presentation based on
ABC-score) are then compared in tResults II: Geometric and Statistical Analysis, using
the OT tools. In a very general manner, we propose an analysis workflow to identify a
pathway from healthy to pathological structure.

4.2 Results I: Multiscale Tomography of the
Hippocampus

Fig. 4.1(c) shows the PC-CT result obtained for the largest FOV, covering an 8-mm
biopsy punch of a 2 × 3 × 0.3-cm3 tissue block, scanned in EB-configuration (SI
Appendix, Tab. S1 & S2, and Fig. S1). The quintessential structure supporting all
further identification of ROIs, as already summarized in the introduction, is easily
recognized and labeled based on visual inspection of the 3d-data. Already at this
coarse level, the granular cell band of the DG can be identified. It is bordered by a
tract of particularly electron-dense blood vessels, indicative of calcifications. Note that
calcified vasculature within the hippocampus was frequently observed in tissues of
different subjects, both AD and CTRL. As presented in (d & e) for an AD-case, these
emerge particularly electron dense, and may even traverse 𝛽-amyloid which then also
show highly elevated electron density (as reported in [73]). In addition, other regions
such as the pyramidal cell band of the CA, the WM and the EC can easily be located.
Identification of these regions is important in view of subsequent extraction of further
sub-volumes with a 1 mm-biopsy punch for the high-resolution scans. As a proof-of-
principle that these large FOVs can also be scanned with smaller voxel sizes, the full
8 mm-punch was further scanned in PB-configuration (SI Appendix Tab. S2). Using
dynamic stitching implemented by theNRStitcher (nonrigid stitching of terapixel-scale
volumetric images) program [47], 7 × 7 individual scans were combined to again cover
the entire 8-mm punch in a single large volume. By this approach, a tissue volume of
63 mm3 was covered with submicrometer voxel size. Fig. 4.2 presents frontal plane
slices through the stitched reconstruction volume. In (a), gray squares mark the single
tomograms. With a few local ring artifacts only, structures can be successfully traced
throughout the volume, well beyond the boundaries of a single scan. Fig. 4.2(b)
illustrates the winding of the DG-band throughout the volume in two different frontal
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Fig. 4.2: (caption next page)
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Fig. 4.2 (previous page):Multiscale PC-CT data. (a) Virtual slice through the stitched
reconstruction volume of the entire 8-mm tissue sample obtained from 7 × 7 scans
in PB-configuration. Labels indicate the ends of the DG-band in this slice, as well as
calcified BVs. The red dashed box marks the region which is further detailed in (b),
in two different parallel planes, demonstrating how the DG-band winds through the
volume. (c, bottom) Detail view of the DG band, as obtained from a CB-scan recorded
at 𝑀 ≈ 40, at the position marked by the solid red square in (a). For comparison of
data quality and contrast, (c, top) shows the corresponding PB-data. (d) Highest zoom
of the DG structure, recorded at𝑀 ≈ 130. The nuclear envelope and heterochromatin
become visible by median-filtered maximum intensity projection over 0.5 µm. (e) A
single nucleus is further highlighted by a full 3d rendering of the electron-density.
Note that also here, darker areas are indicative of higher densities. Scale bars: (a) 1
mm, (b) 0.5 mm, (c) 100 µm, (d) 30 µm.

planes. This 3d morphology with its invaginations helps to accommodate a sufficiently
high number of DG-cells. Based on the large FOV even in a single tomogram, the
PB-data are particularly suitable to quantify the DG-band morphology and width (see
Fig. 4.3, and further analysis summarized in SI Appendix, Fig. S3 and detailed in the
text in SI Appendix). To image ROIs at higher magnification 𝑀 ≃ 40 in cone-beam
(CB) configuration andwithout local tomography artifacts, sub-volumes were extracted
from the 8-mm block using a 1 mm-biopsy punch. Fig. 4.2(c) presents a slice through
such a ROI, indicated by a red square in the overview scan. In this configuration,
even the sub-structure of DG-cell nuclei can be unveiled. These details are even better
resolved by further increasing the geometrical magnification to 𝑀 ≃ 130, as shown
in (d) for a slice and in (e) for a 3d-volume rendering of a single nucleus, based on its
electron density.

Importantly, the image quality allows for semi-automatic segmentation of the granular
cell nuclei using the Ilastik software [10], and a subsequent volume rendering of the
annotated segmentation masks, using Avizo Lite (Thermo Fisher Scientific). Fig. 4.3
presents an example for a volumetric perspective, showing the overall bent shape of the
DG-cell band in (a, gold), jointly with the vasculature (red). Holes in the DG band are
due to major blood vessels penetrating the DG. Keeping the perspective, and applying
this DG-mask to the PC-CT gray values, we can present volume renderings of differ-
ent quantities: (b) normalized electron density Ρ, (c) standardized relative variance
𝑆 = 𝜎2/𝜌2 of the electron density within the nuclei, indicative for the prevalence of
heterochromatin, and (d) the local cell density, averaged within a radius of 50 µm. In
this manner, the overall distribution and local inhomogeneities can be visualized.
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Fig. 4.3: Dentate gyrus (DG) overview. The DG-band in a section of 1.25mm thickness
(septotemporal axis) shows (a) segmented DG-cell nuclei (gold) and vasculature (red),
and (b-d) rendering in false colors representing: (b) the normalized electron density Ρ
of the nuclei, (c) its variance 𝑆, and (d) the local granular cell density.

Next, we further illustrate high-resolution results obtained in CB-configuration for the
examination of specific regions in the hippocampus such as CA1, DG, surrounding
GM, andWM.

Cornu Ammonis 1 Fig. 4.4 shows exemplary results obtained for the cornu ammonis
1 (CA1) region, for a 1-mm sample that was extracted and scanned as detailed in SI
Appendix, Tab. S2. The elongated, pyramidal shape that is typical of neurons in the
CA-layer is well-visualized by the maximum intensity projections (MIPs) presented
in (a-c). In each cell, body, nucleus and nucleolus can be differentiated. For some
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cells, such as the one marked by the top arrow (a), the contrast between cell body
and nucleus appears to reflect the position of the nuclear membrane, while for others
(bottom arrow), the dominant effect is an overall increased electron density in the
nucleus. Further, the density within the cytosol shows some variation. This is also
observed for other cell types, as shown in Fig. 4.4(b), depicting the sub-structure of
a satellite cell attached to a neuron. In line with the function of the CA-neurons for
one-way signal processing throughout the hippocampus, the consistent polarization
and orientation with the characteristic long dendrite is very well-visible throughout
the 3d reconstruction volume. The contrast is sufficient to trace the large dendrites
over several tens of micrometers as highlighted in Fig. 4.4(c). Using Ilastik, neuronal
cell bodies and nuclei are segmented and 3d-rendered as shown in (d-f).
In the data of Fig. 4.4(c & e), areas of lower electron density (light gray values) are often
observed around the neurons. To check whether this observation of lower electron
density could eventually be an artifact of sample preparation, e.g. by the dehydration-
and-embedding procedure of preparing formalin-fixed and paraffin-embedded (FFPE)
tissue blocks, we varied the preparation and also scanned the tissue in hydrated state.
For this purpose, a 1 mm-sample was taken from a tissue block, which was first
chemically fixed with 10% formalin and then stored in phosphate-buffered saline at 4∘

C, and examined in its hydrated state, i.e. neither dehydrated nor paraffin-embedded.
Interestingly, this showed that these area of decreased electron density are also present
in the images of hydrated tissue (SI Appendix, Fig. S6).

Segmentation of pyramidal neurons was then applied to tissue samples from different
subjects, both of the AD- and of the CTRL-group. Samples were extracted from the
same position in the hippocampus. Note that pathological changes associated with
AD are particularly pronounced in this region. Notably, tissue samples from three
individuals diagnosed with AD (according to ABC staging; subjects 2, 6 and 21, aged
78 ± 11 y) were compared to four controls (subjects 16, 17, 20 and 21, aged 66 ± 20
y), and a further sample (subject 12). The results are reported in SI Appendix and
visualized in SI Appendix, Fig. S4.

Gray Matter Fig. 4.4(g) shows a virtual slice (MIP) through hippocampal GM-tissue.
For sample collection, the GM-region was identified based on histological analysis
(stained by hematoxylin and eosin as well as Bielschowsky silver impregnation). Pyra-
midal cells are also segmented in this region, enabling again the evaluation of neuron
density, neuronal morphology and orientation in full 3d.



4.2 Results I: Multiscale Tomography of the Hippocampus 137

Fig. 4.4: CA1-region with pyramidal cells (CB-data). (a) Pyramidal cells with the
typical uniaxial orientation are well-visualized by their electron density, when gray
values are subjected to a maximum intensity projection (MIP), here over a thickness of
13 µm. The contrast is sufficient to distinguish cell bodies and nuclei, either by the
visibility of the nuclear envelope (upper arrow) or an overall increased electron density
within the nuclei (lower arrow). (b & c) MIPs over 8.7 µm thickness. (b) Pyramidal cell
with a satellite cell attached (arrow). (c) Pyramidal cells are branched throughout the
volume. (d & e) Volumetric segmentation of the cell bodies. (f) 3d-rendering of the cell
bodies (gold) and the nuclei (brown) in the entire reconstruction volume. Gray-scaled
orthoslices are included as a support for 3d visualization. (g) MIP of gray matter tissue,
over 1 µm thickness. (h) MIP of white matter tissue, over 1.6 µm thickness. Scale bars:
(a, d, e, g, h) 50 µm & (b, c) 10 µm.
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White Matter Fig. 4.4(h) displays a cross-section throughWM-tissue. Again, the
position at which the sample was extracted by a biopsy punch in the FFPE block was
chosen based on evaluation of neighboring histological sections (stained by hema-
toxylin and eosin as well as Bielschowsky silver impregnation). This tissue segment
does not exhibit particular neurons as the CA and GM do, as expected, but appears
rather fibrous, reflecting the myelinated fibers of the WM.

Dentate Gyrus The DG is a particularly substantial component in the information
processingwithin the hippocampus. Fig. 4.5 shows a reconstruction of this region from
data scanned in the CB-configuration. As exemplified in (a), sub-cellular details can
be visualized. The virtual section is in the same plane as in Fig. 4.2. In (b), the volume
is sectioned in a plane parallel to the DG-band, emphasizing its wall-like appearance.
Granular cells exhibit a well-structured electron density within their nuclei, which is
surrounded by regions of lower electron density (lighter gray values) in the cell body.
Even interconnections between single cells can be noticed. The zoom-in highlights
the particularly large variance of the electron density distribution in cell nuclei, which
can be associated with heterochromatin.

Different features in the reconstruction volume of the DG were then identified and
segmented, again using the interactive learning and segmentation toolkit Ilastik. Fig.
4.5(c) shows the volume-rendered segmentation of DG-cell nuclei. Based on the center-
of-mass of the nuclei, a 3d cell density map was computed as shown in (d). The density
obtained from the high-resolution scans in CB-configuration confirms the cell density
analysis of the large FOV overviews recorded in the PB-configuration (Fig. 4.3(d)).
The density ranges between 2 and 4.5 ⋅ 105 cells/mm3, which is in good agreement
with the literature [12].

4.3 Results II: Geometric and Statistical Analysis

Histograms of Structural Properties of DG-nuclei
As a next step, we quantify the DG-cytoarchitecture in 3d to gain an understanding of
its inter-subject variation both in the healthy physiological state and in the pathological
context of AD. To this end, theDG-band in samples of 20 different subjects was scanned,
reconstructed, segmented and analyzed. AD-cases were identified based on the ABC-
score [50]. Notably, samples from 11 AD-subjects aged 76.6 ± 9.3 y, 7 CTRL-subjects
aged 76.6 ± 7.0 y, and 2 further subjects with no group assignment were collected, as
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Fig. 4.5: Zoom into the DG-cell band (CB-data). (a) Transverse slice through the band.
(b) Slice parallel to the DG-band. The red square marks a region that is shown in
the zoom, and with gray scale chosen to highlight the structure of the nuclei, i.e., the
variance of electron density within the nuclei. (c) Volume rendering of DG-cell bodies.
(d) Rendering with color indicating the local cell density (see colorbar). Scale bars: (a
& b) 100 µm, (b, inset) 20 µm.

listed in SI Appendix, Tab. S1. Similarly to the multiscale workflow described above,
1-mm samples were extracted from each tissue block, and imaged first in PB- and
then in CB-configuration. The following analysis is mainly based on the CB-data, due
to the higher resolution capable of resolving nucleic structures, while the overview
scans in PB-configuration helped in correct positioning of CB-scans and analysis
robustness. The analysis of the PB-configuration data is given in the SI Appendix, Fig.
and corresponding text sections.
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Fig. 4.6 illustrates the segmentation of DG-neuronal nuclei (CB-data). In (a), the same
region is shown before and after super-imposing the object mask, generated from the
segmentation by the machine-learning workflow, described in (c). For each object in
the segmentation output, i.e. from each DG-cell nucleus, several structural properties
are evaluated for further analysis: (1) median of the electron density 𝜌 (compactness
parameter), (2) normalized variance of electron density 𝑠 = 𝜎2/𝜌2 as a proxy for the
spatial variations within the nucleus (heterogeneity parameter), (3) nuclei volume 𝑣
(size parameter), (4) sphericity 𝜑 of the nucleus (form parameter), and (5) the number
of neighbors nn within the local vicinity (neuron packing parameter). Here, object-
vicinity was defined by a radius given as ̄𝑥𝑛𝑛 + 2 ⋅MAD𝑥 = 13.5 µm, where ̄𝑥𝑛𝑛 = 8.8
µm denotes the median of the next-neighbor distance distribution of all samples, and
MAD𝑥 = 3.5 µm its median absolute deviation. Fig. 4.6(d) presents the resulting
histograms for all five structural features, at the example of one subject belonging to
the CTRL-group. In this particular case, the histograms contain data corresponding to
a total of 3595 segmented nuclei in the reconstruction volume satisfying the following
selection criteria applied to the segmentation output: Only objects with 𝑣 > 35 µm3,
0.6 ⋅ ̄𝑥𝑛𝑛 < 𝑥𝑛𝑛 < ̄𝑥𝑛𝑛 +3 ⋅MAD𝑥, as well as lying within the 1.5× interquartile range
of any of the five features, are considered for statistical evaluation. These criteria have
been chosen to minimize bias from segmentation artifacts.

Inter-Subject Variation and Effects of AD
The segmentation of the granule cell nuclei and extraction of the five parameters per
cell, as described above, are then carried out for all individuals, including AD-patients
and CTRLs, based on the same automated workflow. For each property (parameter)
and each individual, an entire histogram containing the data of all segmented granules
is available. First, the different properties are compared independently, one-by-one.
Fig. 4.7 presents results for electron density 𝜌, and the heterogeneity parameter 𝑠 (see
SI Appendix, Fig. S2 for all other parameters). The violin plots shown in (a) provide
a quick overview, and illustrate the degree of intra- and inter-group variations of the
histograms. Before addressing these differences at the level of the entire histograms,
themedian values of the distributions are compared for the two groups (AD and CTRL).
The electron density is slightly higher for AD- than for CTRL-subjects; i.e. ̄𝜌AD = 320.91
nm−3 versus ̄𝜌CTRL = 318.77 nm−3, with a reduced volume, i.e. ̄𝑣AD = 101.85 µm3

versus ̄𝑣CTRL = 135.88 µm3, both indicating a trend to more compact nuclei, with
p-values (Welch’s t-test 𝑝 ≈ 0.02 and 𝑝 ≈ 0.07 for 𝜌 and 𝑣, respectively). At the same
time, the median of the heterogeneity parameter 𝑠 increases from ̄𝑠CTRL = 1.07 ⋅ 10−5
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Fig. 4.6: Segmentation workflow for DG-nuclei. (a) Slice through exemplary 3d input
data (CB-configuration), (top) without and (bottom) with mask annotations. (b) 3d-
rendering of the mask, within a cubic volume of side length 400 µm. (c) Flow diagram
illustrating the steps of segmentation. (d) To each masked object (DG-cell nucleus), a
number of properties can be attributed, resulting in respective histograms. Scale bar:
100 µm.

to ̄𝑠AD = 1.45 ⋅ 10−5 in CTRL- versus AD-subjects, indicating a trend towards a more
heterogeneous spatial structure of the nucleus in AD, but with 𝑝 ≈ 0.17, this difference
in median values is not significant. Beyond comparison of the median values, however,
entire granule populations should be compared between subjects and groups, which
will lead us again to consider the changes in 𝑠 as relevant in order to discriminate
between pathological and healthy states (see further below). Taking into account the
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entire neuron population is important, since the physiological functions may require a
certain bandwidth of structural parameters, i.e., a dispersion of properties associated
with functional states of granules. It is therefore of interest to compare the inter- and
intra-group differences also in view of the entire histograms, as quantified by the
Wasserstein-metric (W ). Fig. 4.7(b) shows a matrix of pairwise differences of the 𝜌
distributions (“distance chart”), evaluated withW. The matrix is divided into four
quadrants, showing differences between individuals within and between the groups.
Notwithstanding the large variations at the subject level that are highlighted by this
display, slightly increased differences can be noted already from visual inspection of
the two quadrants comparing subjects across the groups.
To cope with the two major challenges of the data, the strong inter-subject variation,
and the dispersion of neuron structural parameters of any single subject, we adopt a
strategy, where each individual is represented by a point cloud in a five-dimensional
space of structural parameters, denoted in the following as the feature space. The
analysis of the point clouds below is motivated by the fact that inter-group structural
differences for corresponding classification of AD- and CTRL-groups are expected
to be better revealed in higher dimensions. Note that only for the special and very
unlikely case that the point cloud distribution can be written as a factorized (separated)
product to one-dimensional distributions, no information is lost, when treating each
dimension separately. Already a simple projection to a two-dimensional sub-space,
as exemplified in Fig. 4.7(c), shows that the point clouds do not separate (factorize),
since the structure parameters are weakly correlated.

Classification of AD-Pathology vs. Control
The point clouds representing the granule cell population for each subject, as intro-
duced above, are further analyzed in the five-dimensional feature space. First, we
standardize the point clouds in each dimension (feature) separately by the population
(i.e. the union of all sample point clouds) mean and standard variation. The stan-
dardized variables are denoted by the respective capital letter (Ρ, 𝑆, 𝑉, Φ, NN). Then,
each subject’s point cloud is approximated by a Gaussian distribution, with mean and
covariance matrix given by the empirical mean and covariance matrix of the point
cloud. This distribution can be conceptualized as an ellipsoid, centered at the mean,
orientation of the principal axes given by the eigenbasis of the covariance matrix and
their length by the square root of the corresponding eigenvalues. A natural metric on
the set of Gaussian distributions is obtained by combining the Bures metric [26] on the
covariance matrices with the Euclidean distance on the mean values. This yields the
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Fig. 4.7: (caption next page)

𝐿2-OT distance, denoted by 𝒲, between the two Gaussian distributions [58] which
has recently become increasingly popular in data analysis applications [58, 67].

Fig. 4.8 reports on the point cloud analysis, and the corresponding classification in
feature space. In (a), 2d-projections of the Gaussian distributions are visualized as
ellipsoids, left for the AD-group (orange-red), and right for the CTRL-group (green).
The distribution in the 𝑉 /Ρ plane (top), and the 𝑆/Ρ plane (bottom) shows a larger
diversity for the AD-group compared to the CTRL-group. The visualization of ellip-
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Fig. 4.7 (previous page): Structural features of DG-cell nuclei. (a) Violin plots of
electron density 𝜌 and heterogeneity 𝑠, reflecting the histogram of the selected feature
for each individual. The color scheme refers to the ABC-score from neuropathological
staging. (b) Wasserstein-metricW calculated between any two patients and arranged
in a matrix, as a measure of inter-histogram distances, here shown for 𝜌. Gray dashed
lines separate groups. (c) Point clouds in the “feature space”, defined here by two
selected features, illustrated for the example of two subjects (left: AD-group, right:
CTRL-group), (top) 𝑠 vs. 𝜌 and (bottom) 𝑣 vs. 𝜌. Each point corresponds to one neuron.
Ellipsoids indicate the results of a PCA with half axis defining the principal axis, or
equivalently the 1𝜎-intervals when fitting a two-dimensional Gaussian distribution to
the point cloud.

soids in 2d also serves to illustrate the optimal transport cost: ellipsoids representing
patients 15 and 19, for example, are quite distinct, which is reflected by 𝒲 = 0.86
(𝑉 /Ρ-plane), and 𝒲 = 0.74 (𝑆/Ρ-plane), respectively. Contrarily, patients 15 and
12 are closer, evaluating to 𝒲 = 0.21 (𝑉 /Ρ-plane), and 𝒲 = 0.29 (𝑆/Ρ-plane), re-
spectively. The distances 𝒲 between any two individuals is visualized in the matrix
shown in (b), which can again be considered as a “distance chart”, now taking into
account the full five-dimensionality of the feature space. Darker colors indicate a
higher cost (distance), and hence a stronger dissimilarity between the 5d-ellipsoids of
the corresponding subjects. Two patients stand out strongly: number 5 and 8, which
are two AD-cases in an advanced state (both show an ABC-score of “high”, and have
a distinct high B-score compared to one further subject ranked with ABC-score of
“high”).

The OT-distance 𝒲 can also be evaluated directly at the level of point clouds [58],
making the Gaussian approximation an optional intermediate step. For the full point
clouds one also obtains a “distance chart” analogous to that in Fig. 4.8(b). We perform
the subsequent analysis both on full point clouds andwith the Gaussian approximation.
Every subject can now be interpreted as one point in “subject space” where distances
aremeasured by𝒲 (with or without Gaussian approximation). While this space is not a
linear vector space, it has the structure of a Riemannian manifold (intuitively, a curved
hyper-surface). This manifold can then be approximated locally by its tangent space
at a suitable reference point (usually the Riemannian center of mass of the samples)
[77]. Thus, we have obtained an embedding of the subjects into the linear tangent
space (where each individual is represented by one point, which in turn represents
a point cloud or a Gaussian distribution on feature space), where we can now apply
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Fig. 4.8: (caption next page)

standard data analysis tools. Principal component analysis (PCA) can be used to
identify the most dominant modes (directions) of variation in the subject point cloud
(in the tangent space). Fig. 4.8(c) shows the coordinates of the patients with respect
to the two dominant PCA-modes (𝑝𝑐𝑎1,𝑝𝑐𝑎2). It is important to note that the feature
space and its lower dimensional (truncated) tangent space are implemented without
any prior categorization into groups. Instead, the variance in the data itself is used to
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Fig. 4.8 (previous page):Multi-dimensional analysis, optimal transport, and classifi-
cation. (a) Ellipsoidal representations of the DG-cell nuclei in selected 2d sub-spaces
of the full 5d feature space. Ellipsoids are shown for 17 different subjects, (left)subjects
with AD and with no group assignment, and (right) CTRL, showing (top) volume 𝑉 vs.
electron density Ρ, and (bottom) electron density variance 𝑆 vs. Ρ. (b) Matrix plot of
the Bures-cost (“distance chart”), with each entry referring to the distance between the
respective 5d-ellipsoids. With respect to the chosen metric, each subject can be located
in a “subject space”, constructed from the ellipsoids. (c) PCA in a suitable tangent
plane of this space yields the dominating components, along which the variance be-
tween the subjects is maximized. The PCA-components represent linear combinations
of different features. Data points representing the different subjects are color coded
according to Thal phases (upper left triangle), Braak stages (lower right triangle), and
ABC score (frame), but this information is not used in the construction of the tangent
space. (d) Linear SVM-analysis applied to the four most dominant PCA-components
reveals a hyperplane separating both groups. (e) The evolution of histograms according
to the first PCA-mode is found to describe the change from a healthy to a pathological
state, indicating the “stereotypical transformation”, from CTRL (++) to AD (- -) tissue.
The histograms obtained by (left) Gaussian approximation, and from (right) a full
calculation taking into account every element of the point clouds are found to be in
good agreement.

identify a pathway of maximum changes (𝑝𝑐𝑎1-mode). Based on the color-code of the
data points reflecting the ABC-staging, we can already visually infer that this pathway
also separates the patient groups. To quantify this further, a classification by a linear
support vector machine (SVM) is performed, as shown in (d), using the four most
dominant PCA-modes, which cover 92.4% or 88.7% of the data variance, in Gaussian
approximation or on point clouds, respectively. The normal vector of the separating
hyperplane that was obtained by the SVM can be interpreted as the main direction of
discrimination between CTRL and AD in tangent space, and differs only by 15∘ from
the direction of the 𝑝𝑐𝑎1-mode. The shifts in the feature histograms corresponding to
the direction of 𝑝𝑐𝑎1 are shown in (e) for the Gaussian approximation (left) and the
point clouds (right), respectively, with colors indicating the shifts from CTRL-group
(green) to AD-group (red), in a continuous manner. The evolution of the histograms
(disease progression) is very similar for Gaussians and point clouds analysis, which
can be regarded as a confirmation of validity and robustness. As a result, we can now
indicate quintessential changes in the histograms for all features, as we move along the
main axis discriminating pathology and control. These changes are (from physiological
to pathological end) (1) increased density, (2) increased heterogeneity, and (3) smaller
volume of the nuclei control.
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4.4 Discussion

Pathological Progression and Validity of the Analysis The analysis presented
above indicates that with pathological progression from CTRL to AD, DG-cell nuclei
become more compact (increase of electron-density, reduction of volume) and ex-
hibit higher heterogeneity (higher variance of electron density). These findings are
revealed by a quantitative workflow that can be summarized as follows: (1) PC-CT of
well-controlled regions of the human brain, for a considerable number of individuals;
(2) automated segmentation and classification of many neurons based on machine
learning and extraction of structural properties; (3) creation of a “feature space” based
on single-cell properties, and the neuron population for each individual (one point in
the feature space corresponds to a single cell and a point cloud to one patient); and
(4) construction of a “subject space” based on the point clouds and their distances, as
quantified by OT theory, and subsequent local linearization, PCA and SVM-analysis.
In the subject space, a point corresponds to a single patient, and a point cloud to one
group. Geometric analysis of the respective subject groups indicates the dominating
“modes”, which encode a movement of cells in feature space that may correspond to
the progression from physiological to pathological states. Since the full OT-analysis
is numerically complex and relies on very recent mathematical work, we have also
implemented a more conservative Gaussian approximation of the point clouds, which
provides a fully established and numerically low-cost alternative to the full analysis.
Importantly, the Gaussian approximation and the findings on point clouds are consis-
tent, proving that the conclusions are robust with respect to smaller variations in the
point distributions. At the same time, Fig. 4.8(e) shows that the prototypical change
of a histogram for the heterogeneity 𝑆 trends toward an asymmetric distribution for
strong AD when estimated on the point clouds. In particular, the distribution exhibits
a shoulder towards higher heterogeneity values, hinting at a sub-population of DG-
neurons relevant in the pathology. In the Gaussian framework, this detail cannot be
captured completely, but appears only as a broadening of the histogram. This nicely
illustrates the more complete description provided by OT on the full point cloud.

Heterogeneity, Chromatin and AD Next, we raise the question of interpretation
of these findings in the context of the aging brain and AD. We have to address in
particular the increasing compactness and heterogeneity of the DG-cell nuclei, which
were identified as a major marker for AD progression by the analysis. Note that OT
is able to detect changes in a structural feature such as nuclear volume 𝑣, density 𝜌,
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or heterogeneity 𝑠 also in cases where the average parameter - i.e. averaged over the
neuron population of a patient - does not change significantly between groups, as tested
by a t-test for example. This is because OT provides a measure for changes in the entire
neuron population, and hence also takes into account a change in the distribution such
as the broadening observed in Fig. 4.8(e). The observed changes in heterogeneity can be
interpreted based onFig.4.2(d-e), wherewe can recognize the typical structural patterns
of heterochromatin as the dominating contribution to the variance of electron density,
i.e. the heterogeneity 𝑆. This identification is plausible, since the noise contribution to
𝑆 has been minimized by median filtering prior to the quantification of Ρ and 𝑆. The
attribution of 𝑠 to heterochromatin patterns is also in agreement with chromosomal
conformation studies by soft X-ray absorption tomography [42]. Hence, it is reasonable
to draw the conclusion that the increase in heterogeneity is explained by an increasing
ratio of heterochromatin to euchromatin, or more generally changes in chromatin
conformation. In fact, the percentage of DNA in the euchromatin state is smaller in AD
than in healthy tissue, as known from fractionation of DNA extracted from post mortem
brains [21]. By PC-CT sub-nuclear structure can be assessed at the single neuron level
in larger volumes of human brain tissuewithout slicing or staining. Currently, the topic
of nuclear structure and AD receives much attention as chromatin organization has
now been linked to dysregulation of genome architecture in aging and AD brain tissue
[78]. Further, a nuclear origin of AD and dominant roles of nuclear tau protein and of
nuclear lamins have been pointed out [31]. A specific contribution to the increased
level of heterogeneity that we observe here could also be due to the formation of distinct
heterochromatic structures designated as senescence-associated heterochromatic foci
(SAHF). SAHF have first been reported for senescent human fibroblasts [53], and
have been described as subnuclear heterochromatic compartments, which potentially
silence genes that promote cell cycle progression [17]. More recently, SAHF formation
and senescence have also been discussed in neurons and glial cells with respect to a
putative role in AD [38]. An additional factor to the observed heterogeneity could be
the nucleoplasmic reticulum that interrupts the smooth nuclear surface by tubular
invaginations of the nuclear envelope and for which a significant expansion was
reported in AD brain tissue [28], resulting from neurodegenerative laminopathy.

Structural Variability After discussing nucleic structure in view of a possible role
in AD, we briefly address DG and hippocampal structure in a general context, in
view of the average structural parameters and their inter-subject variability, also in the
physiological regime. To this end, we have evaluated the average neuron density ̄𝜌𝑛, the
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Parameter (median over subject ALL AD CTRL 𝑝∗

neuron population) mean std mean std mean std
Electron density 𝜌 (1/nm3) 320.06 2.00 320.91 2.10 318.77 0.92 0.020
Heterogeneity 𝑠 (⋅10−5) 1.30 0.50 1.45 0.50 1.07 0.45 0.165
Volume 𝑣 (µm3) 115.46 34.26 101.85 28.31 135.88 34.21 0.073
Sphericity 𝜑 0.950 0.016 0.963 0.015 0.954 0.017 0.278
nn within radius of 13.5 µm 4.93 1.39 5.44 1.42 4.17 0.983 0.061

Cell density ̄𝜌𝑛 (⋅105 1/mm3) 2.32 0.37 2.35 0.46 2.32 0.15 0.842
DG-band width 𝑑DG (µm) 32.82 8.44 34.27 9.04 30.54 7.47 0.358
Next-neighbor dist. 𝑑NN (µm) 14.29 1.01 13.88 0.95 15.04 0.65 0.009
nn within radius of 13.5 µm 4.83 1.47 5.18 1.66 4.29 0.95 0.166

Table 4.1: The upper part refers to CB-data and the lower part to PB-data. For each
subject, the median of the neuron population was calculated. 𝑝-values reflect group
differences only with respect to the parameter median, not the entire neuron pop-
ulation, which is probed by OT. 𝑑NN is derived from the structure factor maximum.
The evaluation of the parameters is detailed in the SI Appendix, Methods, Structural
parameters of DG-cell nuclei. NN: number of neighbors, ∗t-test (Welch).

local density fluctuations 𝜁𝑛 as an indicator for possible local defects, the average width
of the DG band 𝑑DG, and the next-neighbor distance 𝑑NN. Note that 𝑑NN was quantified
from the inverse of the peak position of the structure factor, which was computed
from the nuclei center-of-mass positions (SI Appendix, Methods, Short-range order
of DG-granular cells). The results are summarized in Tab. 4.1. Two observations are
noteworthy: First, in contrast to the nucleic structure, the overall spatial distribution
of DG-neurons, in terms of density, density fluctuations, and packing does not differ
between groups (AD and CTRL), but was found to differ significantly between subjects.
As a result of this study, we can now give accurate numbers for the structure of the
human DG, notably its width 𝑑DG = 32.8 µm, neuron density ̄𝜌𝑛 = 2.32 ⋅ 1051/mm3,
and the next-neighbor distance 𝑑NN = 14.29 µm. In addition, we can quantify the
inter-subject variance of these quantities. Defining the structural polydispersity for a
structural parameter 𝑝 as 𝑃 = Δ𝑝/𝑝, we find a surprisingly large value 𝑃 = 26% for
the width of the DG-band, while for neuron density and next-neighbor distance we
have 𝑃 = 16% and 𝑃 = 7%, respectively.

Accessibility and Scalability of PC-CT Finally, we provide a brief note on the
accessibility, scalability and possible translation of PC-CT. The capabilities of PC-CT
are currently substantially augmented, both in quantity and in quality, at almost all
synchrotron radiation (SR) sources worldwide. Upgrades of electron storage ring and
X-ray optics, in combinationwith dedicated beamlines designed for fully robotic sample
handling and automated reconstruction will substantially increase resolution, image
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quality and sample throughput. Furthermore, the current pandemic is catalyzing mail-
in and remote beamtime operation. At the same time, ongoing instrumental progress
enables at least partial translation of the method from SR to compact laboratory µ-CT,
compatible with clinical use e.g. in the neuropathology units of university medical
centers. Both developments will require or can at least significantly benefit from
optimized PC-CT reconstruction, segmentation based on machine learning, and data
analysis based on OT, as demonstrated here.

4.5 Materials and Methods

Sample Collection and Preparation Human hippocampus tissue was retrieved at
routine autopsy in agreement with the ethics committee of the University Medical
Center Göttingen. Following the protocol from clinical pathology routine, autopsy
dissection blocks from 23 subjects were 10% paraformaldehyde-fixed, dehydrated and
paraffin-embedded (FFPE). One FFPE-blockmeasures about 2×3×0.3 cm3. Following
[50], we then classified subjects according to the ABC-score, accounting for (A) 𝛽-
amyloid plaques according to Thal phases [71], (B) neurofibrillar tangles according to
Braak stages [13, 14], and (C) for neuritic plaques according to the CERAD (consortium
to establish a registry for Alzheimer’s disease) score [49]. Again following [50], subjects
with an AD likelihood “intermediate” or “high” according to the compound ABC-score
were classified as AD (11/20 subjects; 2/11 subject data sets were excluded from CB-
analysis, as detailed in SI Appendix, Sample collection and preparation). Subjects
with an AD likelihood “none” or “low” were classified as controls (7/20 subjects; 1/7
data sets were excluded from CB-analysis, for the same reason as above). For each
subject analyzed inResults II: Geometric and StatisticalAnalysis, the neuropathological
findings are listed in SI Appendix, Tab. S1. Note that 2/20 subjects were not assigned
to any group due to their diffuse presentation in A, B, and C scores (subjects 12 and 13).
For PC-CT analysis, cylindrical samples were then extracted from the FFPE blocks
using either a 1- or 8-mm biopsy punch and inserted into polyimide tubes.

Experimental Setup The data presented in this work were recorded at the GINIX
holo-tomography endstation of the P10 undulator beamline, Petra III, DESY, Hamburg,
Germany [66], at a photon energy of 8.0 or 13.8 keV, selected by a Si(111) channel-cut
monochromator. To cover the cytoarchitecture over a wide range of length scales,
ranging from entire hippocampus structure in the frontal plane, down to ROIs within
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the dentate gyrus at sub-cellular resolution, the instrument’s multiscale capability
was used [27], comprising three different optical configurations. First, large FOVs
up to about 8-mm were scanned in a beam which was focused by a Kirkpatrick-Baez
(KB) mirror system and subsequently broadened by its divergence. This is denoted as
EB-configuration. Second, intermediate FOVs up to about 1.5 mmwere scanned in a
PB-configuration, after moving the mirrors out of the beam path. Finally, small FOVs
up to about 0.4 mmwere scanned at highest resolution, using a compound optics of
KB-mirrors and X-rayWGs (CB-configuration) [9, 74]. By adjusting the distance 𝑧01

betweenWG and sample, two different voxel sizes of 𝑝𝑥 ≃ 160 nm and 𝑝𝑥 ≃ 50 nm
were chosen in this configuration, providing further zoom. The different configurations
and parameters are further detailed in SI Appendix, Methods.

Reconstruction Projections were first corrected for empty beam and dark images,
recorded before and after the tomography scans. Phase retrieval was performed by
either the linearized contrast-transfer-function (CTF) schemeor thenon-linearTikhonov
(NLT) algorithm [43]. Both are well-suited for the holographic regime corresponding
to image formation at small Fresnel numbers 𝐹 = 𝑝𝑥2

𝑧eff𝜆 ≪ 1, with wavelength 𝜆,
and the effective propagation distance 𝑧eff = 𝑧12/𝑀. After phase retrieval of the
projections, tomographic reconstruction was performed by filtered back-projection
(FBP), or a cone-beam (FDK; Feldkamp-Davis-Kress) algorithm, both as implemented
in the ASTRA-toolbox [76]. Spatial resolution was determined using Fourier-Shell-
correlation (FSC), after applying a Kaiser-Bessel-window of 7 pixels and a half-bit
threshold. Based on the image quality metrics, 2/11 AD and 1/7 control CB-datasets
were excluded from the analysis to keep the segmentation quality on a similar level for
all data sets. Further details are given in SI Appendix, Methods.

Segmentation of DG-cell Nuclei For the PB-data, segmentation of DG-cell nuclei
was carried out using the Blobfinder-tool of the segmentation and visualization package
Arivis (Arivis AG). The CB-data were segmented with the interactive software package
Ilastik [10], and a further manual optimization based on image filters and object
removal based on visual control. These segmentations served as ground truth input for
machine learning based on convolutional neural networks (CNN) implemented via
the Deep-learning V-net, which is the three-dimensional generalization of the U-net
design [64], as detailed in SI Appendix, Methods, Segmentation of DG-cell nuclei.
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Structural Parameters of DG-cell Nuclei For segmented nuclei of the DG-cells,
five featureswere selected for further analysis and computed based on the segmentation
mask for each individual: median (over DG-neurons) of the nuclear electron density
𝜌, normalized nuclear electron density variance 𝑠 = 𝜎2/𝜌2 (heterogeneity parameter),
nuclear volume 𝑣, nuclear sphericity 𝜑 (shape parameter), and number of neighbors
nn in a radius of 13.5 µm, a value selected in between first and second coordination
shell of the pair correlation function 𝑔(𝑟) [74]. The pairwise similarity (or equivalently
distance) between the one-dimensional histograms (separately for each feature, Fig.
4.7) was computed using theWasserstein-metricW of order 𝑝 = 2, as implemented in
[69].

Analysis based on Optimal Transport In the Gaussian approximation each indi-
vidual is represented by a normal distribution 𝒩(Σ, 𝜇) with covariance matrix Σ and
mean µ. The Bures metric between two covariance matrices was used as in [26] to
construct an optimal transport map between the multi-dimensional normal distri-
butions fitted to the point cloud data. Beyond this Gaussian approximation, point
cloud optimal transport plans were also computed with entropic regularization and the
Sinkhorn algorithm. Local linearization of the optimal transport metric is performed
as described in [77], including the approximate extraction of an optimal transport map
from the optimal transport plan between two point clouds. In the Gaussian approxi-
mation, the optimal transport center of mass (“barycenter”) was used as a reference
for linearization, which can be computed efficiently with the fixed-point algorithm of
[3], and also serve as a basis to sample 104 points from Gaussian distribution for point
cloud analysis. Linear SVM-classification was performed with the implementation
of [57]. Full details are given in SI Appendix, Methods, Analysis based on optimal
transport.
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4.6 SI Appendix

Sample Collection and Preparation Human hippocampus tissue was retrieved at
routine autopsy in agreement with the ethics committee of the University Medical
Center Göttingen. Following the protocol from clinical pathology routine, autopsy
dissection blocks from 23 subjects (13 subjects for DG-samples only, 2 for CA1-samples
only, 6 for DG- and CA1-samples, 1 for DG-, CA1- and WM-samples, and 1 subject
for GM-sample; in total resulting in 20 DG-samples, 4 CA1-samples, 1 WM- and 1
GM-sample) were 10% PFA-fixed, dehydrated and paraffin-embedded (FFPE). One
FFPE-block measures about 2 × 3 × 0.3 cm3. Tab. 4.1 lists the sample numbers
with neuropathological staging. Tissue of one further patient has been 10% PFA-fixed
and stored in PBS, i.e. has not been dehydrated and paraffin-embedded, for hydrated
examination (cf. Fig. 4.14). For PC-CT, cylindrical samples were extracted using either
a 1 or 8 mm-biopsy punch and inserted into polyimide tubes. A note on the number
of DG-samples: during the analysis of CB-data from DG-samples, 3/20 needed to
be excluded since the corresponding tomographic acquisitions yielded inferior data
quality and the automated segmentation quality was hence not on a comparable level
(this concerns subjects 4, 9 and 20), while this was not necessary for PB-data, which is
much more robust against beam fluctuations.

Neuropathological Staging Patients were diagnosed as AD patients following post-
mortem analysis according to [13, 49, 50, 71]. Intraneuronal tangles as well as dys-
trophic neuritic plaques were analyzed in hippocampal, temporal, frontal and occip-
ital sections stained with a phospho-tau antibody (monoclonal mouse at8, Thermo
Fisher Scientific, 1:100, pretreatment steamer + citrate pH 6). The same hippocampal
blocks were used for neuropathological staging and PC-CT. For staging of plaques,
Bielschowsky silver impregnation and an amyloid-beta staining (monoclonal mouse
anti amyloid-beta, 6E10, Zytomed SystemsGmbH, 1:500 after pretreatmentwith formic
acid, steamer + citrate pH 6) were performed. Following [50], we then classified pa-
tients according to the ABC-score, accounting for 𝛽-amyloid plaques according to Thal
phases [71] (A), neurofibrillar tangles according to Braak stages [13, 14] (B), and for
neuritic plaques according to the CERAD score [49] (C). The overall ABC-score is then
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Table 4.1 (previous page): Sample list for neuropathological analysis: Columns give
the assignment of sample numbers in the manuscript, the age, the A (A𝛽 plaque score),
B (NFT stage) and C (Neuritic plaque score), with the Thal phases [71], the Braak stage
[13] and the CERAD score [49], respectively, the cerebral amyloid angiopathy (CAA)
and the overall ABC-score according to [50], as well as the group assignment based on
ABC and finally, which hippocampal region has been analyzed from the respective
subject. ∗ marks the CB-data sets which have been excluded from analysis, nd = not
determined.

evaluated in terms of an AD likelihood based on a logic matrix with the individual
entries, as defined in [50]. In this work, patients with a AD likelihood “intermedi-
ate” or “high” according to the compound ABC-score were classified as AD patients,
again following [50]. One subject showed an amyloid pathology with cerebral amyloid
angiopathy only while another subject displayed tau pathology only, with almost no
amyloid depositions (subjects 12 and 13, respectively). Both are not assigned to any
group. All results of the neuropathological staging are tabulated Tab. 4.1.

Experimental Setup The data presented in this work were recorded at the GINIX
holo-tomography endstation of the P10 undulator beamline, Petra III, DESY, Ham-
burg [66], at a photon energy of 8.0 and 13.8 keV, selected by a Si(111) channel-cut
monochromator. The beamline’s high brilliance > 1021 ph/s mrad2 mm2 (0.1% BW)
[7], and correspondingly high coherence, enables coherent nano-focusing, and hence
high-resolution phase-contrast recordings in the holographic regime, as well as high-
contrast and fast parallel-beam acquisitions. In order to cover the cytoarchitecture over
a wide range of length scales, ranging from the entire hippocampus structure in frontal
plane, down to regions-of-interest (ROIs) within the dentate gyrus at sub-cellular
resolution, the instrument’s multiscale capability was used [27, 62], comprising three
different optical configurations which are illustrated in Fig. 4.9. First, large field-of-
views (FOVs) of up to about 8 mmwere scanned in a beam which was focused by a
Kirkpatrick-Baez (KB) mirror system and subsequently broadened by its divergence.
This is denoted as expanded beam (EB) configuration. Second, intermediate FOVs of up
to about 1.5 mmwere scanned in a parallel beam (PB) configuration, after moving the
mirrors out of the beam path. Finally, small FOVs of up to about 0.4mmwere scanned
at highest resolution, using a compound optics of KB-mirrors and X-ray waveguides
(WG) [9, 74] (cone-beam configuration, CB). By adjusting the distance 𝑧01 between
WG and sample, two different voxel sizes of 𝑝𝑥 ≃ 160 nm and 𝑝𝑥 ≃ 50 nm were
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chosen in this configuration, providing further zoom. The reconstructed volumes of
all recordings could be precisely registered with respect to each other, enabling a zoom
into specific ROIs. The three configurations with their respective optical components,
detector technologies, and tomographic acquisition schemes are presented in Tab. 4.2,
and described in more detail below.

EB-Configuration X-rays were focused by Kirkpatrick-Baez (KB) mirrors onto a
3 µm pinhole, fabricated by focused-ion-milling, and acting as a spatial filter. This
helped to suppress the stripe artifacts typically associated with the KB-farfield [62].
The sample stage was installed in the expanded beam at 𝑧01 ≈ 5.1 m behind the focus.
The projections were recorded with a sCMOS detector (pco.edge, Optique Peter, 50
µm-LuAg-scintillator, 6.5 µm physical pixel size and 2× interchangeable lenses) at a
position of 𝑧02 ≈ 5.4 m. This configuration was used for PC-CT measurements of a 8
mm cylindrical tissue sample, covering the characteristic anatomical regions, notably
the DG and the CA. The sample fit entirely into the FOV 8.3 mm×6.7 mm. Data from
this configuration are presented in Fig. 1(c), where the CA1-4 fields, the DG, WM and
further GM as well as vasculature can be clearly identified.

PB-Configuration After removing the KB-mirrors, the pinhole, as well as various
foils and windows of the beamline [27], the parallel undulator beam was used for
PC-CT (Fig. 4.9). The sample was installed on a fully motorized tomography stage with
air bearing (UPR-160 Air, Micos, Germany). Given the accuracy and reproducibility of
the rotation, it was possible to acquire projections in a continuous scan, i.e. projections
with a short exposure time were taken during continuous rotation of the sample [27].
1501 projections were acquired at a propagation distance 𝑧12 = 220 mm with an
acquisition time of 0.035 s, using the microscope camera system described above with
the 10× objective. This resulted in a FOV of 1.7 mm×1.3 mm at 0.65 µm voxel size.
This configuration was used both for punch biopsies of 1 mm diameter covered in a
single scan, as well as to map multi-mm sized tissue samples by stitching and merging
of several individual tomograms (Fig. 2).

CB-Configuration For cone-beam (CB) PC-CT with high spatial resolution, the
beam was focused by KB-mirrors to approx. 310 × 320 nm2, and coupled into an X-ray
waveguide (WG) for further reduction of beam size, and for coherence and wavefront
filtering. The waveguides consist of empty channels (102 nm lateral entrance/exit
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width) fabricated by e-beam lithography and wafer bonding [29, 39, 54, 65]. At low-E
X-rays (i.e. ≤ 8 keV), a WG with a 1 mm-guiding layer consisting of Si was selected,
at high-E X-rays (≥ 13.8 keV), Ge was chosen with 0.2 mm depth; see also Tab. 4.2
for specifications of the WG-systems. TheWG provides a secondary source of sub-50
nm spot size, and a beam with high spatial coherence and a smooth wavefront, which
is decoupled from upstream optical components of the beamline. The geometric
magnification of 𝑀 = 𝑧02

𝑧01
≈ 41, or 𝑀 ≈ 132, respectively, was adjusted by the

motorized sample tower (same as PB-configuration). Projections were recorded with a
fiber-coupled sCMOS Camera (Zyla 5.5 HF, Andor) positioned at 𝑧02 ≈ 5.1 m, with
2560 × 2160 pixels of 6.5 µm pixel size, and 15 µm-Gadox-scintillator. Biopsy punches
of 1 mm cross section were scanned with a FOV of 0.4 mm×0.4 mm and a voxel sizes
of approx. 160 nm (values for𝑀 ≈ 41), which allowed investigations with sub-cellular
resolution, regarding in particular the structure of the DG-cell nuclei (cf. Fig. 2(b &
c)).

Phase Retrieval and Object Reconstruction Phase retrieval has been carried out
after correcting for empty-beam and dark images, recorded before and after the to-
mography scans. For the EB-configuration, empty-beam recordings were analyzed by
principal component analysis (PCA) prior to flat-field correction [62]. Phase retrieval
was performed by either the linearized contrast-transfer-function (CTF) scheme or by
the non-linear Tikhonov (NLT) algorithm [43]. Both are well-suited for the holographic
regime corresponding to image formation at small Fresnel numbers 𝐹 = 𝑝𝑥2

𝑧eff𝜆 ≪ 1,
with wavelength 𝜆, and the effective propagation distance 𝑧eff = 𝑧12/𝑀. For homo-
geneous objects with coupled ratio 𝛿

𝛽 of the decrements of the index of refraction
𝑛 = 1 − 𝛿 + 𝑖𝛽, the phase Φ in the object plane is obtained from the flat-field corrected
projections 𝐼exp by [19, 75, 79]

Φ( ⃗𝑟⊥) = ℱ−1
⊥ (

∑𝑁
𝑛=1 𝜉𝑛 ⋅ ℱ⊥ (𝐼exp( ⃗𝑟⊥, 𝑧𝑛) − 1)

∑𝑁
𝑛=1 2 ⋅ 𝜉2

𝑛 + 𝛼(𝑘⃗⊥)
) ,

𝜉𝑛 = sin(𝜒𝑛) + 𝛿
𝛽
cos(𝜒𝑛) ,

where ⃗𝑟⊥ denotes the position vector in the object plane, and 𝑘⃗ the squared spatial
frequency in natural units 𝜒𝑛 = 𝜆𝑛𝑧𝑛𝑘2

𝑥,𝑦
4𝜋 . In phase retrieval, the optical property

of the tissue 𝛿
𝛽 is treated as an effective parameter, chosen based on inspection. The
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zero-crossings of the denominator are regularized by the function 𝛼(𝑘⃗⊥). To further
stabilize phase retrieval, multiple datasets (𝑁 = 2-4) at different, carefully chosen 𝜒𝑛

were recorded, based on variation of 𝑧01. When the linearization inherent in CTF-
reconstruction failed, we utilized the iterative NLT-algorithm which can be regarded
as a non-linear generalization [43]. In fact, the NLT was used for most of the data
collected in CB-configuration, in particular the entire scan series used for the statistical
DG-analysis. After phase retrieval of the projections, tomographic reconstruction was
performed by filtered back-projection (FBP), or a cone-beam (FDK) algorithm, both as
implemented in the ASTRA-toolbox [1, 56, 76]. Post-processing included a ring-filter
step as in [36] (“additive”/“A” approach) or [52] (“wavelet”/“W”). Alternatively, in the
datasets of PB-configuration which encompassed full 360∘-scans, ring-artifacts were
treated by respective “replacement” (“R”). Spatial resolution was determined using
Fourier-Shell-correlation (FSC) [16], after applying a Kaiser-Bessel-window of 7 pixels
and a half-bit threshold. If desired, gray values could be converted to electron density
𝜌 (e−/µm3) using tabulated values [34] as detailed in [63], based on the X-ray energy
and the fact that the tissues were fully penetrated by paraffin (C30H62, 0.9 g/cm3,
𝜌 ≈ 3.1 ⋅ 102 nm−3, under the assumption that the maximum of the tomographic gray
value histogram can be assigned to the impregnation material). Based on the image
quality metrics, 2/10 AD subjects and 1/10 control CB-datasets were excluded from the
analysis to keep the segmentation quality on a similar level for all data sets (subjects 4,
9 and 20).

Segmentation of CA1-neurons Segmentation of pyramidal neurons in the CA1-
region required a segmentation algorithm compatible with low contrast and variable
cellular morphology. At the same time, there was not sufficient data available for
the deep learning approach, as used for the DG-cell nuclei. We therefore turned to
the Chan-Vese level-set algorithm [18], which determines the object contour (mask)
based on minimizing an energy functional, including contributions due to gray value
deviations from the average values in- and outside the object, its surface and its volume.
In this work, the python level-set implementation of the simple insight toolkit [44] was
used.

Segmentation of DG-Cell Nuclei For the PB-data, segmentation of DG-cell nuclei
was carried out using the Blobfinder-tool of the segmentation and visualization package
Arivis (Arivis AG). To this end, the Draw Object-tool was first used to roughly restrict
the ROI to the DG. The Blobfinder was then applied to this volume (diameter: 7.2 µm,
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probability threshold: 18.3%, split sensitivity: 30.9%). Subsequently, the Feature Filter
was used to remove objects of size (≤ 2.5 ⋅ 103 µm3), sphericity (≤ 0.25) or intensity.
Finally, a python script was written to remove cells outside the DG-band based on
criteria involving next-neighbor distances.

The CB-data, in which the DG-cell nuclei are much better resolved, required a more
detailed object mask, retrieved as follows: First, four datasets were segmented with
the interactive software package Ilastik [10], and a further manual optimization based
on image filters and object removal based on visual control. These segmentations
served as ground truth input for machine learning based on convolutional neural net-
works (CNN) implemented via theDeep-learning V-net, which is the three-dimensional
generalization of the U-net design [64]. Starting with the segmentations of the four
datasets, the V-net has been trained in several passages to introduce revised ground
truth data: output probability maps were thresholded (individually for each sample),
fine-tuned (manually), and used as revised ground truths. In this work, three passages
were conducted: in passage (1) three data sets have been used for training and one for
validation, in (2) four for training and two for validation, in (3) six for training and
two for validation. Overall, the V-net architecture from [48] was adapted. The Adam
optimizer together with the dice loss function was monitored in the training procedure
to cope with the class imbalance between cell and background voxels. In order to
account for differences in image quality, data augmentation was applied. Training was
carried out on a single NVIDIA Quadro RTX 8000. To fit the GPU memory, data sets
were rebinned to a size of 5123 voxels, from which single subvolumes of 2563 voxels
were used for both training and validation data, resulting in a binary dice coefficient
on the validation set of 81%.
Note that for the volume rendering of the DG-band and 𝛽-amyloid plaques in Fig. 1(d),
data segmentation was solely based on the Ilastik software.

Computation of Local Cell Density Using the segmentation masks, each single
object (i.e. cell nucleus) was identified and represented by its center-of-mass (COM).
The resulting 3d-array 𝑀𝑝 hence has non-zero entries only at the COM positions. The
local density on a given coarse-graining scale 𝑟 was then computed by convolution
between COM-positions and a sphere with radius 𝑟. The local density at any point
is proportional to the number of spheres reaching this point and the volume of the
test sphere. To avoid artifacts from sharp interfaces, the spheres were smoothed by
Gaussian filtering. Denoting the smoothed sphere (convolution kernel) as 𝑀𝑟, the
convolution is implemented in Fourier space based onmultiplication of the Fast Fourier
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transforms (FFT) of 𝑀𝑝 and 𝑀𝑟. The cell density 𝜌𝑝𝑟 (objects per volume element)
in real space is then obtained by the inverse FFT followed by a proper normalization,
which can be written as

𝜌𝑝𝑟 = 1
𝑝𝑥3 ⋅

ℜ (ℱ−1 (ℱ(𝑀𝑝) ⋅ ℱ(𝑀𝑟)))
ℜ (ℱ−1 (ℱ(𝐽) ⋅ ℱ(𝑀𝑟)))

,

where 𝐽 denotes an array of ones of the same size as𝑀𝑝, ℱ(⋅) denotes the Fast Fourier
transform, and ℜ(⋅) extracts the real part of a complex argument. For the PB data, a
radius 𝑟 = 52 µm, was chosen. This workflow has been adapted from [74].

Short-Range Order of DG-Granular Cells Apart from cell density and the shape
of the DG-band, the local short range order of granule cells can be analyzed, similar
to structural analysis of liquids or amorphous solids in condensed matter. Such an
approach based either on the pair-correlation function 𝑔(𝑟) or its Fourier transform
given by a structure factor 𝑆(𝑞) was already adapted in [74] for the granule layer of
human cerebellum. Here, we used the structure factor

𝑆(q) = ⟨ 1
𝑁

⋅ ∣
𝑁

∑
𝑗=1

𝑒𝑖q⋅p𝑗 ∣
2

⟩
𝜙,𝜃

,

computed for an array of points q in Fourier space (scattering vectors) based on the
spatial COM coordinates p of the DG-cell nuclei (segmentation masks of PB-data),
with the total number of cells𝑁. After radial averaging in q-space, the structure factors
𝑆(q) are presented in Fig. 4.11(g). Solid lines (red, green) are given by the group-wise
(AD, CTRL) median, with half-transparent areas covering the 1𝜎-intervals of each
group.

Structural Parameters of DG-Cell Nuclei For segmented nuclei of the DG-cells,
five features were selected for further analysis, and computed based on the segmen-
tation mask for each individual: median (over DG-neurons) of the nuclear electron
density 𝜌, normalized nuclear electron density variance 𝑠 = 𝜎2/𝜌2 (heterogeneity
parameter), nuclear volume 𝑣, nuclear sphericity 𝜑 (shape parameter), and number
of neighbors nn in a radius of 13.5 µm, a value selected in between first and second
coordination shell of the pair correlation function 𝑔(𝑟), see also [74]. The pairwise
similarity (or equivalently distance) between the one-dimensional histograms (sepa-
rately for each feature, Fig. 6) was computed using the 1d-Wasserstein metricW of



4.6 SI Appendix 161

order 𝑝 = 2, as implemented in [69]. In addition, we also computed distances based
on the Kullback-Leibler-Divergence (KLD), defined as [11, 41, 61].

𝐾𝐿𝐷[ℎ(𝛽)||ℎ(𝛼)] =
𝑁

∑
𝑖=1

ℎ(𝛽𝑖) log( ℎ(𝛽𝑖)
ℎ(𝛼𝑖)

) .

In most cases, this yielded similar results, but with the additional problem of the KLD
being ill-defined for zero values of the discretized probability distributions (zero bins).
The metrics/measures were applied to each two histograms ℎ(𝛼), ℎ(𝛽) with 𝑁 = 70
bins resulting from∼ 104 objects per subject and feature. Also note that ℎ(𝛼) and ℎ(𝛽)
have been normalized prior to input.
Furthermore, based on the PB-datasets which span a much larger FOV than the CB,
further parameters have been computed and are presented in the lower part of Tab. 1
in the main article. These parameters concern the overall DG-band structure, and not
single DG-cells. (i) From the 3d local cell density masks (defined in the SI Appendix,
Methods, “Computation of local cell density”), median and standard deviation of
the local cell density are denoted by ̄𝜌𝑛 and 𝜁𝑛, respectively. 𝜁𝑛 is also referred to
as “local density fluctuations”, and is an indicator for possible local defects. (ii) The
DG-band width 𝑑DG of each data set is based on the binary 3d-mask of the DG, to
which then a distance analysis tool has been applied: for each voxel within the DG,
this yields the distance to the closest voxel outside the DG. The central line, extracted
by skeletonization, indicates the local thickness, from which the median is computed
to obtain 𝑑DG. (iii) Analysis of the structure factor (see SI Appendix, Methods “Short-
range order of DG-granular cells”) yields the next-neighbor distance 𝑑NN.

Presentation of Gaussian Ellipsoids The point clouds in 𝑛 dimensions (𝑛d) were
described by 𝑛d ellipsoids, obtained as follows: the 𝑛 × 𝑛-covariance matrix and the
respective 𝑛d-vector of mean values were obtained for a given point cloud. An ellipsoid
was then centered around the mean (or equivalently the COM) of the point cloud,
with ellipsoidal half axes (magnitude and directions) given by the eigenvectors of the
covariance matrix (square root of eigenvalue and unit eigen vector). This is equivalent
to least-square fitting to a multi-dimensional Gaussian distribution, with standard
deviation (1𝜎-interval) represented by the half axes of the ellipsoids. The graphical
functions were implemented with MATLAB functions presented in [60].
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Analysis based on Optimal Transport In the Gaussian approximation each indi-
vidual is represented by a normal distribution 𝒩(Σ, 𝜇) with covariance matrix Σ and
mean µ. The Bures metric between two covariance matrices is given by [15, 26]

ℬ(Σ𝛼, Σ𝛽) = √𝑡𝑟 (Σ𝛼 + Σ𝛽 − 2 (Σ1/2
𝛼 Σ𝛽Σ1/2

𝛼 )
1/2

) ,

and the 𝐿2-optimal transport distance between two normal distributions 𝒩(Σ𝛼, 𝜇𝛼)
and 𝒩(Σ𝛽, 𝜇𝛽) can be expressed as [58]

𝒲2
2(𝛼, 𝛽) = ||𝜇𝛼 − 𝜇𝛽||2 + ℬ(Σ𝛼, Σ𝛽)2 ,

the optimal transport map from 𝛼 to 𝛽 is given by

𝑇𝛼,𝛽 ∶ 𝑥 ↦ 𝜇𝛽 + Σ−1/2
𝛼 (Σ1/2

𝛼 Σ𝛽Σ1/2
𝛼 )

1/2
Σ−1/2

𝛼 ⋅ (𝑥 − 𝜇𝛼) .

For point clouds, optimal transport plans between the normalized empirical measures
were computed with entropic regularization and the Sinkhorn algorithm using the
implementation of [68], with a final regularization parameter of 𝜀 = 10−6 and a plan
threshold of 10−10 which results in high quality approximate solutions where the
scale of entropic blur is considerably below the typical nearest neighbour distance of
the point clouds. Local linearization of the optimal transport metric is performed as
described in [77], including the approximate extraction of an optimal transport map 𝑇
from the optimal transport plan between two point clouds. In the Gaussian approx-
imation, the optimal transport center of mass (“barycenter”) was used as reference
for linearization, which can be computed efficiently with the fixed-point algorithm
of [3]. For point clouds we sampled 104 points from the Gaussian barycenter as an
approximate reference point. SVM-classification was done with the implementation
of [57]. Note that we only used a linear (i.e. without kernel functions) SVM on four
PCA-modes to avoid any risk of overfitting. Our main motivation was to extract a
robust discriminating axis that lends itself to subsequent medical interpretation.

SI Additional Datasets and Analysis

DG-Cell Nuclei Fig. 4.10 presents additional plots on the statistical analysis of DG-
cell nuclei (CB-data). This includes the histograms (violin plots) shown in (a) for
the structural parameters (“features”) volume 𝑣, sphericity 𝜑 and next neighbors nn
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within a radius of 13.5 µm, which are not shown in the main manuscript, for reasons
of space restrictions. In (b), a correlation matrix is presented showing the correlation
between any two elements of the set of features, for all subjects. Noteworthy are a
positive correlation between density and volume 𝜌 & 𝑣, and a negative one between
heterogeneity and sphericity 𝑠 & 𝜑, i.e. large nuclei tend to be denser, and nuclei with
larger heterogeneity (higher heterochromatin-to-euchromatin-ratio) tend to be more
elongated and hence less spherical. These correlations are observed for all subjects.
In (c), the “distance charts” (Wasserstein-metric,W ) between individuals are shown
for all features except 𝜌, which had already been included in the main manuscript.
These heatmaps again convey the large inter-subject variationwithin and across groups.
This is further quantified by the corresponding plots ofW -values (for each feature),
computed for single individuals with respect to their entire group population. For the
heterogeneity parameter 𝑠, the in-control-group distances are found to be significantly
smaller than distances involving AD-data. A similar trend is found for the sphericity 𝜑
and the packing parameter nn, where the distances within the CTRL-group are smaller
than for the AD- or the cross-group case. Finally, (e) shows a graph representation
[25] of distances based on the Bures-cost 𝒲. Note that on the group-level, as shown in
the main manuscript, the distances are better revealed when all features are treated
jointly in the five-dimensional feature space, as quantified here by 𝒲.

Next, Fig. 4.11 presents statistical analysis of DG-cell nuclei, as segmented in the large
volume reconstructions obtained by the PB-configuration. The larger field-of-view
(FOV) results in a larger section of the DG-band which can be captured. Hence, in
particular the width of the DG-band 𝑑DG and its standard deviation 𝑑𝜎, as well as
the local “packing” parameter nn can be well-assessed from this data. In (a), the
corresponding box-whisker plots are shown. The width of the DG-band is slightly
widened, but does not significantly change in the AD-group with respect to CTRL.
Interestingly, nn seems much more tightly controlled in the CTRL-group, i.e. the
physiological regime, while the dispersion of nn values is much higher in the AD-
group, i.e. the local ordering differs substantially between members of this group. In
(b), the feature histograms are presented for all patients in form of a violin plot. Since
the larger FOV compared to CB-configuration comes at cost of resolution, a segmented
nucleus is now sampled by much fewer voxels, and the structural features within
the nuclei are no longer well-assessed. In particular, we cannot expect the variance
in electron density, i.e. the heterogeneity parameter 𝑠, to capture the sub-structure
of the nucleus. Also, volume 𝑣 and sphericity 𝜑 can be extracted only with much
higher sampling errors. The corresponding “sampling artifact” also introduces bias in
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estimating 𝑣 and 𝜑, as can be seen by comparison with the high-resolution CB-data
which can be regarded as “ground truth”. This may also affect the correlation plot of
𝑣, 𝜑 and 𝑠, which are shown in (c), and the correspondingW -metric, calculated for
1d-feature distributions between each two individuals as shown in (e), and presented
as box-whisker-plots for inter- and intra-group behavior, see (d). Contrarily, the results
of 𝜌 and nn, also depicted in (d-e), can be considered robust with respect to sampling.
Here we note that in particular, the distances (W ) within the CTRL-group are much
smaller than within the AD-group or across groups, again indicating a much more
tightly controlled parameter nn in the physiological regime, and a possible positional
disordering effect of DG-neurons in AD. The smaller distances between patients of
the CTRL-group is confirmed by the distance chart shown in (f), presenting the 5d
Bures-cost 𝒲. However, we have to keep in mind that also poorly sampled features
contribute here. In (g) more analysis is included on the local packing. Instead of
counting the number of neighboring neurons (nuclei) within a certain shell, as for
the definition of nn, we now ask for the typical distance distribution of neighbors,
as described by a structure factor 𝑆(q) computed from the nuclear positions, see SI
Appendix, Methods above. Compared to CTRL, the AD-curve shows a broader dip and
a less prominent peak, indicative of a reduced short range order of nuclear positions.
In addition, the AD-group exhibits larger inter-subject variation, as illustrated by the
shaded 1𝜎-intervals, again underlining a tighter control of DG-structure in CTRL than
in AD.

Cornu Ammonis 1 Fig. 4.12 summarizes the analysis of pyramidal neurons in the
CA1-region. Post mortem biopsy punch samples from 8 different subjects were scanned:
3 subjects diagnosed with AD (based on ABC-score; subjects 2, 6 and 21, aged 78 ± 11
years), 4 subjects of the control group (subjects 16, 17, 20 and 22, aged 66 ± 20 years),
and a further sample (subject 12). For this purpose, all samples were collected from
the same location within the hippocampus. The segmentation of neurons was carried
out as detailed in SI Appendix, Methods. The segmentation quality is illustrated in
Fig. 4.12(a). Here, gold-rendered structures mark voxels included in the segmentation
mask. In (b), histograms for the same structural features as for the DG-analysis in the
main text were evaluated: (1) median of electron density 𝜌 (e−/µm3), (2) its relative
variance 𝑠 = 𝜎2/𝜌2, (3) object volume 𝑣 and (4) sphericity 𝜑, as well as (5) number
of neighboring neurons nn within a radius of 120 µm. Fig. 4.12(c) illustrates the
correlations between different features. For example, in all subjects, smaller volume
of the pyramidal neurons correlates negatively with sphericity. Visual inspection of
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the histograms in (b) may indicate a slight group-specific segregation for 𝜑 and nn.
This is corroborated, when taking the distances between the entire feature histograms
into account (W ), either in form of the distance chart (Fig. 4.12(d)), or by comparing
distances for single individuals with respect to their overall group distribution (Fig.
4.12(e)). Again,𝜑 andnn showamarginally significant pattern, while the other features
are dominated by the inter-subject variation with no significant effect on the group
level. Fig. 4.12(f) and (g) illustrate the Bures-cost, taking all features into account.
While this completes the analysis, wemust be cautious about drawing conclusions here,
since only 3-4 subjects of each group have been measured, and including a younger
patient (aged 37 years). Further, datasets have been recorded at slightly different
configurations, in particular regarding the X-ray energy andWG-optics, which may
result in different image quality.

Multiscale Implementation The multiscale implementation presented in the main
article includes the stitching of many individual tomographic scans. For completeness,
Fig. 4.13 presents a full slice through the entire 7 × 7 tomographic reconstructions
(stitched) covering the entire 8 mm cylindrical punch of hippocampal tissue recorded
in PB-configuration.

Hydrated Tissue While formalin-fixed paraffin-embedded (FFPE) tissue which is
the standard in histology and pathology has been used for this work, we have also
explored the image quality for hydrated (PBS), formalin-fixed tissue. Fig. 4.14 shows a
corresponding reconstruction (CA1-region, CTRL-group, CB-configuration). While
the noise is higher than for FFPE-preparation, we can still well recognize cellular
bodies, nuclei and apical dendrites of the pyramidal neurons. Interestingly, tissue gaps
around neurons are also observed at this stage of sample preparation, without any
tissue dehydration or paraffin embedding.

Translation to Laboratory µCT In view of future applications of the approach
presented here for neuro-pathology it is important to know to which extent PC-CT can
be translated to laboratory µCT instrumentation, more readily available in a clinical
setting. Fig. 4.15 shows reconstructions from laboratory datasets, acquired with a
µPC-CT setup [8, 72]. X-rays were generated by a liquid-metal jet source (Excillum Inc.)
with 𝐾𝛼,Ga = 9.5 keV. The sample and detector stages were fully motorized. Scans
were recorded in two different configurations, serving a multiscale implementation:
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Overview scans with 7.7 × 9.7mm2 FOV and 𝑝𝑥 = 5 µm, were realized using a Dexela
flat panel CMOS detector (150 µm, 75 µm pixels) and large magnification (𝑧01 = 121
mm, 𝑧02 = 1.82 m). In this configuration, the X-ray source was operated at 70 kV, 100
W, and 9 × 9 µm2 source spot size (circular). 1201 projections were recorded over 185∘,
each with 5 × 1 s acquisition time. For the high-resolution configuration, the sample
stage was moved to 𝑧01 = 158mm, and a Rigaku XSight Micron detector (lens-coupled
CCD, 10×optics, 5.5 µm pixels) was installed at 𝑧02 = 193 mm, resulting in a FOV of
1.2 × 1.6 mm2 and 𝑝𝑥 = 0.46 µm. Source settings were adjusted to 40 kV, 57.7W, and
10 × 10 µm2 source spot size (circular). In this configuration, 1001 projections over
181∘ with 1 s were acquired. Phase retrieval was performed withModified-Bronnikov
algorithm (MBA) [32, 33] and Bronnikov-Aided correction (BAC) [23]. For overview
scans, 𝛼 = 0.025, 𝛾 = 1 and for high-resolution scans, 𝛼 = 0.005 and 𝛾 = 1 were
chosen. Further data processing was carried out as presented in the main text, i.e.with
the wavelet ring correction in overview scans and the additive filter in high-resolution,
followed by FDK-based tomographic reconstruction.
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Table 4.2: Optical configuration and parameters for multiscale PC-CT.
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Configuration EB PB CB

Energy (keV) 13.8 13.8 8.0 8.0 13.8 8.0 14.8
px (µm) 3.06 0.65 0.65 0.123 0.167 0.200 0.051
Phase retrieval ∗ CTF (1) CTF (1) CTF (1) CTF (1/3) CTF (4) NLT (1) NLT (4)
𝛿/𝛽 20 33 30 35 / 50 35 130 115
Tomography FBP FBP FBP FBP FDK FBP FBP
Ring removal W A R A/W A A/W A
FSC (µm) 6.4 4.2∗∗ 1.6 0.963 0.385 1.268 0.219
Fig. 1(c) 2(a) - - 5 2(c) 2(d)

Table 4.3: Phase retrieval and reconstruction parameters. ∗ number of measurement
planes, ∗∗ local tomography (8 mm-biopsy punch).
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Fig. 4.9: Schematics of the setups. (a) Overview of theGINIX-endstation formultiscale
PC-CT: direction of X-rays travel is from right to left. Depending on the configuration
(marked by colored boxes), either of two sample and detector stages is utilized. (b)
In EB-configuration, the stages installed further downstream are used. Note that the
optics unit - not shown in this zoom-in - shapes the beam via the KB-mirrors and a
pinhole. (c) In PB-configuration, optics from the optics unit are removed, and the
upstream stages are inserted. (d) In CB-configuration, again KB-mirrors focus the
X-rays onto a CB. The sample installed at the upstream sample stage is imaged with the
camera > 5 m downstream. (e & f) Schematics of the X-rays free-space propagation:
image formation in (e) parallel-beam geometry as in (c), (f) cone-beam geometry
leading to effective geometrical magnification as exploited in (d).
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Fig. 4.10: (caption next page)
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Fig. 4.10 (previous page): Nuclei of DG-granular cells – supplementary analysis
of CB-data. (a) Violin plots of structural features for each subject, (top to bottom):
nuclear volume 𝑣, sphericity 𝜑 and number of neighboring objects (nn) within a
radius of 13.5 µm. The color scheme corresponds to the ABC-score. (b) Feature-
feature-correlation (columns), evaluated for different subjects (rows). (c) Matrices of
Wasserstein-measures (W ), (c, top left) heterogeneity parameter 𝑠, (top right) nuclear
volume 𝑣, (bottom left) sphericity𝜑, (bottom right) nn, and (d) Scatter plots ofW -values,
calculated for each individual with respect to its entire group (with subject 12 and
13 excluded). (e) Bures-cost 𝒲 in 5d-space represented as a graph: bold connections
and close node proximity correspond to lower 𝒲. Connections between controls are
colored “green”, between AD-individuals “red” and inter-groups “gray” (including
subjects with no group assignment).
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Fig. 4.11: (caption next page)
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Fig. 4.11 (previous page): Nuclei of DG-granular cells – supplementary analysis
of PB-data. (a) Box-whisker plots of (left) granular cell bandwidth 𝑑DG, (center) its
variance 𝜎𝑑, and (right) number of neighboring objects (nn) within a radius of 13.5 µm;
each (left, red) grouped for AD-subjects, (right, green) for controls according to ABC-
score. (b) Violin plots of structural features (top to bottom): median electron-density
𝜌 and heterogeneity 𝑠, nuclear volume 𝑣, sphericity 𝜑, and nn within 13.5 µm. The
color scheme corresponds to the respective ABC-score. (c) Feature-feature-correlation
(columns), evaluated for different subjects (rows). (d) Plots of Wasserstein-values (W ),
calculated for each individual with respect to its entire group (with the exclusion of
subjects 12 and 13). (e) Matrices of W -measures, for all five features. (f) Matrices
of W -measures. (e) Bures-cost 𝒲 in 5d. (g) Structure factor 𝑆(𝑞) computed from
the centers-of-mass of DG-cell nuclei masks (see SI Appendix, Methods, Structural
parameters of DG-cell nuclei). Lines indicate the group-wise median, half-transparent
areas the 1𝜎-intervals. The positions of the scattering peak indicate the next neighbor
distances 𝑑NN, namely 𝑑NN = 13.88 µm, and 𝑑NN = 15.04 µm, for AD and CTRL,
respectively. However, the modulation of 𝑆(𝑞), i.e. the dip and the peak are less
pronounced for AD, indicating a reduced short range order compared to in healthy
tissue. (h) Group-averaged cell densities (red: AD, green: CTRL, gray: with no group
assignment), obtained from density maps evaluated within the cell band only by
applying a density threshold (105 1/mm3, see SI Appendix, Methods, Computation of
local cell density). AD exhibits a larger variance compared to CTRL.
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Fig. 4.12: (caption next page)
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Fig. 4.12 (previous page): Pyramidal neurons in CA1 – statistical analysis. (a) Virtual
sectioning to illustrate segmentation of pyramidal neurons. Scale bar: 50 µm. (b)
Violin plots of the five selected features, where the color scheme indicates the ABC-
score of the respective subject. (c) Feature-feature-correlation (columns), evaluated
for different subjects (rows). (d) Matrices of Wasserstein-measures (W ), for all five
features. (e) Plots ofW -measures, evaluated for single individuals with respect to their
entire group distributions (with the exclusion of subject 12). (g) Bures-cost 𝒲 in 5d. (f
& g) Presentation of the Bures-cost 𝒲 (computed in 5𝑑), (f) as graph where thicker
and shorter connections indicate lower cost (red: AD, green: CTRL, gray: with no
group assignment), and (g) as distance chart.

Fig. 4.13: Stitching of tomographic data sets for multiscale analysis. A full slice
through the entire 7 × 7 tomographic reconstructions is shown covering the entire 8
mm cylindrical punch of hippocampal tissue recorded in PB-configuration. Scale bar:
1 mm.
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Fig. 4.14: Reconstruction of hydrated (PBS), formalin-fixed tissue. The example of
a biopsy punch into the CA1-region (CTRL-group) recorded in CB-configuration) is
shown, demonstrating that cellular bodies, nuclei and apical dendrites of the pyramidal
neurons, are also resolved for this preparation, without tissue dehydration and paraffin
embedding. Interestingly, tissue gaps around neurons are also observed at this stage of
sample preparation. Scale bars: (a) 50 µm, (b) 30 µm.

a) b)

BV

DG

BV

Fig. 4.15: PC-CT with laboratory µCT instrumentation. The same tissue block which
was used for demonstrating the multiscale imaging workflow in the main text is show.
Experimental details are described in SI Appendix, Methods. (a) Overview scan of
the 8 mm-tissue block, with the higher resolution dataset of the 1 mm-biopsy punch
merged into the volume. (b) Virtual slice through the reconstruction volume of the
1mm-biopsy punch, with labeled anatomical features such as calcified blood vessels
(BV) and the DG-cell band. Scale bars: (a) 1 mm, (b) 300 µm.
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Themammalianbrain showsa complex andhierarchical architecture,whose
assessment at all functionally relevant scales requires the establishment of
multiomics approaches. In this work, we propose a correlative workflow,
which is based on large-scale overviewPC-CT scansusing the extendedbeams
offered by laboratory µCT sources and parallel beam synchrotron radiation
(SR),with subsequent zooms into specific regions-of-interestusing cone-beam
recordingswithnanofocused laboratory sources or SR, andfinally SEMincon-
trolled andwell-identified sub-volumes obtained before. We demonstrate the
workflow at the example of rOTO-stained murine corpus callosum tissue, a
brain region rich inmyelinated nerve fibers. Based on two different and com-
plementary techniques, PC-CT and scanning electronmicroscopy (SEM), we
approach the establishment of a correlative imaging workflow. As we show
here, theworkflowcan be applied (i) in a correlative study, in order to add fur-
ther quantitative value, for instance, or (ii) in amultiscale approach, towhich
PC-CT can contribute volume throughput, while SEM can contribute resolu-
tion. The findings from this work demonstrate the complementary strength
of eachmodality in terms of resolution (SEM) andFOVor volume throughput
(PC-CT).
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5.1 Introduction

The functions of themammalian brain require a complex and hierarchical architecture,
composed of neurons and neuroglial cells. While the first make up the neuronal net-
work connected by synapses, the latter provide a whealth of supporting functions, and
in particular form the myelin sheath around myelinated axons and nerve projections
which can extend over several centimeters [17, 23]. In order to assess brain tissue at all
functionally relevant scales, the establishment of multiomics approaches is required
[1]. For fundamental neuroscience, unraveling the connectome in specific brain re-
gions is an extremely important goal, which no longer seems unrealistic based on
progress in electron microscopy [7, 8], and sample preparation, including infiltration
with metal solutions and subsequent staining, in particular the rOTO protocol [9].
Beyond the physiological regime, pathological changes of brain tissue in neurodegen-
erative diseases, for instance, are highly important and require three-dimensional (3d)
structural probes with sub-cellular resolution in order to assess cellular shapes and
organelles such as the myelin sheaths, which is of special interest in diseases such as
multiple sclerosis (MS). MS is an inflammatory disease resulting in axonal demyeli-
nation and eventual remyelination. To probe such damages and repair mechanisms,
ultrastructure preservation during tissue preparation is essential. Due to changes in
osmolarity, purely formalin-based tissue fixation is considered insufficient to study
neuronal ultrastructure, which can to some degree be absorbed by the addition of
glutaraldehyde, or should be entirely replaced by high-pressure freezing if possible [12,
16]. In particular for human tissue, tissue preservation techniques are limited, since
rapid and standardized fixation protocols are not realistic and autolysis onset cannot
be excluded. In order to first control for such artifacts due to preparation, and to then
assess and analyze the fixated, stained or labeled tissue, it is helpful to compare and
eventually correlate images recorded by different modalities. This has for example
already been exploited for grating-based phase-contrast tomography and histology
in [2, 13], or propagation-based phase-contrast computed-tomography (PC-CT) and
histology in [22].
In this work, we studymurine corpus callosum (CC) tissue, a white matter brain region
with high occurrence of myelinated nerve fibers, by two different and complementary
techniques, PC-CT and scanning electron microscopy (SEM), towards establishing a
correlative imaging workflow. We use rOTO-staining which has already been demon-
strated to enable state-of-the-art connectomic studies by transmission-EM (TEM) and
focused ion-beam SEM (FIB-SEM) [7, 8] and has also been proven to be compatible
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with X-ray tomography [11]. We investigate under which conditions and parameters of
photon energy, resolution, field of view (FOV), and image quality, mammalian brain
tissue stained by the rOTO-protocol[9] can also be probed by PC-CT, following our
earlier work in [3]. Here, we in particular aim at a correlative workflow, based on
(i) large-scale overview PC-CT scans using the extended beams offered by laboratory
µCT sources, followed by (ii) scans with parallel beam (PB) synchrotron radiation
(SR), and (iii) zooms into specific regions-of-interest (ROIs) based on cone-beam (CB)
recordings with nanofocused SR, and finally (iv) SEM on sections of regions identified
in sub-volumes before. This sequence is obvious, owing to the fact that PC-CT is
non-destructive while SEM relies on the preparation of sections. At the same time,
large FOV pre-characterization is helpful to find the “needle in a haystack”. For the
purpose of PC-CT and SEM correlative imaging, the rOTO-protocol[9] can be regarded
as a prerequisite since it is uniquely suited for connectomics of (neuronal) tissues by
FIB-SEM. Hence, the experimental PC-CT parameters, in particular photon energy 𝐸
and FOV, have to be adapted to this requirement. Note that imaging of neuronal tissue
by PC-CT does not demand metal staining per se, and that on the contrary the native
electron density contrast of unstained but fixed tissue can give sufficient contrast to
image the cytoarchitecture [21]. While it can be expected that rOTO-stain enhances the
contrast and also achievable resolution in PC-CT, the increased absorption can limit
the sample diameter and hence the practical FOV to a few mm or require to increase𝐸.
While the energy range 𝐸 ≃ 7...14 keV is well-suited for biopsy punch tissue samples
up to a few mm in cross-section, higher 𝐸 in combination with metal-stained samples
could lead to increased background for example by fluorescence or scattering, which
are no longer optimal for low electron density components of the tissue. Furthermore,
the deposited dose will increase considerably. As we show here, these challenges can
be well-met, e.g. by the 𝐸 = 17.1 keV SR-scans demonstrated here, as well as by broad
bandpass laboratory radiation.

Feasibility and compatibility given, we then also ask to which extend PC-CT and SEM
are complementary. Based on the much higher resolution of SEM, it can be questioned
whether PC-CT offers particular advantages for metal-stained tissue samples, other
than being nondestructive. As we show here, the FOV and throughput at reasonable
scan times still offer a significant and valuable advantage of PC-CT when larger mm-
sized volumes have to be assessed. In a correlative study, PC-CT can contribute volume,
while SEM can contribute resolution. In the images provided here for the example
of murine corpus callosum (CC) tissue, we can also assess the window of resolution
and FOV where both methods overlap, and how identical features appear in image
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contrast for both techniques, respectively.

5.2 Methods

5.2.1 Sample Preparation

For PC-CT and SEM measurements, the exact same sample, with identical embedding
and mounting, has been utilized. Murine corpus callosum (CC) was chosen as sam-
ple tissue for its abundance of dense myelinated structures. The particular sample
presented here was selected from a series of samples, for which the preparation and
PC-CT parameters were described in detail before [3]. In short, male C57Bl6N mice
at the age of 10 weeks were sacrificed in agreement with the ethics committee of
Max-Planck-Institute for Experimental Medicine by cervical dislocation. Tissue was
fixed by immersion in solution containing 2.5% glutaraldehyde, 4% formaldehyde and
0.5% NaCl in 0.1 M phosphate buffer. Staining procedure followed a modification of
the reduced osmium, thiocarbohydrazide, osmium (rOTO) protocol, which elevates
membrane penetration of OsO4 [9]. Samples were washed in 0.1 M phosphate buffer
(3 × 15 mins at 4∘C), and then incubated in 2% OsO4 and 0.25% K4[Fe(CN)6] (3 h at
4∘C) to reduce the OsO4 to OsO2. After washing with ddH2O, samples were incubated
with 0.1% thiocarbohydrazide (in ddH2O, for 1 h at RT). Samples were subsequently
treated with 2% OsO4 (90 min), and after washing with ddH2O, further contrasted
with 2.5% uranyl acetate (overnight at 4∘C), followed by several washes with ddH2O.
Samples were then dehydrated with increasing concentrations of aceton in water (30%,
50%, 70% and 90%, for 20 mins each at RT), and incubated in 100% aceton (3 × 15
min). For embedding, tissues were incubated with increasing concentrations of EPON
resin mixed with aceton (2:1, 1:1 1:2, for 2 h each at RT) prior to incubation with
pure EPON resin (overnight at RT) and polymerization (24 h at 60∘C), for which the
sample was mounted in a 1 mm-kapton tube on a brass pin. Note that after completed
polymerization, the kapton tube has been removed from the EPON surface.

5.2.2 Propagation-based Phase-Contrast Tomography

Different implementations of propagation-based phase-contrast tomography (PC-CT),
with four zoom levels in total, have been utilized: In this work, µCT-Overview and µCT-
zoom1 data have been recorded with a table-top nanofocus PC-CT setup (EasyTom,
with voxel sizes of 1 µm and 0.35 µm, respectively), and SR-Zoom1 and SR-Zoom2
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Fig. 5.1: Correlative imaging workflow. (a) Propagation-based phase-contrast tomog-
raphy (PC-CT): X-rays penetrate the sample mounted on a tomography stage at 𝑧01.
The near-field diffraction pattern (or inline hologram) of the sample is recorded by
the detector positioned at 𝑧02. A fiducial marker helps to identify the ROI. (b) SEM:
A sample-ROI which was selected based on the previous PC-CT results, exposed by
trimming using a diamond knife followed by sectioning and imaging using a SEM.
In SEM, the sample is scanned by an electron beam (EB), and the scattered electrons
provide the image contrast. (c) Depiction of the multiscale imaging workflow: with
PC-CT, the sample can be scanned at different zoom-levels, covering the entire sample
with coarse sampling (yellow box) down to a selected ROI with small voxels (darker
shades of red), and further by SEM imaging (black).

data with a synchrotron holography PC-CT setup (ID16A, ESRF, with voxel sizes of
130 nm and 50 nm, respectively [4]). Fig. 5.1(a) depicts the experimental principle,
and the experimental parameters are briefly summarized in Tab. 5.1, with more details
and results given in [3].
Note that the volume throughput and data quality can be modified by adjustment
of experimental parameters, and that other setups can be used as well, such as the
parallel-beam (SR-Overview) [3, 6] or cone-beam (SR-Zoom3) [3, 6, 22] configurations
at the GINIX-endstation, P10 (DESY, Hamburg), or home-built PC-CT setups (for
instance liquid metal jet setup (µCT-Zoom2) [10, 20], or setups with nanofocus [3, 5]
or microfocus rotating anode sources [14]).
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µCT-Overview µCT-Zoom1 SR-Zoom1 SR-Zoom2
# projections 1568 3008 2000 2000
Energy (keV) 60 60 17.1 17.1
Exp. time (s) 12 × 1.7 5 × 10 4 × 0.2 4 × 0.2

Voxel Size (nm) 0.99e3 350 130 50
Phase retrieval simple simple CG CG

Table 5.1: Experimental and reconstruction parameters for PC-CT measurements.
Note that for µCT-Overview and µCT-Zoom1 scans, the X-ray spectrum spans the
entire range of bremstrahlung, and the given energy denotes its upper limit. For SR-
Zoom1 and SR-Zoom2, data have been acquired at four defocus distances, and phase
retrieval has been carried out with an iterative contrast transfer function approach
(CTF; conjugated gradients, CG). For µCT-Overview and µCT-Zoom1 data, phase has
been retrieved using the implemented simple phase filter (RX-Solutions, EasyTom).

5.2.3 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) has been carried out with the Zeiss Crossbeam
540-47-27 device [18, 19]. The selected region was first exposed with a microtome
(Trim90, Diatome), then sliced into 200µm-sections (Histo Knife, Diatome Ltd, Switzer-
land), mounted on a silicon wafer and coated with carbon. Large tile scans were
obtained by detection of the backscattered electrons.

In this work, a single 2d sample slice has been examined with the SEM, covering
a relatively large area (851 × 838 µm2) with small voxel sizes (15 nm). To capture
the entire area, 23 single scans of 184.32 × 184.32 µm2 were recorded at 1.5 keV and
subsequently stitched. The tile time was 1715.4 s and the dwell time 10 µs. Since back-
scattered electrons were chosen as a signal, no energy window/filter was available.

5.2.4 Multiscale and Multimodal Imaging

Fig. 5.1(c) delineates the multiscale and multimodal workflow proposed in this work:
first, a suitable PC-CT configuration is chosen to efficiently image the entire sample in
3d (yellow box). Consecutively, a selected subvolume, referred to as regions of interest
(ROIs), is sampled with increased resolution, indicated with shades of red. Finally, the
selected region is identified based on the fiducial marker, exposed, and imaged by SEM.
To the right of Fig. 5.1(c), the FOV and voxel sizes at each step are depicted as they were
applied in this work. Note that while we propose the used of fiducial markers for future
work, the identification in the present work was based only on the cytoarchitecture
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itself, based on successive microtome sectioning and optical microscopy, combined
with visual identification in the PC-CT reconstruction.

Fig. 5.2: Slices from multiscale PC-CT of a rOTO-prepared murine Corpus Callosum
(CC): (a) µCT-Overview data with indications of selected ROI-scans, where dashed
lines indicate imaging volumes, and solid lines 2d slices. (b-d) Slices from zoom-in
ROI-scans µCT-Zoom1, SR-Zoom1 and SR-Zoom2 as marked in (a), where (b-c) are 1
µm maximum intensity projections (MIPs). Scalebars: 100 µm.

5.3 Results

Fig. 5.2 shows the PC-CT results. Following the workflow from sec. 5.2.4, (a) depicts
the overview scan data (yellow), with smaller boxes indicating the positions of the
ROI-scans. Note that dashed lines represent scan volumes, while solid lines indicate
virtual 2d slices of the respective volume. Hence, ROI-volume boxes end where they
intersect with the 2d-slice of the overview scan (yellow solid lines). The ROI-slices in
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(b-d) follow the same color scheme, with (b) µCT-Zoom1 (orange), (c) SR-Zoom1 (red)
and (d) SR-Zoom2 data (dark red).
On all imaging scales, the anatomical structure of theCC can be identified: on the larger
scales (a-b), the massive strands of myelinated axons can be distinguished individually,
while smaller axons are likely to simply result in an elevated background level. Neurons
appear in negative contrast (lighter gray values). At sub-µm resolution (c-d), the
contrast is increasingly shifted towards membraneous structures, as highlighted in the
insets for cell nuclei and myelin sheaths, respectively.

Fig. 5.3 shows the SEM results. The entire scan area is depicted in (a), where the
grid-pattern can be attributed to the stitching of single SEM scans. Compared to PC-CT
the voxel size of 15 nm is extremely small, and contrast extends down to the finest sub-
cellular structures, without local averaging PC-CT which emphasizes more extended
structures. The high level of detail is demonstrated with the insets on vasculature. A
multi-walled membraneous structure with individually resolved membranes can be
identified. In (b), cellular nuclei next to a blood vessel and, a wealth of neighboring
myelinated axons appear in cross-section view. Within the nuclei, the distribution of
heterochromatin is contrasted particularly well.

Fig. 5.3: SEMof the same rOTO-preparedmurine CC-sample. (a) Overview of stitched
data, (insets) zooms into a vasculature structure demonstrating the capability to distin-
guish delicate membraneous structures. (b) A region with cellular features, such as
nucleoli and nuclei in the center, surrounded by and myelinated axons. Scale bars: (a)
100 µm, (b) 20 µm.

Fig. 5.4 shows the two modalities side-by-side for comparison. A slice through the
volume rendering of the µCT-Overview data indicates the spatial location of the SEM
data. In this cross-section view, the same tissue structures can be identified by both
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imaging modalities, at a larger scale in (b) and at sub-µm resolution in (c). In (d-e),
the differences in appearance of cell nuclei, when imaged by µCT-Zoom1, SEM and
SR-Zoom2, respectively, can be particularly well assessed.

Fig. 5.4: Correlative SEM & PC-CT. (a) Volume rendering of µCT-Overview data with
the slice indicating the position of SEM imaging. (b, left) PC-CT and (right) SEM
data on the overview level. (c, right) Exact SEM slice matching with (left) PC-CT data
(SR-Zoom1), which is a 1 µmMIP. (d, left) PC-CT slice showing myelinated fibers and
neuronal cell bodies (µCT-Zoom1), in comparison with their appearance in (right)
SEM. (e) With SR-Zoom2, in a different PC-CT imaging regime, neuronal cell bodies
more closely resemble the SEM data (d, right). Scale bars: (b-d) 100 µm, (e) 20 µm.

As a supplement for a further evaluation of correlative imaging with SEM and PC-CT,
Tab. 5.2 details the volume throughput for each setup, namely the scanned volume
per time. When access is available, SR-Overview scans can help to identify structures
at the µm-level, with a considerably fast volume throughput, which will result in a
similar data quality as with µCT-Overview [3]. Zoom-setups can be chosen depending
on the setup availability and the desired feature contrast accentuation. With its so
far unparalleled level of structural details, SEM, or FIB-SEM as a next step, however,
remains the method of choice to inspect carefully selected regions at sub-organelle
resolution, as required for connectomics.
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Setup Voxel Volume Scan Du- Volume Through-
Size (nm) Size (px) ration (h) put (mm3/ h)

µCT-Overview 1000 1979 × 1979 × 2040 9 887.7 × 10−3

SR-Overview 650 2160 × 2160 × 2160 0.02 142
µCT-Zoom1 350 2019 × 2019 × 1298 46 4.9 × 10−3

µCT-Zoom2 450 3326 × 3326 × 2504 15 168.3 × 10−3

SR-Zoom1 130 3216 × 3216 × 3216 4 18.3 × 10−3

SR-Zoom2 50 3216 × 3216 × 3216 4 1.0 × 10−3

SR-Zoom3 170 2560 × 2560 × 2160 4 17.4 × 10−3

SEM 15 56736 × 55835 × 1 15 7.1 × 10−7

Table 5.2: Volume throughput for different imaging configurations. Setup notations
are detailed in Sec. 5.2.2.

5.4 Discussion and Outlook

First of all, the results show that rOTO-stained neuronal tissue can be used for PC-CT
and SEM alike, under the exact same conditions of staining, embedding and mounting.
The example images and reconstruction volumes indicate the complementary strength
of eachmodality in terms of resolution (SEM) and FOVor volume throughput (PC-CT).
To specify this, it is useful to define a range of length scales, which one could also
denote as a window of length scales, i.e. an interval 𝑊, bounded by the resolution
and the FOVwhich can be covered within a given time, considered as reasonable. If
resolution is not quantitatively assessed (as in this work), a small multiple of the voxel
size can be taken as a proxy. A range of length scales can be covered well by both
modalities, i.e. the overlap window 𝑂 = 𝑊SEM ∩ 𝑊CT. This overlap of both techniques
will probably still increase in future. This is to be expected, since the resolution of SR
PC-CT can still be scaled based on increasing brilliance, better detector technology,
and improved reconstruction algorithms. At the same time the FOV of SEM may also
increase following further progress in instrumentation, including further optimisation
of ion and electron sources, and scanning speed. A large 𝑂 is desirable not only to
confirm the correct identification of a ROI, but also for the sake of truly correlative
imaging, rather than just multiscale or comparative imaging.

To this end, gray values must be correlated. While the gray values in SEM are difficult
to trace back to a simple sample quantity, since the back-scattering cross section is not
quantitatively known for a given composition and structure, PC-CT with synchrotron
radiation can in principle yield quantitative electron density values in each voxel [15].
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This may not only help to “calibrate” and better understand SEM signals, for example
in terms of quantitative metal concentration, but also to differentiate cellular or tissue
components based on a two-dimensional gray value chart. For the present example of
neuronal tissue, one may for instance be interested in the identification of different
cells, including for example different types of glias. PC-CT before (unstained), and
after rOTO stain (heavy metal labelled), followed by (FIB-)SEM would even yield a
three-dimensional gray value vector to better segment and differentiate components.
In this respect, note that structural correlation with PC-CT has been demonstrated
in a 2d SEM-scan here. This is important in order to validate the correlation over
a relatively large, mm2-sized area. Of course, following this proof-of-concept work,
specific cellular features may be of particular interest as a next step. Owing to the
3d-extension of such features, the volume throughput in SEM will be exploited in a
laterally confined, but in-depth extended 3d SEM-scan, in correlation with 3d PC-CT.

Instead of 𝑂, consideration of its complementary in terms of 𝑊SEM and 𝑊CT can also
add particular value, as quantified by the union 𝑊 = 𝑊SEM ∪ 𝑊CT, which gives for
the present example already a quite considerable extension 𝑊 = [15 nm...1.5mm].
Here, it is worth noting that even a combination of only laboratory µCT and SEM can
nicely cover a sample with sufficient 𝑂 and impressive 𝑊, even without the special
efforts involved in SR-experiments, such as beamtime proposals etc. Furthermore, both
modalities are available as commercial instruments, and could be nicely combined in
an imaging facility.

What then, one may ask, would be the special benefit of SEM correlative imaging
with PC-CT? At this point, we note that the volume throughput based on continuous
scanning is extremely high, and that hence, by stitching of sub-volumes 𝑊 can be
tremendously increased to entire brain regions. At the same time, the resolution and
hence 𝑂 can be kept high. Finally, one could conceive instruments, where the (FIB-)-
SEM is integrated into a beamline, andwhere correlative andmultiscaleworkflows take
advantage of robotic sample exchange and fiducial markers, which can be summarized
as “targeting”: First identifying the ROI in a mm3-sized sample by PC-CT, which is
then targeted with physical sectioning (microtome) and imaged by large tile scans
(SEM only), and finally targeted by 3d FIB-SEM of a selected smaller ROI. Scaling up
capabilities accordingly, would truly open up new windows for neuroscience. Such
an approach would provide anatomical and histological “context” for connectomics,
and sub-cellular resolution for research on neurodegenerative diseases, where high
resolution has to be combined with efficient screening for affected lesions.
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Conclusion and Outlook 6
In this work, the characterization of neuronal cyto-architecture by PC-CT imaging at
sub-µm resolution has been pursued. For this purpose, sample preparation methods
have been optimized, reconstruction schemes fine-tuned, new technologies translated
to the lab, and novel segmentation and analysis schemes have been established.

In order to study structural features, their presence is an obvious but crucial prerequi-
site. Correlative imaging with a method which is already established for visualizing
the features of interest can be used to verify their presence in a tissue sample. In Ch. 5,
PC-CT and subsequent SEM were conducted on the exact same sample. This work
shows that structural preservation by immersion fixation at 4∘C is sufficient when the
target image resolution is in the range of about 50-100 nm. Contrarily, the preservation
of ultrastructure by high-pressure freezing appears to be relevant at smaller voxel sizes
[12]. In Ch. 5, structural preservation has not only been achieved by chemical fixation
with formalin and glutaraldehyde, but also by a heavy metal stain based on osmium.
These findings can be compared to our earlier work [4], which reported poor structure
visibility in heavy-metal stained murine brain tissue. The major differences between
the two studies are in the sample preparation protocols: in [4], staining of ≲ 0.5 mm
tissue slices was conducted at room temperature for several minutes only, while in Ch.
5 (and in parts of Ch. 3), ≲ 1 mm-sized tissue volumes were treated at 4∘C for several
hours. This suggests that, while the amount of stain within the tissues was most likely
sufficient to generate image contrast, it was insufficient for adequate tissue fixation
in [4]. Also, higher temperatures might have had a negative impact on structural
preservation, consistent with [5]. These findings contribute to the establishment of
sample preparation protocols for sub-µm PC-CT alone or in correlative use with other
experimental modalities. In this context, it would be interesting to further explore the
structural preservation in human tissues, which faces intrinsic limitations as discussed
in Sec. 1.3.3. The direct comparison between murine and human cortical tissue in
Ch. 3 indicates a better preservation in the murine tissue preparation as expected. The
wide range of sample preparation techniques which are suitable for PC-CT can help to
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better understand the processes of the single steps [10].

Given sufficient feature preservation, it is worthwhile to take a closer look at the FSC-
based spatial resolution reported in Ch. 2 and 4, to point out future directions for
PC-CT development. In order to achieve particularly high resolution in laboratory PC-
CT scans, the setup “TINa” has been designed, based on a nanofocus X-ray source (cf.
Ch. 2 & A.2). In unstained and paraffin-embedded soft tissue, a FSC-based resolution
of about 1 µm has been reached (in a 3d-volume; 0.90 µm in a reconstructed 2d-slice
within the 3d-volume). This sets the state-of-the-art and narrows the gap between
PC-CT setups at accelerator- and laboratory-based X-ray sources. The discrepancy
between the resolution in a 3d-volume and a reconstructed 2d-slice indicates that the
large X-ray cone-beam (CB) angle degraded the quality in FDK-tomographic recon-
struction (cf. Sec. 1.5.2). To further assess how the setup conditions take effect, the
spatial resolution has been measured for a range of X-ray source spot sizes 𝑠 and pixel
sizes 𝑝𝑥. First of all, a halved 𝑠 led to the same FSC-result, and elevated the feature
contrast as expected for phase-contrast image-formation at a smaller Fresnel number
𝐹𝑟. Furthermore, reducing the pixel size by more than 50% reduced the FSC-value
only by 10%, and required 4-times the scan duration and more than 7-times the radia-
tion dose. Considering the extended scan duration, these findings indicate stability
issues, which are also reported for a very similar setup and attributed to a temperature
drift [11]. In part, these stability issues may be ascribed to the X-ray source itself,
which has since been upgraded and is now equipped with a more-stable high-voltage
generator. For further improvements, comparative measurements between laboratory
nanofocus setups as in Ch. 3 can be fruitful: the commercial EasyTom Nano-setup
(RX Solutions) is particularly distinguished by a sophisticated source spot analysis and
correction scheme. For the home-built TINa-setup, an interleaving-and-registration
scheme has been implemented: The registration is made on a highly contrasted fea-
ture, for which the sample is translated. However, on the sub-µm-scale, sample-stage
motor imprecisions are observed, which can not adequately be compensated by simple
projection-registration in strong CB-geometry. It seems to be advisable to follow the RX
Solutions scheme, in which reference projections are recorded prior to a tomographic
scan without additional sample translation.
Also for the “GINIX”-setup in CB-configuration (cf. Ch. 4), the spatial resolution does
not scale with the geometric magnification 𝑀 = 𝑧02

𝑧01
, which results in 𝑝𝑥 = 6.5 µm

𝑀 for
the camera used. For 𝑝𝑥 = 167 nm, a resolution of 2.3 ⋅ 𝑝𝑥 has been achieved, which
corresponds to the expected PSF of the sCMOS camera. However, increasing 𝑀 such
that 𝑝𝑥 = 50 nm led to a resolution of 4.4 ⋅ 𝑝𝑥. There are several possible reasons for
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this observation. For one, the reported FSC-values in Ch. 4 indicate that the invested
dose plays an important role in the overall image quality. Low photon flux, for instance,
induces inconsistencies in PC-CT data sets, which can to some degree be compensated
for by iterative methods [6, 8]. Regarding inconsistencies, also the sample diameter is
a relevant parameter (cf. Sec. 1.3.1 and 1.5). Furthermore, higher stability in terms
of vibrations and temperature drift as reported in [2] can increase tomographic data
consistency, which can be achieved by active cooling of setup components or a sample
cryo-environment [13]. This is especially important for high-flux experiments in view
of the high proportion of absorption (cf. Fig. 1.6a), compare P.E. with R.S.). For
holographic imaging with a similar configuration of the GINIX-setup, a FSC-based
resolution of 11.2 nm has recently been reported [14]. The resolution was achieved
by a joint iterative reconstruction scheme which uses both far- and near-field images,
recorded with a single-photon counting detector at a higher numerical aperture 1. This
proves that these setup components are capable of higher resolution scans, and points
to limitations in further instrumentation, or adequate phase retrieval or tomographic
reconstruction.
For the parallel-beam (PB) setup in Ch. 4, a spatial resolution of 1.6 µm was measured
for a 1mm sample within a 1.5mm field-of-view (FOV), while for the identical sample
in an 8 mm tissue block, the resolution was 4.2 µm. These data have been acquired in
a continuous rotation instead of the step-and-shoot scheme, which apparently does
not fully compensate for the ROI-problem in PB-geometry (cf. discussion in Sec. 1.5.6).
Therefore, the following workflow is suggested in order to maximize the spatial resolu-
tion in cone-beam PC-CT: First, overview scans of mm-sized blocks should be recorded
to identify a feature of interest. This feature should then be extracted in a way that
the final sample width does not exceed the FOV of the zoom tomography. Optionally,
artifacts from strong phase shifts at sample edges are prevented by embedding with
additional material (paraffin, for instance). Possibly, given suitable instrumentation at
beamlines, the location of this feature of interest can first be marked in a software and
then automatically trimmed.

In this thesis, it has been demonstrated that sample throughput can be upscaled with
PC-CT, such that 3d cellular structures of 𝑁 ≳ 20 individuals can be studied “in
their full native dimensionality” [3]. In Ch. 4, the key steps were identified as (i)

1A higher numerical aperture allows to encode smaller structural features in the data. The larger physical
pixel size of single-photon counting detectors leads to a higher photon flux per pixel, with a particularly
small detector-𝑃𝑆𝐹 (approximately 1 ⋅ 𝑝𝑥).
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(semi-)automatic segmentation, (ii) defining any number of structural properties, and
(iii) accessing entire point clouds in a robust way using optimal transport (OT). OT
enables the definition of (iv) a “tangent space”, where each individual is represented
by a single data point. Hence, in the tangent space, multiscale phenomena are studied
as an interconnected entirety, such that the statistical significance does not rely on
the isolated study of single criteria anymore. Thereby, this workflow can substantially
contribute to the testing and developing of hypothesis in biomedical research. In
order to fully establish OT as a statistical analysis tool, it is necessary to develop its
equivalent to the 𝑝-value of a Student’s t-test which quantifies the significance of a
hypothesis. For instance, in an earlier study [9], tissue samples from Parkinson’s dis-
eased patients and a control group were analyzed with XRD and XRF (X-ray diffraction,
X-ray fluorescence). In contrast to the expectations of the authors, no group-related
significance in copper-burden was found; neither based on t-test analysis, nor based
on statistical measures which incorporate random effects. However, the abundance of
trace elements in individuals is not purely random, but is affected by external factors
such as medication. Also, the presence of trace elements should not be analyzed
in isolation, but contextualized with other features. In the future, such studies can
evaluate the phenomena intercorrelatively by OT analysis. Further directions include
the complementation of the feature space, whose 𝑀 vectors are defined by the 𝑀
structural properties, by the correlative use of imaging methods. These additional
imaging methods can be selected as desired: examples thereof are XRD and XRF,
which are both well-suited for tomography applications [7]. XRD could help to un-
cover the structure of (pathological) aggregations. Due to the fluorescent excitation
by X-rays, XRF is suitable to localize, identify and quantify trace elements within a
sample. The overload of metals in human brain tissue is associated with neurotoxicity,
since it may induce oxidative stress, mitochondrial dysfunction, or protein misfolding
[1]. Hence, the quantification of elemental deposits in neuronal tissue is of particular
interest in neurodegenerative diseases. Beyond the complementing strategy, PC-CT
can be combined with a further method to correlate identical structures. This can
deepen the understanding of contrast mechanisms in PC-CT. Examples are given in
Fig. 1.4 for joint usage with Histology, or in Ch. 5 with SEM. Sec. A.1 describes a first
implementation of correlative XRF computed-tomography (XRF-CT) with PC-CT at
the GINIX-endstation, P10-beamline, DESY.

At this stage, PC-CT can capture the wide ranges of scales in neuronal tissues, in
joint usage with advanced analysis workflows and optionally completed by additional
methods (in experiment or sample preparation). Advancements in X-ray technology
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increase the photon flux provided by both laboratory- and accelerator-based sources,
which is beneficial for volume throughput and setup stability. In particular laboratory-
based PC-CT benefits from a higher flux, alongwith low demands on tissue preparation
and setup compactness. These factors make it well-suited for its integration into the
clinics for rapid-section diagnosis during surgery, or as a standard tool for (pre-)clinical
studies. Suitable stains or correlative methodologies can enable feature identification
and their contextualization in 3d. For example, next steps could be the morphological
characterization of possible neuronal subpopulations, and the identification of glial
cell types to study their roles in entire networks. This could be combined with the
correlation of A𝛽-plaques with 𝜏-tangles in 3d to further elucidate AD-pathology. Re-
garding circuit connectivity, the strength of PC-CT is its ready access to multiple spatial
and topological scales. OT-analysis may not only be applied to pathological groups,
but also to neuronal circuits in order to characterize brain hierarchy on topological
scales. Thus, we are getting closer to characterizing the complexity of the brain.
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Appendix A
A.1 Towards X-ray Fluorescence Tomography

The concentration of chemical elements with spatial resolution can be relevant for
questions and hypotheses in the field of neuroscience. Metal overload in human brain
tissue can induce “neurotoxicity” due to oxidative stress, mitochondrial dysfunction,
or protein misfolding [4]. “Metalloproteins” have metal binding sites, and the family of
amyloid precursor proteins (APP) is an example thereof. Owing to the regulating role
of these proteins in cellular metal homeostasis, knowledge of the spatial prevalence
of metals can help to unravel neurodegenerative disease mechanisms [6]. As such,
in Alzheimer’s Disease (AD), higher amounts of A𝛽-deposits have been associated
with reduced levels of copper (Cu) [14]. Furthermore, iron (Fe) deposits may be
linked to neuropathology in Multiple Sclerosis [9]. Hence, the iron content in calcified
vasculature is targeted in this proof-of-concept experiment [20].
Just like the electron-density map from PC-CT, X-ray Fluorescence CT (XRF-CT) yields
concentration maps of trace elements [5, 18]. The underlying phenomenon is the X-ray
induced emission of characteristic radiation by the specimen. With XRF, up to 10-15
elements can be distinguished [7]. Beyond XRF of naturally deposited trace elements
[6], it can also be conducted on nanobody-labelled samples [11]. The advantage of
probing with hard X-rays lies in their relatively high tissue penetration depth. The
current state of implementing correlative imaging by PC-CT and XRF at the GINIX-
endstation is summarized in the following. Note that the analysis scheme has been
developed together with Dr. Anna-Lena Robisch. Directions for next steps can be
found at the end of this chapter, in the “Discussion and Outlook”-paragraph.

Experimental Setup In this proof-of-concept experiment, a 1 mm cylindric speci-
men from a FFPE-prepared tissue block of a normal human hippocampus, enclosed by
a polyimide tube, was sampled. PC-CT and XRF-CT scans were conducted at the same
synchrotron endstation, with an additional PC-CT scan at the laboratory liquid-metal
jet setup (“JuLiA”, at 40 keV, 50 s exposure per projection at 1001 angular positions,
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40 × 10 µm2 spot and 0.47 µm pixel size, i.e. in inverse high-resolution geometry [21]).
Synchrotron data have been collected at the GINIX-endstation (P10 beamline, DESY,
Hamburg), during run79.
Fig. A.1(a-c) shows the schematics of the setup. For PC-CT, the sample was probed in
cone-beam geometry, with high geometric magnification (𝑀 ≈ 40) using a compound
optics of KB-mirrors and X-ray waveguides (WG) [2, 17]. The X-ray energy was set
to 7.5 keV, and projections were acquired at 1201 angular positions and 4 defocus

Fig. A.1: Schematics of the GINIX-setup for correlative imaging by XRF-CT and
PC-CT. (a) Overview of the endstation, where the X-ray beam enters the setup from
the right, and first passes the optics unit which includes the KB-mirrors. For PC-CT
imaging in high geometric magnification, a waveguide (WG) in the KB-focus serves as
coherent mode filter, with the sample at 𝑧01 downstream on an air-bearing rotation
sample stage, and the imaging detector at 𝑧02 ≫ 𝑧01 behind the WG or at 𝑧12 behind
the sample, respectively. TheMCA (“Fluo Detector”) is in close proximity to the sample
stage, at 90∘ with respect to the beam path. (b) Zoom into the PC-CT setup shows the
sample in the defocus position. (c) Zoom into the XRF-CT setup, for which theWG
has been removed and the sample inserted into the KB-focus. (d) Overlay of laboratory
PC-CT (MIP over 5 µm) data with XRF-CT reconstructions for the Fe-K𝛼-peak. XRF-
CT data correlate well with the vasculature in the PC-CT slice. Reconstructed slices
from further XRF-CT scans are presented to the right, and detailed in Sec. A.1. Scale
bars: (d, left) 200 µm, (right, top) 20 µm, (right, bottom) 5 µm.
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distances. During PC-CT, the WG-entry was positioned in the KB-focal spot. For XRF-
CT scans, the WG-stage was removed from the setup and the sample was translated
upstream by |𝑧01|, into the KB-focus (300 × 350 µm2, h×v). Orthogonal to the X-ray
beam path, in the KB-focal plane, a multi-channel analyzer (MCA) was integrated for
fluorescence detection (Ketek GmbH, 65mm2 SDD-chip collimated to 50mm2, energy
resolution with FWHM≤ 139 eV, and 450 µm active thickness). The X-ray energy was
set to 8 keV.
Fig. A.1(d) shows a part of the reconstructed slices1, as a preview. Note that the
XRF-reconstruction of the Fe-K𝛼 peak shows plausible agreement with the PC-CT
data. However, as detailed further below, radiation-induced sample damage lead to
inconsistency in sinograms (cf. Fig. A.2(a)) and hence to flawed reconstructions.

1 numAngles = 18;
2 step = 180/numAngles;
3

4 for (iii=0;iii<=numAngles;iii++){
5 umv stzrot iii*step
6 dscan maccy -1 1 400 0.5
7 }

Code A.1: Acqusition scheme
of XRFtomo01: cover the entire sample
and identify a ROI.

Acquisition Scheme The XRF-CT ac-
quisition is a scanning procedure: An X-
ray probe with a limited spatial extension
excites sample features locally, and the
fluorescent emission signal is recorded
by 0d-detector (MCA). The 1d projec-
tions are recorded by step-wise displace-
ment of the sample. Besides the X-ray
spot size, the resolution in XRF-CT is de-
termined by the step size, and the FOV
by the number of data points (multiplied by the step size). As for conventional CT
scans, such projections are recorded at a number of angles 𝜃, here covering a range of
[0∘,180∘].
A technical note on the choice of motor for 1d projection scanning: The GINIX tomo-
graphy stage is equipped with two pairs of motors for positioning of the rotational axis
(“stx”, “sty”), and two pairs of motors for positioning of the sample (“cx”, “cy”). The
sample positioning accuracy with respect to the probe is higher for cx and cy than it is
for stx and sty. However, as their orientation with respect to the setup depends on 𝜃,
the dummy motor “maccy” is utilized, which moves cx and cy such that the overall
sample repositioning is parallel with sty (perpendicular with the X-ray beam).

1In Fig. A.1(d), PC-CT data have been recorded with the laboratory setup. Correlative images with
WG-based PC-CT can be found in Fig. A.3.
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1 umvr sty -0.0804
2 umvr cx 0.2239
3 umvr cy 0.2146
4

5 numAngles = 60;
6 step = 180/numAngles;
7

8 for (iii=0;iii<=numAngles;iii++){
9 umv stzrot iii*step
10 dscan maccy -0.02 0.02 40 1
11 }

Code A.2: XRFtomo02: ROI-scan at
zoom-level 2 (40 µm FOVwith 0.98 µm
step size).

1 umvr cx 0.004
2 umvr cy -0.005
3

4 numAngles = 30;
5 step = 180/numAngles;
6

7 for (iii=0;iii<=numAngles;iii++){
8 umv stzrot iii*step
9 dscan maccy -0.005 0.005 20 10
10 }

Code A.3: XRFtomo03: ROI-scan at
zoom-level 3 (10 µm FOVwith 0.48 µm
step size).

1 umvr cx -0.004
2 umvr cy 0.005
3

4 numAngles = 150;
5 step = 180/numAngles;
6

7 for (iii=0;iii<=numAngles;iii++){
8 umv stzrot iii*step
9 dscan maccy -0.05 0.05 100 1
10 }

Code A.4: XRFtomo04: ROI-scan at
zoom-level 1 (100 µm FOVwith 0.99 µm
step size).

1 umv stzrot 0
2 dscan maccy -1 1 400 1
3

4 umv stzrot 180
5 dscan maccy -1 1 400 1
6

7 umv stzrot 90
8 dscan maccy -1 1 400 1
9

10 umv stzrot 270
11 dscan maccy -1 1 400 1

Code A.5: Sparse angular-sampling
XRF-CT: scans at orthogonal angular
positions (at 0∘, 90∘, 180∘, 270∘) covering
a FOVof 2mmwhich exceeds the sample
diameter (1 mm), in order to identify the
center of rotation.

Codes A.1-A.5 show the SPEC-macros. Note that their order follows the sequence
of scans performed during run79, which may facilitate data identification. First, a
ROI with a fluorescent feature was localized in XRFtomo01, Code A.1. This feature
was highlighted in XRFtomo02-04, see Code A.2-A.4. Finally, the center of rotation
for tomographic reconstruction was identified with the scan presented in Code A.5.
Further note that these scans serve tomographic reconstruction of 2d planes. In order
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to reconstruct 3d volumes, additional scanning in parallel with the rotation axis is
required.

Data Reconstruction Code A.6 shows a Matlab script for tomographic reconstruc-
tion of XRF data. It starts with loading the toolbox [13] and XRF-CT scan specifications.
The tomographic data are stored in the 3d array “fluoDat”, where the first dimension
contains the angular position, the second the lateral scan data and the third the counts
per energy channel. Here, the actual angular and lateral positions from the encoder
are utilized. Note that it is important to correct the counts by the detector deadtime “dt-
Corr”, which is stored in the SPEC file. Fig. A.2(a) depicts the spectrum of XRFtomo02,
with prominent peaks at the probe energy and the Fe-K𝛼 line at 6.4 keV [10]. The sino-
gram is based on the total counts in the channels of interest, see (b). Here, the entire
spectrum can be utilized, which is dominated by the probe peak, or single regimes can
be selected, such as the Fe-K𝛼 regime (𝑍Fe = 26). The center of rotation has been iden-
tified beforehand, based on the data from Code A.5 as illustrated in Fig. A.2(c & d): the
projection data at 𝜃 = 0∘ (“reference scan”) are compared with the flipped and shifted
data at 𝜃 = 180∘ (“match scan”). Here, the profile clearly features the 1 mm sample
tube and demonstrates that the detected signal originates from the sample. Finally,
basic tomographic reconstruction is done, using the inverse Radon transform. Since
the angular data are strongly undersampled, sinograms can be additionally filtered
beforehand.

Fig. A.3 shows correlative overlays between the XRF-CT data 1-3 and the laboratory
PC-CT. The PC-CT data have been collected before the XRF-CT scans. While the
Fe-K𝛼-map matches considerably well with the vasculature identified with PC-CT,
the correlation is less prompt for the ROI-scans XRFtomo02-03. This can not only be
attributed to the error-prone local tomography, but may also be ascribed to radiation
damage, which is highlighted in the next paragraph.

Manual Feature Correlation The correlative data shown in Fig. A.3 have been
identified manually, supported by the motor positions cx, cy and sty. In particular the
identification of the XRF-CT plane along the rotation axis was facilitate by the fact
that the sample suffered from radiation damage as a result of the numerous exposures
to the KB-beam focus, which can easily reach 5 ⋅ 1011 ph/s. Again, Fig. A.4(a) shows
the slice from laboratory PC-CT, with a red square which marks the position of the
synchrotron PC-CT scan after XRF-CT. These PC-CT data are presented in (b), with a
perpendicular slice in (c). (b) reveals that most of the tissue features heavily degraded
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Fig. A.2: XRF-CT reconstruction. (a) Plot of the spectrum of XRFtomo02, with the
sinogram in (b). (c & d) Plots of the projections at 𝜃 = 0∘ (“reference scan”) and the
flipped at 𝜃 = 180∘ (“match scan”). In (c) the center of rotation is off about 5 pixels, in
(d) it is well-centered.

Fig. A.3: Overlay of laboratory PC-CT (MIP over 5 µm) data with XRF-CT reconstruc-
tions for the Fe-K𝛼-peak. (a) XRFtomo01 correlates well with the vasculature in the
PC-CT slice. From the motor positions, the location of XRFtomo04 was identified
(yellow square), as well as of XRFtomo02-03 (red squares), which are detailed in (b &
d) and (c & e), respectively. Scale bars: (a) 200 µm, (b, d & e) 20 µm, (c) 5 µm.
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due to in-focus scanning. (c) demonstrates that this observation is limited to a region
of 5 µm thickness, and that outside features are well-preserved. It remains unclear at
which point of the sequence of XRF-CT scans the radiation damage set in. Again, a
yellow square in (a) marks the region of XRFtomo04. The insets show the XRF-CT
slice and in combination with the PC-CT data, according to the motor positions. With
the low degree of correlation, the low degree of features in the XRF-CT slice and the
fact that XRFtomo04 has been conducted as the final scan, the radiation damage stands
out at this point.

Fig. A.4: Radiation damage from extensive XRF-CT scanning: (a) A wealth of features
emerges in the laboratory PC-CT scan before the XRF-CT scans. The yellow square
indicates the position of XRFtomo04, shown in the insets. The red square marks the
position of the synchrotron PC-CT scan after the sequence of XRF-CT scans, and the
data are shown in (b), and in perpendicular view in (c). The target area of the probe
comes out prominently as a 5 µm-thick horizontal line of radiation damage in (c), with
heavy sacrifice in features in (b). Scale bars: (a) 200 µm, (otherwise) 50 µm.

Automatic Correlation Further to manual data correlation, a concept for automatic
correlation has been developed, in order to identify XRF-CT positions in PC-CT data
based on a Matlab script, see Code A.7. In this procedure, four parameters are tuned:
relative rotation, horizontal and vertical shifts, as well as the position of the slice. After
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Fig. A.5: Automatic feature correlation of exemplary XRF-CT with PC-CT data: (a)
Output of theMatlab script inCodeA.7, and (b) plot of themasks-correlation parameter
”match”.

loading the toolbox and both datasets, the first part consists of finding rough ranges
of these four parameters by manual tuning. For correlation, appropriate thresholds
for both datasets are identified, such that features are adequately delineated in the
masks. Subsequently, in a sequence of for-loops, the four parameters are varied within
these ranges. For each combination of parameters, the correlation indicator “match” is
calculated as follows: thresholded features from PC-CT are assigned the value “1”, XRF-
CT features “2”, and when a pixel is true for “1” and “2”, it is assigned a “3” (a “true” in
the overall match map “m”). The array “match” is then assigned the number of pixels
with value “true” in “m”. Note that the sample polyimide container is disregarded here,
as “mask” is applied. Fig. A.5(a) shows an exemplary live output. Finally, for the set
of parameters for which “match” is maximum (cf. Fig. A.5(b)), both maps match best.

Discussion and Outlook In this experiment, calcified blood vessels were probed
by correlative XRF-CT and PC-CT. The X-ray energy was set to 8 keV, thus exciting
elements with 𝑍 ≤ 27. For future experiments in neurodegenerative studies, the X-ray
beam energy can be selected according to the metalloprotein of interest [1]. Addi-
tionally, Tab. A.1 can serve as a basis: it lists the trace elements in a normal human
brain with their mole percentage as reported in [16], and further the respective atomic
number 𝑍, the K 1s electron binding energy and the K𝛼 emission line. Note that,
as reviewed in [8], the measured quantity of trace elements strongly depends on the
experimental procedure, and shall give only a first idea at this point. In this perspective,
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Na 35.5 45.7 34.0 11 1.07 1.0
K 33.7 24.9 30.0 19 3.61 3.3
P 22.4 23.9 29.3 15 2.15 2.0
Ca 2.1 1.2 1.7 20 4.04 3.7
Mg 3.99 1.86 2.54 12 1.30 1.3
Al 1.34 1.62 1.64 13 1.56 1.5
Fe 0.45 0.18 0.34 26 7.11 6.4
Si 0.28 0.58 0.35 14 1.84 1.7
Zn 0.07 0.04 0.04 30 9.66 8.6
Cu 0.07 0.02 0.02 29 8.98 8.0

Table A.1: Trace elements in human brain tis-
sue according to [16]. Their mole percentage is
given for selected brain regions. K 1s electron
binding energies and K𝛼 emission lines were
taken from [10].

advanced XRF can potentially contribute to the quantification of trace elements in
human tissues. Regarding the probe, a higher probe energy excites higher-𝑍 elements
with higher K𝛼 emission lines, and induces less energy deposition inside the sample.
In this context, the maximum sample diameter is limited by its X-ray absorption: in
[11], the authors argue the maximum sample thickness from the fact that it shows
50% X-ray transmission. For the irradiation of 1 mm paraffin (C30H62) with X-rays of
8 keV, about 43% transmission can be expected [10]. However, in [11], X-rays with an
energy of 24.1 keV were utilized. For a higher probe energy, the fluorescence signal
stems from higher-𝑍 atoms, which have their major emission lines are at a higher
energy than those of lower-𝑍 atoms. For atoms with 𝑍 ≤ 19, self-absorption becomes
problematic [7]. Experiments in which lower emission energies are expected, can
benefit from a fly tube between the sample and the detector. In [6], 2d XRF imaging
has been conducted on 12 µm-thick, unstained and air-dried brain slices of APP and
APLP2 knock-out mice at 10 keV. The sample diameter for future XRF-experiments
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at the GINIX-endstation should possibly be reconsidered, as well as the embedding
material in view of radiation damage. In this context, the total dose deposition in
the sample should be evaluated in detail. Furthermore, in order to better account
for self-absorption, 360∘-tomography scans are preferred to 180∘ [12]. For the same
reason, the readily availability of an imaging detector should also be exploited in order
to collect “transmission maps” [7].
Concerning the tomographic reconstructions in Fig. A.1(d), a simple inverse Radon
transformation with an additional sinogram filter to account for sparse angular sam-
pling has been applied 2. The CNR in XRF-data is of particular concern [7], and
reduced noise has been reported for iterative tomographic reconstruction [3].

1 %% Add HoloTomoToolbox (10.1107/S1600577520002398)
2

3 %% Prepare - fluo data
4 filePrefix = 'HH_P6916-4_p1_fluo03'; % scan prefix
5 prePath = ['S:/Messzeiten/2018/GINIX/run79/data/raw/20181027/']; % data

path
6 detector = 'mca'; % detector name
7 getDumpName = @(number) fullfile([prePath,'/',detector,'/',filePrefix],'

dump',sprintf([filePrefix,'_%04i.dat.txt'],number));
8

9 offset = 0; % data number offset for this scan in the directory
10 numAngles = 61; % number of projection angles
11 numPositions = 41; % number of lateral scan positions
12 numChannels = 4096; % number of energy bins
13 fluoDat = zeros(numAngles, numPositions, numChannels);
14 thetas = zeros(numAngles, 1);
15 position = zeros(numPositions, 1);
16

17 %% Read in - mca data
18 specScan = 31; % offset for scan number in spec files
19 specColumn = 26; % column of dead time correction factor in spec files
20

21 for ang=1:numAngles
22 disp(ang);
23 specScan = specScan+1;
24 % read deadtime correction factor
25 dtCorr = unspec([prePath, 'spec/'], filePrefix, specScan, specColumn);
26

27 for dat=1:numPositions

2Consulting the angular sampling criteria from Sec. 1.5.3, it becomes clear that this criteria is satisfied for
scans Code A.2-A.4, but not for A.1. The filter consists of a Ram-Lak filter to which a cutoff has been
applied in real space.
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28 datNum = (ang-1)*numPositions+dat+offset;
29 filePath = [prePath,detector,'/',filePrefix,'/',filePrefix,'_',

sprintf('%04d',datNum),'.dat'];
30 FID=fopen(filePath);
31 dataCell = textscan(FID, '%f%f%f','CommentStyle','#');
32 fclose(FID);
33

34 % read projection angle, lateral dummy motor
35 thetas(ang) = wwas(getDumpName(datNum),'stzrot');
36 position(dat) = wwas(getDumpName(datNum),'maccy');
37

38 counts = dataCell{3}/dtCorr(dat);
39 fluoDat(ang,dat,:) = squeeze(counts);
40 end
41 end
42

43 %% Assign energy bins
44 spectrum = squeeze(sum(sum(fluoDat,1),2));
45 ChPrimary = find(spectrum==max(spectrum)); % energy channel of probe
46 ChFe = find(spectrum==max(spectrum(1000:ChPrimary-150))); % energy channel

of Fe, Kalpha (doublecheck!)
47

48 %% Reconstruct XRF-CT slice - all channels
49 shift = 0; % use shift from sparse angular-sampling fluotomo
50 padval = 20; % sinogram padding
51 sino = sum(fluoDat(ang,:,:),3).';
52

53 % fft filter optimized for undersampled angles < pi/2*nx
54 sino = filter_fewangles(padarray(sino,[padval,0],'replicate'),10);
55

56 figure(1)
57 showImage(sino)
58 colormap hot
59

60 sino = sub_circshift(sino,[shift 0]);
61 slice = iradon(sino,thetas,'linear','Ram-Lak',1,numPositions);
62

63 figure(2)
64 showImage(imresize(slice,3))
65 colormap hot
66

67 %% Reconstruct XRF-CT slice - Fe-channel
68 sinoFe = sum(fluoDat(angle,:,ChFe-34:ChFe+34),3).';
69 sinoFe = filter_fewangles(padarray(sinoFe,[padval,0],'replicate'),10);
70
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71 figure(3)
72 showImage(sinoFe)
73 colormap hot
74

75 sinoFe = sub_circshift(sinoFe,[shift 0]);
76 sliceFe = iradon(sinoFe,thetas,'linear','Ram-Lak',1,numPositions);
77

78 figure(4)
79 showImage(imresize(sliceFe,3))
80 colormap hot
81

82 %% Emphasize Fe localizations
83 figure(5)
84 showImage(slice+50*sliceFe)
85 colormap hot

Code A.6:Matlab code to reconstruct XRF-CT slices.

1 %% Add HoloTomoToolbox (10.1107/S1600577520002398)
2

3 %% Read in
4 fluoOverview = ... ; % XRF-CT data
5 slices = ...; % PC-CT data
6

7 %% Bring XRF and PC data to same pixel size & scale
8 pixelSizeFluo = ...;
9 pixelSizePC = ...;
10 fluoOverview = imresize(fluoOverview, pixelSizeFluo/pixelSizePC)/ max(

fluoOverview(:));
11

12 %% Find correct orientation of PC-CT data - first (rough) manual alignment
13 shiftV = ...; % adjust vertical shift
14 shiftH = ...; % adjust horizontal shift
15 rot = ...; % adjust rotation
16 thrFluo = ...; % find appropriate mask threshold for fluotomo data
17 fluoBin = cut2Darray(imrotate(circshift(fluoOverview ,[shiftV shiftH]),rot)

, size(stmp,2), size(stmp,1));
18 fluoBin = fluoBin.*(fluoBin>thrFluo);
19

20 sliceNo = ...; % select slice number
21 thrPC = ...; % find appropriate mask threshold for PC-CT data
22 stmp = slices(:,:,sliceNo);
23 stmp = stmp / max(stmp(:));
24 stmpBin = stmp>thrPC;
25

26 % Overlay both slices
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27 figure(1)
28 image_s(stmpBin+2*fluoBin)
29 axis equal tight
30 colormap jet
31

32 %% Find suitable range of slices that fit to XRF-Data
33 halfRange = 10; % adjust this parameter if appropriate
34 slices2corr = slices(:, :, sliceNo - halfRange : sliceNo + halfRange) ;
35 slices2corr = slices2corr ./ max(max(slices2corr));
36

37 %% Create circular mask to disregard Kapton tube during automatic matching
38 radius = ...; % adjust radius of mask
39 centerV = ...; % adjust center position of mask
40 centerH = ...;
41 [xx,yy] = ndgrid((1:size(slices,1))-centerV,(1:size(slices,2))-centerH);
42 mask = (xx.^2 + yy.^2)>radius^2;
43 image_s(mask.*stmp)
44

45 %% Automatic feature matching
46 clear match
47

48 % Set ranges according to first manual matching
49 rotStart = ...; rotEnd = ...; % interval for rot. alignment
50 rotStep = 1; % adjust this parameter if appropriate
51 shiftVertStart = ...; shiftVertEnd = ...; % interval for vert. shift

alignment
52 shiftVertStep = 2; % adjust this parameter if appropriate
53 shiftHorStart = ...; shiftHorEnd = ...; % interval for hori. shift

alignment
54 shiftHorStep = 2; % adjust this parameter if appropriate
55

56 for rot = rotStart:rotStep:rotEnd
57 disp(rot)
58 tic
59 for shiftV =shiftVertStart:shiftVertStep:shiftVertEnd
60 for shiftH = shiftHorStart:shiftHorStep:shiftHorEnd
61 fluoShift = (cut2Darray(imrotate(circshift(fluoOverview ,[

shiftV shiftH]), rot), size(stmp,2), size(stmp,1)) ) ;
62 for idx = 2 : size(slices2corr,3)-1
63 stmp = mean(slices2corr(:,:,idx-1:idx+1),3);
64 mfluo = fluoShift > thrFluo ;
65 mstmp = stmp > thrPC ;
66

67 % live viewer
68 figure(1)
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69 showImage((mstmp + 2*mfluo))
70 m = mstmp + 2*mfluo == 3;
71 match((rot-(rotStart-rotStep))/rotStep,(shiftV-(

shiftVertStart-shiftVertStep))/shiftVertStep ,(shiftH-(shiftHorStart-
shiftHorStep))/shiftHorStep,idx-1) = sum(m(:))-sum(sum(m.*mask));

72

73 t = sprintf('%s%i', '1 = tomo, 2 = fluo, 3 = tomo+fluo,
match = ', match((rot-(rotStart-rotStep))/rotStep,(shiftV-(
shiftVertStart-shiftVertStep))/shiftVertStep ,(shiftH-(shiftHorStart-
shiftHorStep))/shiftHorStep,idx-1));

74 title(t)
75 colorbar; colormap jet; drawnow()
76 end
77 end
78 end
79 toc
80 end
81

82 %% Plot correlation parameter
83 figure(2)
84 plot(match(:)/max(match(:)))
85 xlim([0,length(match(:))-1])
86 ylim([0 1.02])
87

88 %% Get index of maximum agreement, and index of second maximum
89 [rotIndMax shiftVIndMax shiftHIndMax sliceIndMax]=ind2sub([size(match,1)

size(match,2) size(match,3) size(match,4)],find(match(:)==max(max(
match(:)))));

90 scndmax = match;
91 scndmax(find(match(:)==max(match(:))))=0;
92 [rotIndMax2 shiftVIndMax2 shiftHIndMax2 sliceIndMax2]=ind2sub([size(match,

1) size(match,2) size(match,3) size(match,4)],find(scndmax==max(
scndmax(:))));

93

94 %% Compute rotation, vertical and horizontal shift and slice number from
the respective index

95 rotMax = rotIndMax*rotStep+shiftVertStart-shiftVertStep;
96 rotMax2 = shiftVIndMax*shiftVertStep+shiftVertStart-shiftVertStep;
97 shiftVMax = shiftVIndMax*shiftVertStep+shiftVertStart-shiftVertStep;
98 shiftVMax2 = shiftVIndMax2*shiftVertStep+shiftVertStart-shiftVertStep;
99 shiftHMax = shiftHIndMax*shiftHorStep+shiftHorStart-shiftHorStep;
100 shiftHMax2 = shiftHIndMax2*shiftHorStep+shiftHorStart-shiftHorStep;
101 sliceMax = sliceIndMax+1; % refers to array: slices2corr
102 sliceMax2 = sliceIndMax2+1; % refers to array: slices2corr
103
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104 %% Save workspace
105 save('workspace_correlation')

Code A.7:Matlab code to automatically correlate XRF-CT with PC-CT data.

A.2 Further Details on Working with the Nanofocus
PC-CT Setup TINa

In the course of this thesis, the TINa-setup (“Transmission Anode Imaging at the
Nanoscale”) was designed for PC-CT experiments at sub-µm voxel size. Its charac-
teristic hardware consists of Excillum’s NanoTube X-ray source and a single-photon
counting detector Timepix (X-ray Imaging Europe Hexa H05-W0154, 500 µm Si-sensor,
516 × 774 pixels of 55 µm). Alternatively, the scintillator-based detector Thyia is also
integrated (Photonic Science FDS Serial Number 316310, 5 µm LuAg:Ce scintillator,
2208 × 2744 pixels of 4.54 µm). Further details on the setup and first results can be
found in Ch. 2. Note that the data from Ch. 2 stem from the NanoTube N1 source,
which has been upgraded in November 2020 to NanoTube N2 for reasons of increased
flux and spot stability. Post-upgrade results can be found in Ch. 3.
Owing to the fact that TINa is designed for high-resolution PC-CT at a particularly
short source-sample distance 𝑧01, the setup shows some peculiarities. In the following,
a collection of useful hints for working with this setup, and introductions into the
PC-CT data acquisition as well as reconstruction are given.

Hints for the Alignment Procedure

• Conventionally, a TEM-grid is used for rotation axis alignment at the different
PC-CT setups at the Institute for X-ray Physics. If 𝑧01 ≲ 1.5 mm, the TEM-grid
can not be used for alignment procedures during which the sample is rotated,
since its diameter is 3 mm. In these cases, the TEM-grid should be used for the
nick angle alignment (“mat_align_nick(...)”), and then exchanged for a tungsten
needle to continue with the estimation of the effective pixel size and the lateral
rotation axis alignment (“mat_pixelsize(...)”, “mat_align_rotaxis(...)”).

• For the TINa-setup, TEM-grids on Huber pins have been customized: a slit in the
pin allows to mount the grid central to the pin for increased alignment precision.

• The TEM-grid is very thin and may be twisted, such that it is advantageous to
use its lower part, close to the pin.
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• In order to not get lost in the periodicity of the TEM-grid, its outer frame should
be in the FOV.

• Bear in mind that the Timepix detector has a dummy motor “thl”, which sets the
energy threshold (in keV) in the software “Pixelman”. It was found that thl= 5
is appropriate to mitigate hot pixels and not miss essential image information.

Acqusition Scheme Code A.8 shows an exemplary PC-CT SPEC-macro at the TINa-
setup. Depending on the exact configuration (width of samplewhich limits theminimal
𝑧01, in combination with the desired pixel size determining the corresponding source-
detector distance 𝑧02), the photon flux in the detector plane 𝑧02 can be low such that
long exposures, on the order of tens of seconds, are necessary. In order to also reduce
the characteristic ring artifacts, which occur in reconstructions with Timepix-data, it
proved advantageous to record several identical tomography scans (sets, “nsets”) and
afterwards register and combine the projections to a single dataset with effective long
exposures per projection. Further, for reasons of overall stability, empty images are
recorded with the “cy” motor at “szrot= 0”. Still, imprecisions in the cy-position have
been found to accumulate. In order to correct for these imprecisions, and potential
source spot drift, reference recordings (“doreference”, “numref”) have been introduced.
When these shall be used, it is important to choose “cx_ref” and “cy_ref” such that
a strong feature (sample edge, for instance) is in the center of the FOV at 0∘ and 90∘,
respectively 3. Another utility of the reference scans is the facilitated identification of
the center of rotation during tomographic reconstruction.
Finally, dark images can be collected, but are not required for single-photon counting
detectors.

1 # Tomoscan macro
2 # Filename: *newfile*
3 # Started on day month dd hh:mm:ss yyyy
4 # Total counting time: xx h
5

6 # Start position
7 x_start = ...;
8 y_start = ...;
9 z_start = ...;
10 cx_start = ...;
11 cy_start = ...;
12 rot_start = ...;

3Reference images are only recorded at 0∘ and 180∘. The centering at 90∘ is still required to maintain the
geometric magnification for all reference images.
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13 cx_ref = ...; # choose ref. pos. s.t. strong feature (edge) is centered
14

15 # Scan parameters
16 numflats = 50; # number of flats
17 numdarks = 10; # number of darks
18 numaccumulations = 1; # number of consecutive, identical projections
19 ctime = 1.4; # acquisition time
20 range = 192; # angular projection range
21 nprojs = 1200; # number of projections
22 interpolate = 0; # move projections to interpolate module gaps with data?
23 nsets = 6; # number of consecutive tomo scans
24 doreference = 1; # take reference projections?
25 numref = 10; # number of reference projections
26

27 # Move to start position
28 umv sx x_start
29 umv sy y_start
30 umv sz z_start
31 umv cx cx_start
32 umv cy cy_start
33 umv szrot 0
34 umv thl 5 # energy threshold timepix (keV)
35

36 # Tomo scan
37 for (i_set=1;i_set<=nsets;i_set++){
38 # Take empty images
39 mat_newflat numflats ctime
40

41 # Take reference projections
42 if (doreference == 1){
43 umv cx cx_ref
44 umv cy cy_ref
45 loopscan numref/2 ctime
46 umv cx cx_start
47 umv cy cy_start
48 ascan szrot rot_start range numref ctime
49 }
50 umv szrot 0
51

52 # Tomo scan
53 step = range/nprojs
54 if (interpolate == 0){
55 ascan szrot rot_start range nprojs ctime
56 }
57 else{
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58 umvr sz psize()*5/1000
59 for (z_rot=rot_start;z_rot<=range;z_rot+=(2*step)){
60 umvr sz -psize()*10/1000
61 umv szrot z_rot
62 sleep(1)
63 ct ctime
64 umvr sz psize()*10/1000
65 umv szrot z_rot+step
66 sleep(1)
67 ct ctime
68 }
69 umv sz z_start
70 }
71

72 # Take reference projections
73 if (doreference == 1){
74 umv szrot 180
75 umv cx cx_ref
76 umv cy cy_ref
77 loopscan numref/2 ctime
78 umv cx cx_start
79 umv cy cy_start
80 umv szrot 0
81 }
82 }
83 umv szrot 0
84

85 # Take reference projections
86 if (doreference == 1){
87 umv cx cx_ref
88 umv cy cy_ref
89 loopscan numref/2 ctime
90 umv cx cx_start
91 umv cy cy_start;}
92

93 # Take empty images
94 mat_newflat numflats ctime
95

96 jxs_off
97

98 # Take dark images
99 sleep(300)
100 loopscan numdarks ctime

Code A.8: SPEC macro for PC-CT measurements with TINa.



A.2 Further Details on Working with the Nanofocus PC-CT Setup TINa 229

Recommendations for the Choice of Experimental Parameters In particular for
the studies in Ch. 2 and 3, experimental parameters for different settings have been
optimized. Tab. A.2 details these settings for the TINa-setup, and, since it may be
useful as well, Tab. A.3 for the other in-house nanofocus PC-CT setup “EasyTom”
(EasyTom Nano with CCD-camera, RX Solutions, [19]).

Overview Detailed I Detailed IIa Detailed IIb

Acc. Voltage (kV) 60 60 60 60
Spot Size (µm) 1.00 0.50 0.30 0.30

𝑁proj 1201 1201 1201 1201
𝑁sets 1 4 6 14

𝑧01 (mm) 3.5 1.5 1.1 1.4
𝑧02 (mm) 200 200 200 218
𝑝𝑥 (µm) 1.00 0.41 0.30 0.35

𝑐𝑡 (s) 1.3 1.8 7.5 9
𝑡tot (h) 3 3 12 46

Table A.2: Recommended settings for three different zoom-levels at the TINa Nano
setup. Note that 𝑧01 can be adjusted depending on the sample size, and that 𝑧02 and 𝑐𝑡
may be adapted accordingly. Further, Overview, Detailed I and Detailed IIa have been
optimized for NanoTube N1 (𝑐𝑡 has been updated for the usage of N2), and Detailed
IIb for NanoTube N2.

Reconstruction Script Due to the special data recording scheme introduced above,
reconstruction of TINa-data follows an adapted procedure, see Code A.9. The Matlab-
script consist in large part of the correct data assignment, processing (includingmodule
gap interpolation and flat image correction), and shift correction based on reference
images (including matching the projection angles “thetas”/“thetasIdx”, interpolation,
and visual inspection and saving of the output).
Note that often, the sample exceeds the projection FOV, which makes the identification
of the center of rotation challenging. In such cases, the reference images can give a
first approach towards the correct value, which should be further finetuned in test
reconstructions.

1 %% Scan parameters
2 year = '2021';
3 runname = '2021_04_27';
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Overview Detailed

Acc. Voltage (kV) 60 60
Spot Mode “middle” “small”

𝑁proj 3008 1568
Proj. Scheme 6 turns + ref. 6 turns + ref.

𝑧01 (mm) 5 5
𝑧02 (mm) 98 278
𝑝𝑥 (µm) 0.99 0.35

𝑐𝑡 (s) 12 × 1.7 5 × 10
𝑡tot (h) 9 46

Table A.3: Recommended settings for two different zoom-levels at the EasyTom Nano
setup. Note that the acceleration voltage has been optimized for heavy metal stained
samples (rOTO, OsO4). For small focal spot mode, the X-ray beam should be focused
manually.

4 runnameDark = runname;
5 detector = 'TIMEPIX';
6 detector = lower(detector);
7

8 filePrefix = ...;
9 filePrefixDark = filePrefix; # change if darks have different location
10

11 rotMotor = 'szrot';
12 angRange = 192;
13 numProjs = 1200;
14 interpolate = 0;
15 nsets = 6;
16 doRef = 1;
17 numRef = 10;
18

19 numAverage = 1;
20 numFlats = 50;
21 numDarks = 10;
22 numAngles = numProjs+1;
23 numRef = numRef+1;
24

25 z02 = 202.7;
26 z01Corr = 0; % in mm; correction offset for source-sample distance wrt to

sx motor position
27
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28 %% Load toolboxes and set paths
29 % Add HoloTomoToolbox (10.1107/S1600577520002398)
30 % Add ASTRA-toolbox (10.1016/j.ultramic.2015.05.002, 10.1364/OE.24.025129)
31 prePath = 'B:/'; % mount of TINa network drive
32

33 dataPath = fullfile(prePath, year, 'tina' , runname, 'detectors', detector
, filePrefix);

34 darkPath = fullfile(prePath, year, 'tina' , runnameDark, 'detectors',
detector, filePrefixDark);

35

36 %% Set up image reader for the specified detector
37 imageReader = getImageReaderIRP(detector);
38

39 switch(lower(detector))
40 case 'thyia'
41 fileEnding = '_%i.tif'; dumpEnding = '_%05i.tif.txt';
42 dx = 4.5e-6;
43 case 'timepix'
44 fileEnding = '_%05i.raw'; dumpEnding = '_%05i.raw.txt';
45 dx = 55e-6;
46 end
47

48 fileName = [filePrefix,fileEnding];
49 dumpName = [filePrefix,dumpEnding];
50 getFileName = @(number) fullfile(dataPath, sprintf(fileName,number));
51 getDumpName = @(number) fullfile(dataPath,'dump',sprintf(dumpName,number))

;
52

53 fileNameDark = [filePrefixDark,fileEnding];
54 getFileNameDark = @(number) fullfile(darkPath, sprintf(fileNameDark,number

));
55

56 %% Read first projection to check if path is correct
57 raw = imageReader(getFileName(numFlats+1));
58 showImage(raw);
59 colormap gray
60

61 %% Set image numbers
62 clear emptynumbers;
63 emptynumbers{1} = 1:numFlats;
64

65 if doRef == 1
66 refnumbers{1} = numFlats+1:numFlats+doRef*round((numRef-1)/2);
67 refnumbers{2} = numFlats+doRef*round((numRef-1)*1.5)+numAngles+2:

numFlats+doRef*round((numRef-1)*2)+numAngles+1;



232 Appendix

68 refnumbers{3} = numFlats+doRef*round(0.5*(numRef-1))+1:numFlats+doRef*
round(1.5*(numRef-1))+1;

69 end
70

71 % first image of tomo scan
72 numFirstangle = numFlats+doRef*round(numRef*1.5-1)+1;
73 numLastangle = numFlats+doRef*round(numRef*1.5-1)+numAngles*numAverage;
74

75 % first image at each projection angle
76 rawnumbers = numFirstangle:numAverage:numLastangle;
77

78 % empty images after tomo scan
79 emptynumbers{2} = numLastangle+1:numLastangle+numFlats;
80

81 % darkfields
82 darknumbers = numFlats + (nsets+1)*(numFlats+numAngles+doRef*numRef)-

numAngles + doRef*round((numRef-1)/2) : numFlats + (nsets+1)*(
numFlats+numAngles+doRef*numRef)-numAngles + doRef*round((numRef-1)/2
) + numDarks -1;

83 % darknumbers = ...; % otherwise insert here manually
84

85 %% Read darkfields
86 darks = zeros([size(raw), numDarks],'single');
87 for indDark=1:numel(darknumbers)
88 tmp = imageReader(getFileName(darknumbers(indDark)));
89 darks(:,:,indDark) = tmp;
90 fprintf('.');
91 end
92 fprintf('\n');
93 dark = median(darks,3);
94 % dark = 0; % use this if no darks are available
95

96 %% for-loop to read data from different tomo-scans
97 binningFactor=1; % factor for binning of detector pixels, factor 1 does

nothing
98 projs = zeros([size(raw,1)/binningFactor,size(raw,2)/binningFactor,

numAngles,nsets],'single');
99 thetas = zeros([numAngles,nsets],'single');
100

101 if doRef == 1
102 shifts = zeros([2,nsets+1],'single');
103 projsRef = zeros([size(raw,1)/binningFactor,size(raw,2)/binningFactor,

numRef,nsets],'single');
104 projsRefStat = zeros([size(raw,1)/binningFactor,size(raw,2)/

binningFactor,2,nsets+1],'single');
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105 thetasRef = zeros([numRef,nsets],'single');
106 end
107

108 for iScan=1:nsets
109 % read empty images
110 emptys = cell(numel(emptynumbers),1);
111

112 for j=1:numel(emptynumbers)
113 x = 0;
114 emptys{j} = zeros(size(raw));
115 for indEmpty=1:numel(emptynumbers{j})
116 % read image
117 if (iScan==nsets)
118 if (j==1)
119 tmp = imageReader(getFileName(413+emptynumbers{j}(

indEmpty)+10+(numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)+round
((numRef-1)/2)));

120 else
121 tmp = imageReader(getFileName(413+emptynumbers{j}(

indEmpty)+20+(numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)+round
((numRef-1)/2)));

122 end
123 else
124 tmp = imageReader(getFileName(emptynumbers{j}(indEmpty)+(

numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)));
125 end
126

127 emptys{j} = emptys{j} + tmp;
128 x=x+1;
129 fprintf('.');
130 end
131 fprintf('\n');
132 emptys{j} = emptys{j}/x;
133 end
134

135 % read reference images
136 if doRef == 1
137 settingsOutliers.threshold = 1.5;
138 for ii = 1:2
139 tmp = zeros(size(raw),'single');
140 for indRef = 1:round((numRef-1)/2)
141 number = refnumbers{ii}(indRef);
142 if (iScan==nsets)
143 raw = imageReader(getFileName(413+15+number+(numAngles

+numFlats+doRef*(2*numRef-1))*(iScan-1)));
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144 else
145 raw = imageReader(getFileName(number+(numAngles+

numFlats+doRef*(2*numRef-1))*(iScan-1)));
146 end
147

148 if binningFactor~=1
149 raw = imresize((raw-dark)./(emptys{1}-dark),1/

binningFactor);
150 else
151 raw = (raw-dark)./(emptys{1}-dark);
152 end
153 tmp = tmp+raw;
154 end
155 tmp = tmp/round((numRef-1)/2);
156

157 for l=1:size(tmp,1) % treat detector gaps
158 tmp(l,253:263) = interp1([1,2,10,11],[tmp(l,253),tmp(l,254

),tmp(l,262),tmp(l,263)],[1:11]);
159 tmp(l,512:522) = interp1([1,2,10,11],[tmp(l,512),tmp(l,513

),tmp(l,521),tmp(l,522)],[1:11]);
160 end
161 for l=1:size(tmp,2)
162 tmp(253:264,l) = transpose(interp1([1,2,11,12],[tmp(253,l)

,tmp(254,l),tmp(263,l),tmp(264,l)],[1:12]));
163 end
164

165 projsRefStat(:,:,ii,iScan) = removeOutliers(tmp,
settingsOutliers);

166

167 if iScan==nsets % last scan has an additional set of reference
images

168 tmp = zeros(size(raw),'single');
169 for indRef = 1:round((numRef-1)/2)
170 number = refnumbers{ii}(indRef);
171 raw = imageReader(getFileName(darknumbers(1)-round((

numRef-1)/2)-1+indRef-numFlats));
172 if binningFactor~=1
173 raw = imresize((raw-dark)./(emptys{1}-dark),1/

binningFactor);
174 else
175 raw = (raw-dark)./(emptys{1}-dark);
176 end
177 tmp = tmp+raw;
178 end
179 tmp = tmp/round((numRef-1)/2);
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180

181 for l=1:size(tmp,1) % treat detector gaps
182 tmp(l,253:263) = interp1([1,2,10,11],[tmp(l,253),tmp

(l,254),tmp(l,262),tmp(l,263)],[1:11]);
183 tmp(l,512:522) = interp1([1,2,10,11],[tmp(l,512),tmp

(l,513),tmp(l,521),tmp(l,522)],[1:11]);
184 end
185 for l=1:size(tmp,2)
186 tmp(253:264,l) = transpose(interp1([1,2,11,12],[tmp(

253,l),tmp(254,l),tmp(263,l),tmp(264,l)],[1:12]));
187 end
188

189 projsRefStat(:,:,ii,iScan+1) = removeOutliers(tmp,
settingsOutliers);

190 end
191 end
192

193 for indRef = 1:numRef
194 number = refnumbers{3}(indRef);
195 if (iScan==nsets)
196 raw = imageReader(getFileName(413+15+number+(numAngles+

numFlats+doRef*(2*numRef-1))*(iScan-1)));
197 else
198 raw = imageReader(getFileName(number+(numAngles+numFlats+

doRef*(2*numRef-1))*(iScan-1)));
199 end
200

201 if binningFactor~=1
202 raw = imresize((raw-dark)./(emptys{1}-dark),1/

binningFactor);
203 else
204 raw = (raw-dark)./(emptys{1}-dark);
205 end
206 thetasRef(indRef,iScan) = wwas(getDumpName(number+(numAngles+

numFlats+doRef*(2*numRef-1))*(iScan-1)),rotMotor);
207

208 for l=1:size(raw,1) % treat detector gaps
209 raw(l,253:263) = interp1([1,2,10,11],[raw(l,253),raw(l,254

),raw(l,262),raw(l,263)],[1:11]);
210 raw(l,512:522) = interp1([1,2,10,11],[raw(l,512),raw(l,513

),raw(l,521),raw(l,522)],[1:11]);
211 end
212 for l=1:size(raw,2)
213 raw(253:264,l) = transpose(interp1([1,2,11,12],[raw(253,l)

,raw(254,l),raw(263,l),raw(264,l)],[1:12]));
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214 end
215

216 projsRef(:,:,indRef,iScan) = removeOutliers(raw,
settingsOutliers);

217 end
218 end
219

220 % read projection data
221 for indProj = 1:numAngles
222 % initialize
223 raw = zeros(size(raw));
224 x = 0;
225

226 % read images and average
227 number = rawnumbers(indProj);
228 for indRaw = 1:numAverage
229 % read it
230 if (iScan==nsets)
231 tmpFrame = imageReader(getFileName(413+15+number+(indRaw-1

)+(numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)));
232 else
233 tmpFrame = imageReader(getFileName(number+(indRaw-1)+(

numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)));
234 end
235

236 raw = raw + tmpFrame;
237 x=x+1;
238 end
239 raw = raw / x;
240

241 fprintf('In Tomo % 4i Winkel % 4i von % 4i gelesen\n',iScan,indProj,
numAngles);

242

243 % linear empty correction
244 anteil = (indProj-1)/(numAngles-1);
245 empty = (1-anteil)*emptys{1} + anteil*emptys{2};
246

247 % write projections to array
248 if binningFactor~=1
249 raw = imresize((raw-dark)./(empty-dark),1/binningFactor);
250 else
251 raw = (raw-dark)./(empty-dark);
252 end
253

254 for l=1:size(raw,1) % treat detector gaps
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255 raw(l,253:263) = interp1([1,2,10,11],[raw(l,253),raw(l,254),
raw(l,262),raw(l,263)],[1:11]);

256 raw(l,512:522) = interp1([1,2,10,11],[raw(l,512),raw(l,513),
raw(l,521),raw(l,522)],[1:11]);

257 end
258 for l=1:size(raw,2)
259 raw(253:264,l) = transpose(interp1([1,2,11,12],[raw(253,l),raw

(254,l),raw(263,l),raw(264,l)],[1:12]));
260 end
261

262 projs(:,:,indProj,iScan) = raw;
263

264 if (iScan==nsets)
265 thetas(indProj,iScan) = wwas(getDumpName(413+15+number+(indRaw

-1)+(numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)),rotMotor);
266 else
267 thetas(indProj,iScan) = wwas(getDumpName(number+(indRaw-1)+(

numAngles+numFlats+doRef*(2*numRef-1))*(iScan-1)),rotMotor);
268 end
269

270 end
271

272 projsFilt(:,:,:,iScan) = projs(:,:,:,iScan);
273 settingsOutliers.threshold = 1.5; % remove hotpixel
274 parfor indProj=1:numAngles
275 projsFilt(:,:,indProj,iScan) = removeOutliers(projs(:,:,indProj,

iScan),settingsOutliers);
276 end
277 end
278

279 %% Match projection angles for the different scans
280 for iScan=1:nsets
281 if doRef == 1
282 for indRef = 1:numRef
283 thetasIdx(indRef,iScan) = find(round(thetas(:,iScan),2)==round

(thetasRef(indRef,2),2),1);
284 end
285 end
286 end
287

288 for iScan=1:nsets
289 % do shift correction with reference projections - assume linear drift
290 if doRef == 1
291 projsShift = projsFilt;
292 settings = struct;
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293 settings.upsampling = 5;
294 settings.cutLeft = 275;
295 settings.cutRight = 275;
296 settings.cutTop = 270;
297 settings.cutBottom = 20;
298 settings.sigmaLowpass = 0;
299

300 [~,shifts(:,iScan+1),~,~] = alignImages(projsRefStat(:,:,1,iScan+1
),projsRefStat(:,:,1,iScan),settings);

301

302 shiftsInterpV = interp1q([1 numAngles].',[shifts(1,iScan) shifts(1
,iScan+1)].',[1:numAngles].');

303 shiftsInterpH = interp1q([1 numAngles].',[shifts(2,iScan) shifts(2
,iScan+1)].',[1:numAngles].');

304

305 projsRC(:,:,:,iScan) = projsShift(:,:,:,iScan);
306 parfor indProj=1:numAngles
307 projsRC(:,:,indProj,iScan) = shiftRotateImage(projsShift(:,:,

indProj,iScan), [shiftsInterpV(indProj),shiftsInterpH(indProj)], 0);
308 disp(indProj);
309 end
310 end
311 end
312

313 %% First check aligned projections
314 if doRef == 1
315 iSet = 1;
316 for indRef = 1:numRef
317 subplot(2,1,1)
318 showImage(projsRef(:,:,indRef,iSet))
319 caxis([0.2373 0.3104])
320 subplot(2,1,2)
321 showImage(projsShift(:,:,thetasIdx(indRef,iSet),iSet))
322 caxis([0.2373 0.3104])
323 title('before reference shift')
324 pause(1)
325 showImage(projsRC(:,:,thetasIdx(indRef,iSet),iSet))
326 caxis([0.2373 0.3104])
327 title('after reference shift')
328 pause(1)
329 end
330 end
331

332 %% Then replace and average
333 if doRef == 1
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334 projsShift = projsRC;
335 end
336 projsAve = median(projsShift,4);
337 thetas = double(squeeze(median(thetas,2)));
338

339 %% Save projections
340

341 %% Align rotation axis manually - roughly
342 % determine parameters manually
343 shiftAxis = 0;
344 shifty = 0;
345 detectorTilt = 0;
346

347 settings.shiftx = shiftAxis;
348 settings.shifty = shifty;
349 settings.tiltAngle = detectorTilt;
350 proj0Degrees = projsRefStat(:,:,1,1);
351 proj180Degrees = projsRefStat(:,:,2,1);
352

353 % check result
354 showImage(checkRotaxis(proj0Degrees,proj180Degrees,settings));
355

356 %% Recommended: align rotation axis via tomographic reconstruction
357 slicenumber1 = -200;
358 slicenumber2 = 200;
359 x = 0;
360

361 for xxx = -8:8
362 %% position of rotation axis and detector tilt
363 %find out the shift of the rotation axis by comparing different shifts

for
364 %a slice ABOVE the vertical center
365 shiftAxis = shiftx+xxx;
366

367 projsAstra = circshiftSubPixel(projsAve,[0 shiftAxis 0]);
368

369 % offset indicates the position relative to the central line
370 settingsAstra.offset = slicenumber1; % exchange for slicenumber2
371 settingsAstra.outputSize = 774;
372

373 tic
374 x = x+1; disp(x)
375 slicesTmp{x} = astraFDK(projsAstra,thetas,z01,z02,dx*1000,

settingsAstra);
376 toc
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377 end
378

379 %% Find the correct rotation axis shift by visual inspection
380 figure(1)
381 showImage(-imgaussfilt(slicesTmp{28},1.5))
382 title(sprintf('Current rotation axis shift: %4.1f + %4.1f',shiftx,xxx))
383 colormap gray; zoom(1.3);
384

385 %% Tilt projections: enter shifts here
386 shift1 = 0; % shift at slicenumber1
387 shift2 = 0; % shift at slicenumber2
388 detectorTilt = atand((shift1-shift2)/(slicenumber1-slicenumber2));
389 shiftAxis = 0; % shift in central slice
390

391 clear projs
392 parfor indProj = 1:size(projsAve,3)
393 disp(indProj);
394 projs(:,:,indProj) = shiftRotateImage(projsAve(:,:,indProj), [0,

shiftAxis], detectorTilt);
395 end
396

397 %% Save final projections
398

399 %% determine geometric parameters - Fresnel number
400 % source-sample distance
401 z01 = wwas(getDumpName(numFirstangle),'sx') + z01Corr;
402

403 % effective pixel size
404 M = z02/z01;
405 dx = binningFactor*dx;
406 dx_eff = dx/M;
407

408 % effective propagation distance
409 z12 = (z02-z01)/1000;
410 z_eff = z12/M;
411

412 % weighted mean energy of the x-ray spectrum in keV (timepix @20cm)
413 E = 9.11; % see Eckermann et al., JMI (2020)
414 lambda = 12.398/E*1e-10; % wave length
415

416 % Fresnel number:
417 F = dx_eff^2/(lambda*z_eff);
418 fprintf('Fresnel number: %4.5f\n',F);
419 save('parameters.mat','thetas','z01','z02','dx','F');
420
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421 %% PHASE RECONSTRUCTION
422 % with BAC, according to HoloTomoToolbox-scripts
423

424 %% Are the horizontal stripes in the sinogram mitigated?
425 sinoPre=squeeze(projsAve(round(end/2),:,:));
426 sinoPost=sinoPre;
427 sinoPost(sinoPost==inf)=max(sinoPost(sinoPost~=inf));
428 sinoPost = sinoPost-repmat(mean(sinoPost,2),1,size(sinoPost,2));
429

430 figure(1)
431 subplot(2,1,1)
432 showImage(sinoPre)
433 title('Before correction');
434 subplot(2,1,2)
435 showImage(sinoPost)
436 title('After correction');
437

438 %% If yes, run this
439 for k=1:size(projsAve,1)
440 sino=squeeze(projsAve(k,:,:));
441 sino(sino==inf)=max(sino(sino~=inf));
442 projsAve(k,:,:) = sino-repmat(mean(sino,2),1,size(sino,2));
443 end
444

445 %% TOMO-RECONSTRUCTION
446 % according to HoloTomoToolbox-scripts
447

448 %% Save reconstructed slices
449 %% Recommendation: smoothen slices
450 filterSigma = 0.9; % standard deviation in pixels
451 slicesF = imgaussfilt3(slices,filterSigma);

Code A.9:Matlab script for PC-CT reconstruction of TINa data.

A.3 Measurements and Analysis of the X-ray
Spectrum

The analysis scheme in this section has been developed together with Dr. Anna-Lena
Robisch.
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Characterization of the X-ray Spectrum As a part of the commissioning process
of the TINa setup, the source spectrum was characterized under consideration of air
scattering and photon sensitivity of the imaging detector.
The X-ray spectrum was assessed with an energy-resolving XR-100CdTe detector
(Amptek, Bedford) with a sensor thickness of 1 mm, positioned at a distance 𝑧Amptek
from the source. A first measurement series served the calibration of the spectral bins.
To this end, reference materials such as molybdenum (Mo) or nickel (Ni) foils, with
𝐾𝛼 = 17.48 keV and 𝐾𝛼 = 7.48 keV respectively [10], are suitable. The entrance
window of the energy-resolving detector was positioned at 90∘ with respect to the
optical axis, and the foils at 45∘, in order to access their fluorescence signal in absence
of the X-ray source spectrum. Subsequently, with the detector in parallel (i.e. at 0∘)
and foils removed, the source spectrum itself was recorded. Hereby, settings such as
𝑧Amptek, exposure time and gain were chosen to meet a considerable photon flux.
The analysis script of the data is outlined in Code A.10. In the first part, the detector
bins are assigned energy levels in [keV] according to the calibration measurements.
As a next step, tabulated X-ray properties of air, as the propagation medium, and
the sensor material of the imaging detector are included, based on either 𝛽 from the
complex refractive index or the absorption coefficient 𝜇 [15]. The energy bins of the
tabulated values are then rescaled to match the bins of the energy-resolving detector,
and utilized to calculate the energy-dependent absorption proportion according to
Beer-Lambert’s law [15]. Finally, the recorded X-ray spectrum is corrected for the
difference in propagation path (since the energy-resolving and the imaging detector
most probably are positioned at 𝑧Amptek ≠ 𝑧02), and the sensor material efficiency.

1 %% Geometric configuration:
2 zAmptek = 1; % source-Amptek distance in m
3 z02 = 0.2; % source-Imaging detector distance in m
4 z01 = 1e-3; % source-sample distance in m
5

6 %% Load & scale spectrum measured by amptek
7 filename = 'tina_spektrum_gain20_300sec.txt';
8 fid = fopen(filename);
9 data = textscan(fid,'%f %f %f', 'CollectOutput',true);
10 countsAmptek = data{1}(1:end,1);
11 fclose('all');
12

13 % Utilize calibration data points
14 Ni = [252.05 7.48]; % Ni line Channel, Ni line [keV]
15 Mo = [532.69 17.48]; % Mo line Channel, Mo line [keV]
16
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17 % bin width in keV
18 binsE = (Mo(2)-Ni(2)) / (Mo(1)-Ni(1));
19

20 % energy axis
21 energyAmptek = linspace(0, 2048, 2048) * binsE; % Number of channels

Amptek: 2048
22 offsetAmptek = 1.0 ;
23 energyAmptek = [energyAmptek(1:end)]' - offsetAmptek;
24

25 % normalize spectrum
26 countsAmptek = countsAmptek / max(countsAmptek);
27

28 %% Load & process tabulated transmission in air
29 % CXRO - beta -> linear attenuation coefficient: mu = 4pi*beta/lambda
30

31 % read in data
32 filename = 'IndexRefraction_Air_CXRO.txt';
33 fid = fopen(filename);
34 data = textscan(fid,'%f %f %f', 'CollectOutput',true);
35 betaCXRO = data{1}(1:end,3);
36 energyCXRO = data{1}(1:end,1)*1e-3; % keV
37 muCXRO = 4*pi*betaCXRO./(1.2398e-9./energyCXRO);
38 fclose('all');
39

40 % extract relevant mu
41 idx = find(energyCXRO >= 30 , 1, 'first'); % 30 keV is the cutoff for

tabulated data
42 energyCXRO = energyCXRO(1 : idx);
43 muCXRO = muCXRO(1 : idx);
44

45 % interpolate to linear energy axis
46 EAir = []; muAir = [];
47 binWidth = min(diff(energyCXRO));
48

49 for currBin = 1 : numel(energyCXRO)-1
50 currBinWidth = energyCXRO(currBin+1) - energyCXRO(currBin);
51 scale = currBinWidth / binWidth;
52 ETmp = energyCXRO(currBin : currBin+1);
53 muTmp = muCXRO(currBin : currBin+1);
54 ETmp = imresize(ETmp, [scale,1],'bilinear');
55 muTmp = imresize(muTmp, [scale,1],'bilinear');
56 for iii = 1 : numel(ETmp)
57 EAir = [EAir ETmp(iii)];
58 muAir = [muAir muTmp(iii)];
59 end
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60 end
61

62 % remove data points that are of the same value
63 [EAir,ia,ic] = unique(EAir,'first');
64 muAir = muAir(ia);
65

66 %% Adjust tabulated data for absorption in air to amptek spectrum
67 countsAmptek = countsAmptek + 0.1;
68

69 % crop Amptek spectrum
70 idx = find(energyAmptek >= EAir(1),1,'first');
71 energyAmptek = energyAmptek(idx:end);
72 countsAmptek = countsAmptek(idx:end);
73 countsAmptek(energyAmptek > EAir(end)) = 0;
74 energyAmptek(energyAmptek > EAir(end)) = 0;
75 energyAmptek= nonzeros(energyAmptek);
76 countsAmptek = nonzeros(countsAmptek) - 0.1;
77

78 % interpolate absorption coefficient to used number of bins in amptek
79 % spectrum
80 EAir = imresize( EAir, [1, numel(energyAmptek)],'bilinear');
81 muAir = imresize( muAir, [1, numel(energyAmptek)],'bilinear');
82

83 % compute detection efficiency of imaging detector
84 deltaDefocusDistance = zAmptek-z02;
85 transmissionAir = exp(-muAir*deltaDefocusDistance)';
86

87 %% Load & process imaging detector specifications
88 % CXRO - beta -> linear attenuation coefficient: mu = 4pi*beta/lambda
89

90 % read in data
91 filename = 'IndexRefraction_Si_CXRO.txt'; % make sure to use the same

energy bins or adjust skript accordingly
92 fid = fopen(filename);
93 data = textscan(fid,'%f %f %f', 'CollectOutput',true);
94 betaCXRO = data{1}(1:end,3);
95 energyCXRO = data{1}(1:end,1)*1e-3; %keV
96 muCXRO = 4*pi*betaCXRO./(1.2398e-9./energyCXRO);
97 fclose('all') ;
98

99 % extract relevant mu
100 idx = find(energyCXRO >= 30 , 1, 'first'); % 30 keV is the cutoff for

tabulated data
101 energyCXRO = energyCXRO(1 : idx);
102 muCXRO = muCXRO(1 : idx);
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103

104 % interpolate to linear energy axis
105 EDet = []; muDet = [];
106 binWidth = min(diff(energyCXRO));
107

108 for currBin = 1 : numel(energyCXRO)-1
109 currBinWidth = energyCXRO(currBin+1) - energyCXRO(currBin);
110 scale = currBinWidth / binWidth;
111 ETmp = energyCXRO(currBin : currBin+1);
112 muTmp = muCXRO(currBin : currBin+1);
113 ETmp = imresize(ETmp, [scale,1],'bilinear');
114 muTmp = imresize(muTmp, [scale,1],'bilinear');
115 for iii = 1 : numel(ETmp)
116 EDet = [EDet ETmp(iii)];
117 muDet = [muDet muTmp(iii)];
118 end
119 end
120

121 % remove data points that are of the same value
122 [EDet,ia,ic] = unique(EDet,'first');
123 muDet = muDet(ia);
124

125 %% Adjust tabulated data for absorption coefficient (imaging detector) to
amptek spectrum

126 % interpolate absorption coefficient to the number of used bins in amptek
127 % spectrum
128 EDet = imresize( EDet, [1, numel(energyAmptek)],'bilinear');
129 muDet = imresize( muDet, [1, numel(energyAmptek)],'bilinear');
130

131 % compute detection efficiency of imaging detector
132 sensorThickness = 500e-6;
133 efficiency = 1 - exp(-muDet*sensorThickness)';
134

135 %% normalize spectrum wrt spectrum at Imaging detector
136 countsAmptek = countsAmptek / max((2-transmissionAir).*countsAmptek);
137

138 %% compute weighted spectrum
139 weightedCounts = (2-transmissionAir).*efficiency.*countsAmptek;

Code A.10:Matlab code to compute the imaging spectrum.

Plotting the X-ray Spectra In order to visualize the effect of the aforementioned
corrections on the X-ray spectrum, the originally measured spectrum and the one with
corrections applied are plotted together. Further, the respective mean weighted energy
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is specified. The implementation is detailed in Code A.11.

1 %% plot spectrum
2 figure(1); clf
3 xlabel('Energy [keV]')
4 ylabel('I/I_{max}')
5 axis([4.5 max(energyAmptek) 0 1])
6

7 % weighted mean energy
8 weightedMeanE = sum(energyAmptek.*countsAmptek) / sum(countsAmptek);
9 line([weightedMeanE weightedMeanE], [0 1], 'color', 'k', 'LineWidth', 1.5,

'LineStyle', '--');
10 info = sprintf('%.2f%s', string(weightedMeanE) ,' keV');
11 set(0,'defaultAxesFontSize',12)
12 text(15.5,0.85,info,'Color',[0.4 0.4 0.2]);
13 hold on
14

15 airWeightedMeanE = sum((2-transmissionAir).*countsAmptek.*energyAmptek) /
sum((2-transmissionAir).*countsAmptek);

16 line([airWeightedMeanE airWeightedMeanE], [0 1],'Color','k','LineWidth',1.
5,'LineStyle','--');

17 info = sprintf('%.2f%s', string(airWeightedMeanE) ,' keV');
18 text(14.4,0.75 ,info,'Color',[0.2 0.4 0.4]);
19

20 effWeightedMeanE = sum((2-transmissionAir).*efficiency.*countsAmptek.*
energyAmptek) / sum((2-transmissionAir).*efficiency.*countsAmptek);

21 line([effWeightedMeanE effWeightedMeanE], [0 1],'Color','k','LineWidth',1.
5,'LineStyle', '--');

22 info = sprintf('%.2f%s', string(effWeightedMeanE) ,' keV');
23 text(11.8,0.61,info,'Color',[0.5 0.5 0]);
24

25 % normalize spectra
26 countsAmptek = countsAmptek / max((2-transmissionAir).*countsAmptek);
27

28 plot(energyAmptek,countsAmptek,'LineWidth',2,'Color',[0.4 0.4 0.2]);
29 plot(energyAmptek ,(2-transmissionAir).*countsAmptek,'LineWidth',2,'Color'

,[0.2 0.4 0.4]);
30 plot(energyAmptek ,(2-transmissionAir).*efficiency.*countsAmptek,'LineWidth

',2,'Color',[0.5 0.5 0]);
31 text(17,0.5,'Measured spectrum','Color',[0.4 0.4 0.2]);
32 text(17,0.4,'Spectrum corrected for air','Color',[0.2 0.4 0.4]);
33 text(17,0.3,'Spectrum weighted by efficiency','Color',[0.5 0.5 0]);

Code A.11:Matlab code to plot the imaging spectrum.
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Dose Calculation The computation of the dose in Code A.12 is based on the pre-
ceding spectrum characterizations and the utilization of a photon-counting imaging
detector, but may be adjusted accordingly if either of these is not fulfilled.
Based on a flat field image from the (tomographic) scan and the X-ray spectrum, the
photon flux in the imaging detector plane 𝑧02 and from that in the sample plane 𝑧01 is
calculated.
The dose 𝐷 is defined as the overall absorbed energy, hence

𝐷 = ∑
𝐸

𝐼0𝑡𝐸
𝑑(𝐸) ⋅ 𝜌𝐴

⋅ 𝑁proj𝑁tomos ,

with flux 𝐼0, exposure time per projection 𝑡, sample density 𝜌 and illuminated area 𝐴,
number of tomographic projections 𝑁proj and number of tomographic scans 𝑁tomos.
Note that the energy spectrum𝐸 and the stopping power 𝑑(𝐸) are Matlab arrays. As in
Code A.10, tabulated values are used as input for 𝑑(𝐸), including rescaling of energy
intervals.

1 %% Get imaging detector flat field & total number of photons
2 flat = ...;
3 countedPhotons = sum(flat(:));
4

5 %% Remove weight from spectrum
6 exposureTime = 5; % exp. time of flat in s
7 rateImDet = countedPhotons * weightedCounts / (exposureTime * sum(

weightedCounts));
8 fluxImDet = sum(rateImDet); % ph/s in detector plane
9 % to account for sample-detector path in air
10 rateSample = countedPhotons * (2-exp(-muAir*(z02-z01))').* countsAmptek /

(exposureTime * sum((2-exp(-muAir*(z02-z01))').* countsAmptek));
11 fluxSample = sum(rateSample); % ph/s in sample plane
12

13 %%
14 fprintf(sprintf('%s%.2f%s\n' , 'total number of detected mega-photons per

second ', fluxImDet/1e6 ,''))
15 fprintf(sprintf('%s%.2f%s\n' , 'total number of mega-photons per second in

sample plane ', fluxSample/1e6 ,''))
16

17 %% Estimate dose
18 I_0 = fluxSample; % ph/s
19 t = exposureTime; % exp. time in s
20 E = (2-exp(-muAir*(z02-z01))').* countsAmptek .* energyAmptek; % get

energy from spectrum
21 rho = ...; % density sample in kg/m3
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22 numPixelX = 774; % number of pixels Imaging detector
23 numPixelY = 516;
24 px = 55e-6; % physical pixel size
25 FOV = numPixelX*numPixelY*(px/z01)^2;
26 numProjs = ...; % projections per tomo
27 numTomos = ...; % number of tomo scans
28

29 %% Get stopping power
30 fid = fopen(...); % txt-file
31 data = textscan(fid,'%f %f %f', 'CollectOutput',true);
32 stoppingCXRO = data{1}(1:end,2);
33 energyCXRO = data{1}(1:end,1)*1e-3; % in keV
34 fclose('all');
35

36 % extract relevant mu
37 idx = find(energyCXRO >= 30 , 1, 'first'); % 30 keV is the cutoff for

tabulated data
38 energyCXRO = energyCXRO(1:idx);
39 stoppingCXRO = stoppingCXRO(1:idx);
40

41 % interpolate to linear energy axis
42 ESample = []; stoppingSample = [];
43 binWidth = min(diff(energyCXRO));
44

45 for currBin = 1 : numel(energyCXRO)-1
46 currBinWidth = energyCXRO(currBin+1) - energyCXRO(currBin);
47 scale = currBinWidth / binWidth;
48 ETmp = energyCXRO(currBin : currBin+1);
49 muTmp = muCXRO(currBin : currBin+1);
50 ETmp = imresize(ETmp, [scale,1],'bilinear');
51 muTmp = imresize(muTmp, [scale,1],'bilinear');
52

53 for iii = 1 : numel(ETmp)
54 ESample = [ESample ETmp(iii)];
55 stoppingSample = [stoppingSample muTmp(iii)];
56 end
57 end
58

59 % remove data points that are of the same value
60 [ESample,ia,ic] = unique(ESample,'first');
61 stoppingSample = stoppingSample(ia);
62

63 % interpolate absorption coefficient to used number of bins in amptek
64 % spectrum
65 ESample = imresize( ESample, [1, numel(energyAmptek)],'bilinear');
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66 stoppingSample = imresize( stoppingSample, [1, numel(energyAmptek)],'
bilinear');

67

68 %% Compute total dose
69 D = I_0*t*E./(stoppingSample*rho*FOV) *numProjs*numDists

Code A.12:Matlab code to compute the total dose (based on the previously computed
spectrum).
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To bring physiology and pathology of the human brain into better micro-
anatomical and histological context, studies with different methodologies 

are required. Established techniques such as electron microscopy or histology 
show limitations in view of invasiveness, labor-intense and artifact-prone 
sample preparation, as well as an adequate ratio between resolution and volume 
throughput. For this reason, X-ray phase-contrast tomography (PC-CT) has 
been proposed as a three-dimensional non-destructive imaging technique, 
which requires less effort in sample preparation and can assess larger volumes. 
Furthermore, it offers quantitative electron density based contrast even for 
unstained tissue. Up to now, however, PC-CT studies fell short in number of 
samples, so that structural alterations caused by neurodegenerative diseases 
cannot be distinguished from physiological inter-subject variations.

In this thesis, the scalability of PC-CT with respect to the required number 
of samples and resolution-to-volume-throughput is demonstrated, and the 
methodology is advanced with respect to data acquisition, processing and 
segmentation. In addition to the human cerebellum, cortex and hippocampus 
are studied. Concerning quantification and analysis of PC-CT data, this work 
introduces optimal transport analysis to obtain quantitative metrics of the 
cyto-architecture and to identify changes due to neurodegenerative diseases. 
For the case of Alzheimer’s disease, this workflow reveals a yet undescribed 
compactification of granular cells in the human hippocampus. This thesis 
also provides optimized configurations to study neural tissues with laboratory 
instrumentation, and – finally – provides new correlative imaging approaches, in 
particular with scanning electron microscopy.
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